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Abstract—Fake news and rumors constitute a major prob-
lem in social networks recently. Due to the fast information
propagation in social networks, it is inefficient to use human
labor to detect suspicious news. Automatic rumor detection
is thus necessary to prevent devastating effects of rumors on
the individuals and society. Previous work has shown that in
addition to the content of the news/posts and their contexts (i.e.,
replies), the relations or connections among those components are
important to boost the rumor detection performance. In order to
induce such relations between posts and contexts, the prior work
has mainly relied on the inherent structures of the social networks
(e.g., direct replies), ignoring the potential semantic connections
between those objects. In this work, we demonstrate that such
semantic relations are also helpful as they can reveal the implicit
structures to better capture the patterns in the contexts for rumor
detection. We propose to employ the self-attention mechanism in
neural text modeling to achieve the semantic structure induction
for this problem. In addition, we introduce a novel method to
preserve the important information of the main news/posts in
the final representations of the entire threads to further improve
the performance for rumor detection. Our method matches the
main post representations and the thread representations by
ensuring that they predict the same latent labels in a multi-
task learning framework. The extensive experiments demonstrate
the effectiveness of the proposed model for rumor detection,
yielding the state-of-the-art performance on recent datasets for
this problem.

Index Terms—Rumor, Fake News, Deep Learning, Structure

I. INTRODUCTION

With the expansion of social networks, the amount of data
accessible to users is ever increasing. Social Networks (e.g.,

Facebook and Twitter) make it possible for their users to reach
out thousands to millions of users. New contents are uploaded
constantly to social networks, reflecting a near real-time view
about the events in the real world. However, besides the benefit
of effective information propagation, social networks present a
unique challenge to verify the accuracy of the posts (i.e., fake
news and rumors) (dubbed as rumor detection in this work).
This problem has attracted much attention from the society
recently due to its devastating implication on political, social
and economical movements. For instance:

• In U.S. 2016 presidential election almost 529 different
rumours about candidates were propagated via Facebook
and Twitter which had influence on voters [1].

• A rumour about two explosions in White House in April
2013 in Twitter resulted in social panic and a dramatic
drop in stock market [2].

• Rumors about the lost Malaysian airplane in March 2014
in Weibo, a Chinese micro blog service, made it difficult
for people to follow the true news and hurt the families
of the passengers [3].

It is thus the utmost interest of the social network platforms
to develop effective strategies to combat against fake news
and rumors. The challenges for this problem come from the
fact that various sources of information might be required
to recognize the misinformation, and extensive analysis and
reasoning of such information sources might be needed to
accurately make a decision. In order to solve this problem,
the early effort from some social network platforms has relied
on the reports from their users to identify the suspicious
posts that are then further verified by outside fact checkers
(e.g., Facebook) or automatic systems (e.g., Twitter). This
approach is not very efficient as it involves substantial human
effort and might need much time for the systems to recognize
the fake news before they appear. Such long response time
might be already sufficient for the fake news to cause serious
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problems on the public, calling for more automatic methods
for rumor detection to minimize the necessary human effort
and expedite the recognition time. Automatic rumor detection
is being studied actively in the literature and our work in this
paper would contribute to this line of research by introducing
a novel method to better address this problem.

There are different definitions for fake news and rumors in
the literature. In this work, we will employ the definitions for
these concepts as specified in [4]. In general, we can categorize
rumors in two different categories:
• The rumors that contain true or false information and

they would be indeed proved to be correct or incorrect
(respectively) by other authorized sources later (i.e., after
the time they are posted).

• The rumor that cannot be verified as presenting true or
false information by the authorized sources. However, the
users have identified those posts as rumors.

In other words, any piece of information whose veracity
status is questionable by the time of posting would be consid-
ered as a rumor [4]. Based on this definition for rumors, rumor
detection is defined as follows: Given a piece of information
from social networks (e.g., user posts), we would like to
predict if this piece of information is a rumor or not (i.e.,
cannot be verified as the true news). Due to the nature of
social networks, the information that we can employ in the
rumor predictions involves the conversations that the piece of
information trigger (e.g., the replies from the users) and the
profiles of the users who participate into such conversations.
We consider the triggered conversations as the contextual
information, and call a post from social networks along with
its contextual information as a thread for convenience.

Different approaches based on feature engineering [5] [6],
propagation pattern [7], and neural networks [9] have been
proposed for rumor detection. It has been demonstrated in
these works that besides the content presented in the posts and
their corresponding contexts (e.g., the replies), it is also crucial
to model the relations between those elements to boost the
performance for rumor detection [8]. Unfortunately, these prior
work have only focused on the structural relations inherited
directly from the social networks (e.g., the reply relation
between the main posts and the replies) and failed to exploit
the implicit relations that can be induced via the semantics of
the posts and the contexts. For instance, the recent work on
rumor detection [8] employs the direct tree structures between
user posts and replies in Twitter to guide the computation of
recursive neural networks to perform prediction.

In this work, we argue that the implicit semantic relations
between user posts and replies are also important for rumor
detection and the models should capture them appropriately
to boost the performance. Consequently, we propose a novel
model for rumor detection that explicitly learns the semantic
similarities between pairs of the main posts and the contextual
replies using the self-attention mechanism. In the proposed
model, such semantic similarities are used as the weights
to compute representation vectors for the main post and the
replies in a thread via the weighted combinations of the other

elements in the same thread. The representation vectors are
eventually aggregated into a final representation vector to
represent the thread and perform the rumor prediction. Finally,
as the main posts in the threads are the most important pieces
of information in the threads for rumor detection, we propose
to augment the final representations of the threads with the
representations of the main posts to avoid the confusion for
the proposed model. In particular, we introduce a novel method
to ensure that the information in the final representations for
the threads also involves the main information in the repre-
sentation for the main posts. This is achieved by enforcing
that such thread and main post representations would predict
the same latent labels in a multi-task learning framework
for rumor detection. The extensive experiments demonstrate
the effectiveness of the proposed model and lead the the
state-of-the-art performance for rumor detection on two recent
benchmark datasets. In summary, our contributions in this
paper include:
• We introduce a novel method for rumor detection based

on the explicit modeling of semantic relations between
the main posts and the contextual replies in social net-
works.

• We propose a novel multi-task learning framework to em-
phasize the main posts in the threads for rumor detection.

• We conduct extensive experiments on recent rumor detec-
tion datasets and achieve the state-of-the-art performance
on those datasets.

In the following, we will first present the related work
and then provide a formal definition for the task of rumor
detection. Afterward, we will describe the proposed model
and the experiments, followed by a conclusion in the end of
this paper.

II. RELATED WORK

In general we can categorize the previous work into three
categories [4]:
• Feature engineering approach: In this category, a set of

features is hand-designed to transform the posts into
feature representations that are then sent to some statisti-
cal model to perform classification. The typical features
in this approach include the textual information, the
structural evidences [5], [6], image/media content [7],
and the propagation patterns of the information diffusion
in social networks [10]. The success of this approach
depends crucially on the quality of the hand-designed
feature sets that might be suboptimal once being applied
to different social networks and domains.

• Propagation based approach: In this approach, it is as-
sumed that the propagation pattern of the rumors is dif-
ferent from those for non-rumor posts and such difference
can be exploited to detect rumors in social networks [11].
However, One drawback of this approach is that it does
not consider the textual and visual information from the
post content.

• Deep learning approach: In contrast to feature engineer-
ing, this approach automatically learns effective features
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for the posts from data via deep learning architectures [8],
[9]. The features induced by deep learning often capture
the underlying representations of data, thus improving the
generalization performance as well as the adaptability to
new domains/social networks for rumor detection [9]. Our
work in this paper follow this approach to develop a novel
deep learning model for rumor detection.

The most related work to ours is the deep learning model to
capture contextual information in Twitter for rumor detection
in [8]. In particular, Recursive Neural Networks (RvNN) are
used to compose the tree-like structures of the posts and
the corresponding replies in Twitter based on their tf-idf
representations. However, such prior work only exploits the
explicit relations between the main posts and their replies from
the network structures (i.e., the direct reply relations). Our
work in this paper is different from the prior work as we go
beyond the explicit structural relations in social networks and
model the implicit relations among the posts based on their
semantics to perform rumor detection.

In addition to the main task of rumor detection, there are
other approaches that attempt to detect the stance of the replies
toward the main post and then detect the rumor [13], [16]. It
has been shown that for this task the evolution of the people’s
stance toward the main post is very helpful and considering
time series is important for this problem. Motivated by such
characteristics, [12] proposes a multi-task learning framework
to simultaneously predict the stance and classify the main post
for rumor detection.

III. PROBLEM DEFINITION

Following the recent work on rumor detection [8], we use
Twitter as the social network in this work. Formally, an input I
for rumor detection consists of the main tweet R0 along with a
set of reply tweets for this main tweet R1, R2, . . . , RT (where
T is the number of reply tweets): I = (R0, R1, R2, . . . , RT ). I
is called a thread for convenience. The goal of rumor detection
is to predict whether the input thread represents a rumor or
not. In order to perform such prediction, following [8], we
attempt to classify I into one of the following four labels:
1) Without Rumor, (2) True Rumor, (3) False Rumor and (4)
Unrecognizable. If the main tweet R0 can be proved to be
false, the label for I is “False Rumor” while the label for I
is “True Rumor” if R0 can be shown to be true.

IV. MODEL

A. Word & Tweet Representation

We consider the input I = (R0, R1, R2, . . . , RT ) as se-
quence of tweets where each tweet, in turn, is a sequence of
words. The main tweet R0 is put at the beginning of the tweet
sequence. As the tweets might involve different numbers of
words, we pad the tweets with a special token to ensure that
all the tweets have the same word length N (i.e., the maximum
word length of the tweets in the dataset).

In order to represent the posts and replies, for the i-
th tweet Ri, we first convert its words Wi1,Wi2, ...,WiN

(i.e., Ri = Wi1,Wi2, ...,WiN ) into their pre-trained word

embeddings ei1, ei2, ..., eiN respectively. Afterward, we apply
the max-pooling operation over such word embeddings along
each dimension to obtain the representation vector hi for Ri:

hi = Elementwise Max(ei1, ei2, ..., eiN ) (1)

This tweet-vector transformation procedure would convert
the the input thread I = (R0, R1, R2, . . . , RT ) into a sequence
of representation vectors (h0, h1, h2, . . . , hT ) (respectively)
that are then fed into the following steps for further com-
putation.

B. Contextualizing Tweet Representations

Due to the nature of social networks, the main tweet and
the replies are not independent and the content of the main
tweet or replies has substantial influence on other tweets in
the same thread. In the previous work, it has been shown that
capturing such relations among the main tweets and replies
can help to boost the performance of rumor detection [8].
However, such previous work has only considered the explicit
relation between the main tweet and its replies (i.e., the reply
trees in Twitter from the network structures), neglecting the
implicit relations among the tweets based on their semantic
similarities. In this work, we propose to exploit such implicit
semantic relations to further improve the performance for
rumor detection.

In order to capture the semantic relations between the
tweets, we learn the pairwise similarities among them based
on the self-attention mechanism. In particular, inspired by the
transformer architecture in [24], we first compute the key and
query vectors for each tweet based on its representation hi:

ki = Wk ∗ hi + bk

qi = Wq ∗ hi + bq
(2)

Given these key and query vectors for the tweets, we obtain
the similarity aij between the i-th tweet and the j-the tweet
in the input thread I via the dot product:

ai,j = ki · qj/γ (3)

where γ is a normalization factor. Once all the similarities
aij for all the tweet pairs in a thread have been computed,
we exploit these similarities as the weights to compute more
abstract representations for the tweets based on the weighted
sums:

h′i = Σjai,j ∗ hj (4)

In the next step, we obtain the overall representation vector
h′ for the input thread I by applying the max-pooling opera-
tion one more time over all the tweet representations h′i:

h′ = Elementwise Max(h′0, h
′
1, h
′
2, ..., h

′
T ) (5)

Afterward, a 2-layer feed-forward neural network followed
by a softmax layer is employed to produce a probability dis-
tribution P (y|R0, R1, R2, . . . , RT ; θ) over the possible labels
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Fig. 1: The Proposed Model. Inputs to the model are word embeddings. Green vectors represent replies and red vectors
represent the main tweet. The self-attention component incorporates contextual information into the representation of each
tweet. Max-pooled representations are fed into the rumor and latent label classifiers.

for rumor prediction for I (θ is the model parameter). Finally,
we optimize the negative log-likelihood function to train the
proposed model for rumor detection:

Llabel = − logP (y ∗ |R0, R1, R2, . . . , RT ; θ) (6)

where y∗ is the correct label for I .

C. Information Preservation

The current model treats the main tweets as equally im-
portant as the replies. This is undesirable as the main tweets
involve the most important content in the threads over which
the model should emphasize to produce good performance.
Such emphasis can be done by ensuring that the overall final
representations of the threads also cover the core information
represented in the main tweet representations (i.e., preserving
the information in the main tweets). In this work, we propose
to achieve this goal by enforcing the same latent labels induced
by the thread representations and the main tweet representa-
tions. In particular, we first transform the thread representation
h′ and the main tweet representation h0 into two probability
distributions over the same number K of possible latent labels
P ′(L′|R0, R1, R2, . . . , RT ) = F ′(h′) and P0(L|R0) = F (h0)
(respectively) using two different 2-layer feed-forward neural
networks with softmax layers in the end (i.e., F and F ′ are
different 2-layer feed-forward networks). In order to ensure
h′ covers the information in h0, the latent label L′ that
P ′(L′|R0, R1, R2, . . . , RT ) predicts should be the same as
the latent label L predicted by P0(L|R0). To this end, we
additionally optimize the following negative log-likelihood
function for the latent labels when we train the proposed
model:

L = argmaxLP0(L|R0) (7)
Linfo = − logP ′(L|R0, R1, R2, . . . , RT ) (8)

Consequently, the loss function to train the model in this
work is the weighted sum of the rumor label loss and the
information preservation loss:

Loss = LLablel + αLinfo (9)

where α is the hyper-parameter controlling the contribution
of the information preservation loss to the final loss function.
Figure 1 shows the main building blocks of the proposed
model.

D. Baseline Models

The goal of the information preservation component in the
proposed model is to emphasize main tweet R0 in the final
representation of the input thread h′. In order to demonstrate
the benefits of the latent label prediction mechanism, we
explore two other methods to achieve this goal, serving as
the baselines for the proposed model.

In the first baseline, we emphasize the main tweet R0 in h′

by directly imposing that the thread representations h′ and the
main tweet representations h0 are similar. In particular, we first
transform h′ and h0 into more abstract representation vectors
l′ and l (respectively) with the same dimension using different
2-layer feed-forward networks. We would then enforce that h′

and h0 are similar by replacing Linfo in the proposed model
with the squared difference loss between l′ and l:

L1
info = ||l − l′||2 (10)

where || · ||2 is the L2 norm of the vector. We denote this
model by Diff in our experiments.

In the second baseline for the information preservation
component, we observe that the thread representation h′ is
computed based on both the main tweet representation h0
and the reply tweet representations h1, h2, . . . , hT . In order to
establish a stronger influence of the main tweet on the thread
representation, we can ensure that the thread representation h′

is more similar to the main tweet representation h0 than the
reply tweet representations h1, h2, . . . , hT . In particular, we
first aggregate the reply tweet representations h1, h2, . . . , hT
into a single vector hrep to facilitate the comparison with h′

via the max-pooling operation:
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hrep = Elementwise Max(h1, h2, . . . , hT ) (11)

Afterward, we estimate the similarity s0 between the thread
representation h′ and the main tweet representation h0 as well
as the similarity srep between the thread representation h′ and
the reply tweet representation hrep by applying a feed-forward
neural network FF with a single output unit (i.e., for the
similarity) on the concatenation of the representations: s0 =
FF (h′, h0), srep = FF (h′, hrep). Note that we ensure the
similarities s0 and srep are between 0 and 1 by introducing the
sigmoid function in the end of FF . Consequently, we replace
the loss function Linfo in Equation 7 of the proposed model
with the following margin loss function to push h′ closer to
h0 than hrep:

L2
info = 1− s0 + srep (12)

We name this model as Discriminator in the experiments.
Note that all the three variants of the information preservation
component (i.e., latent label prediction, Diff and Discrim-
inator) aim to retain more information of the main tweet
representation h0 in the thread representation h′. However, the
label prediction mechanism approaches this via the implicit
constraint of the same predicted latent label from the repre-
sentations while Diff targets a more extreme and direct method
of similar representations. Discriminator, on the other hand,
considers the information preservation for the main tweet in
the context with the reply tweet representations and the margin
loss function.

As the input for rumor detection is a sequence of tweets, a
common approach in natural language processing is to handle
such sequential data with Recurrent Neural Networks (RNN)
(e.g., Long-short Term Memory Networks - LSTM). Conse-
quently, in addition to the baseline models for information
preservation, we investigate another baseline model to fine
tune the tweet representations based on LSTM. In particular,
for this baseline model, we employ a LSTM layer over the
sequence of tweet representations h0, h1, h2, ..., hT before the
self-attention component. The hidden states of the LSTM layer
ĥ0, ĥ1, ĥ2, ..., ĥT would then replace the tweet representations
h1, h2, ..., hT respectively in the proposed model. This base-
line is called RNN in the experiments.

V. EXPERIMENTS

A. Datasets, Resources & Parameters

Following the previous work on rumor detection, we use the
Twitter datasets (described in [12]) for the evaluations in this
paper (i.e., the Twitter 15 and Twitter 16 datasets). There are
1381 and 1118 main tweets in these datasets respectively for
which a main tweet would correspond to one tree of replies.

Regarding the parameters and resources for the proposed
model, we use the Glove [21] embedding (of size 300) to
initialize the word vectors. 300 hidden units are employed for
the key and query vectors in Equations 2. The feed-forward
layer for the rumor classifier has two layers with 200 hidden
units. The feed-forward layer for the information preservation

component, on the other hand, has two layers with 100 hidden
units and employ three latent labels for prediction. We use the
Adagrad optimizer with initial learning rate of 0.3 with the
trade-off parameter of α = 1 for the loss function. Following
the previous work [8], we use the 5-fold cross validation
procedure to tune the parameters and obtain the performance
for the models in this work.

B. Comparing to the state-of-the-art

This section compares the proposed model (called Semantic
Graph) with the state-of-the-art model on our datasets. For
performance measure we use the accuracy on all classes and
F1 score per class for each dataset. We compare with two
types of models: 1) Feature based models: These models rely
on feature engineering to extract features for such statistical
models as Decision Tree, SVM and Random Forest [5],
[10], [11], [14], [15], [17]. 2) Deep learning models: These
models use deep learning models to learn features for rumor
detection (i.e., Recurrent Neural Networks or Recursive Neural
Networks with GRU-RNN, BU-RvNN and TD-RvNN in [8],
[9]). Tables II and III show the results on Twitter 15 and
Twitter 16 respectively.

These tables show that deep learning models outperform
feature based models for rumor detection due to the ca-
pacity of the deep learning models to automatically learn
effective features from data. In addition, comparing Semantic
Graph and RvNN models with GRU-RNN, we see that the
structural information (e.g., the reply or semantic relations)
helps to improve the performance for rumor detection. Finally,
by incorporating implicit semantic relations among all the
tweets in a thread, Semantic Graph achieves the state-of-the-
art performance on both datasets in terms of accuracy, and
outperforms all the other models in three out of four classes in
terms of F1 Score. This clearly demonstrates the effectiveness
of the proposed method for rumor detection.

C. Word Embedding

The input to the proposed model is the embeddings of the
words in the tweets. This section compares the performance
of the proposed model when different word embeddings are
employed. In particular, we investigate two types of word
embeddings in this work:

1) Contextualized Embeddings: Contextualized word em-
beddings involve pre-trained models that can compute the
embedding for a word based on its context. The following
contextualized word embeddings are compared in this work:

• ELMo: This is a bidirectional language model with multi-
ple layers of LSTMs [20]. We use the ELMo embeddings
of dimension 1024 in the experiments.

• BERT: This is a bidirectional language model trained with
a transformer [19]. We employ the vectors in the last layer
of the BERT model (with dimension 768) for the word
embeddings in the experiments.

• GPT: Similar to BERT, GPT uses a transformer to train a
language model. However, this is an unidirectional model
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TABLE I: Heatmap of attention. Numbers in front of each tweet show the index of the tweet in the heatmap. Numbers in
heatmap show the attention weights between the correspnoding tweets indexed at the columns and rows.

False Rumor True Rumor

Main: really? amber alert website goes
dark under government shutdown (6)
Reply: How? They only need webmaster
to run it (7)
Reply: barry proves it is not (4)
Reply: What’s up with this. It’s up nicely
(13)

Main: lego letter from the 1970s still
offers a powerful message to parents 40
years later (6)
Reply: lego lives on my brother. my
daughter and my grandson all enjoyed it
thro the generations (8)
Reply: forty years later still screams from
parents as we step on the bloody stuff (7)
Reply: times may change but the truth of
this lego letter from the 1970s never has
in 40 years via (0)

Unverified Non-Rumor

Main: donald trump: ” ... laziness is a
trait in blacks. it really is, i believe that.
it s not anything they can control. (2)
Reply: that is not from trump. it is found
in a book by a former trump employee, he
alleges he heard trump say that. (0)
Reply: now he is trying to win the african
american vote and wonders why it is not
working. the gop wed itself to terminal
stupidity. (5)
Reply: it is appalling that this nonsensical
revisionism is being forcefully persued. (7)

Main: colombian gov. and left-wing farc
rebel movement agree ceasefire to end
decades-long conflict (11)
Reply: hmmm, not exactly as promising
as first reported, but a step in the right
direction at least. (10)
Reply: I really hope that it will last. (9)
Reply: funny how the farc still stealing
children and bombing towns as i write
this. (0)

TABLE II: Model Performance on Twitter 15.

Model Accuracy F1 NR F1 FR F1 TR F1 UR
DTR [14] 0.409 0.501 0.311 0.364 0.473
DTC [5] 0.454 0.733 0.355 0.317 0.415
RFC [10] 0.565 0.810 0.422 0.401 0.543
SVM-TS [15] 0.544 0.796 0.472 0.404 0.483
SVM-BOW [8] 0.548 0.564 0.524 0.582 0.512
SVM-HK [17] 0.493 0.650 0.439 0.342 0.336
SVM-TK [11] 0.667 0.619 0.669 0.772 0.645
GRU-RNN [9] 0.641 0.684 0.634 0.688 0.571
BU-RvNN [8] 0.708 0.695 0.728 0.759 0.653
TD-RvNN [8] 0.723 0.682 0.758 0.821 0.654
Semantic Graph 0.770 0.814 0.764 0.775 0.743

[18]. In the experiments, we use the last layer of GPT
with dimension of 768 for the word embeddings.

TABLE III: Model Performance on Twitter 16.

Model Accuracy F1 NR F1 FR F1 TR F1 UR
DTR [14] 0.414 0.394 0.273 0.630 0.344
DTC [5] 0.465 0.643 0.393 0.419 0.403
RFC [10] 0.585 0.752 0.415 0.547 0.563
SVM-TS [15] 0.574 0.755 0.420 0.571 0.526
SVM-BOW [8] 0.585 0.553 0.655 0.582 0.578
SVM-HK [17] 0.511 0.648 0.434 0.473 0.451
SVM-TK [11] 0.662 0.643 0.623 0.783 0.655
GRU-RNN [9] 0.633 0.617 0.715 0.577 0.527
BU-RvNN [8] 0.718 0.723 0.712 0.779 0.659
TD-RvNN [8] 0.737 0.662 0.743 0.835 0.708
Semantic Graph 0.768 0.825 0.751 0.768 0.789

2) Non-Contextualized Embeddings: In contrast to the
contextualized embeddings, the same embedding vector is
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produced for each word in the vocabulary regardless of its
context. The following non-contextualized embeddings are
considered in our experiments:
• Word2Vec: This is a word embedding method based the

skip gram model in [22]. The Word2Vec embeddings in
our experiments have 300 dimensions.

• fastText: This is a library for efficient text representation
learning. We use the model trained on Wikipedia, UMBC
webbase corpus and statmt.org news dataset [23]. The
embedding dimension is 300.

TABLE IV: Model Performance on Twitter 15

Model Accuracy F1 NR F1 FR F1 TR F1 UR
Word2Vec 0.635 0.648 0.650 0.663 0.641
fastText 0.628 0.621 0.663 0.645 0.632
ELMO 0.698 0.679 0.695 0.712 0.640
BERT 0.729 0.701 0.720 0.756 0.661
GPT 0.767 0.810 0.765 0.771 0.751
Glove 0.770 0.814 0.764 0.775 0.743

TABLE V: Model Performance on Twitter 16

Model Accuracy F1 NR F1 FR F1 TR F1 UR
Word2Vec 0.643 0.630 0.629 0.642 0.663
FastText 0.651 0.639 0.626 0.630 0.671
ELMO 0.711 0.683 0.703 0.699 0.715
BERT 0.742 0.801 0.755 0.779 0.770
GPT 0.761 0.821 0.742 0.768 0.783
Glove 0.768 0.825 0.751 0.768 0.789

Table IV and V show the performance of the proposed
model with different word embeddings on Twitter 15 and
Twitter 16 respectively. These tables show that the contex-
tualized word embeddings in general outperform the non-
contextualized word embeddings for rumor detection. This
result is expected since the contextualized word embedding
capture the appropriate meanings of the words based on
their context while non-contextualized models use the same
representations for all meanings of the words. However,
among all embedding models, Glove actually achieves the
best performance. Our hypothesis is that the language in
our rumor detection datasets is very similar to those in the
corpus used to train Glove (i.e., Wikipedia). This leads to
better overlapping between the vocabularies of our datasets
and Glove embeddings to provide more prior knowledge for
the rumor detection models.

D. Ablation Study

There are two major components in the proposed model
for rumor detection, i.e., seft-attention (called SA) and in-
formation preservation with latent label prediction (called
Prediction). In order to see the contributions of these com-
ponents for the proposed model, we take turns to exclude
these components from the models. The first section in Tables
VI and VII shows the performance of the proposed model
when the SA and/or Prediction component are removed from
the model on the Twitter 15 and 16 datasets respectively.

As we can see from the tables, when SA is excluded, the
model performance drops dramatically. This shows that con-
textual information is important for representing each tweet. In
addition, the information preservation component with latent
label prediction is also necessary for the model to achieve
the best performance. It suggests that the multi-task learning
setting proposed by this work is effective to preserve important
information during the model computation for rumor detection.

In order to assess effectiveness of the proposed latent label
prediction for preserving information about the main tweet,
we conduct experiments with the Diff and Discriminator
baselines. The results are presented in the second sections
of Tables VI and VII, showing that the proposed latent
label prediction mechanism outperforms the baselines Diff and
Discriminator for information preservation. We attribute the
poorer performance of Diff and Discriminator to the fact that
their constraint mechanisms for the similarity of the main
tweet and the thread representations have an effect to eliminate
the information about the reply tweets on the final thread
representation. In particular, Diff enforces the main tweet rep-
resentation and the thread representation to be similar over all
the possible dimensions, leaving no space for the reply tweet
representations in the thread representation. Discriminator, on
the other hand, explicitly separates the reply tweet represen-
tations from the overall thread representation. The limited
reply tweet information in the thread representation hinders an
important source of information and hurts the performance for
rumor detection. The latent label prediction mechanism avoids
this problem as it only imposes the similarity of the main
tweet representation and the thread representation over the
most important dimensions via the same latent label, reserving
some space for the reply tweet information in the final thread
representation for better performance.

Finally the last rows in Tables VI and VII report the perfor-
mance of the RNN baseline mentioned in Section IV.D. As we
can see in the tables, although RNN is a common component
in many NLP tasks, it hurts the performance of the proposed
model for rumor detection. This is due to our consideration
of the input thread I = (R0, R1, R2, . . . , RT ) as a sequence
of tweets that do not reflect its original tree structures in
social networks. Better modeling approach that inherits such
tree structures might help to improve the representation of the
tweets and further advance the proposed model.

TABLE VI: Ablation study on Twitter 15

Model Accuracy F1 NR F1 FR F1 TR F1 UR
Full Model 0.770 0.814 0.764 0.775 0.743
-SA 0.652 0.643 0.629 0.675 0.660
-Prediction 0.751 0.789 0.756 0.742 0.729
-SA -Prediction 0.601 0.612 0.603 0.663 0.549
Diff 0.755 0.740 0.751 0.772 0.731
Discriminator 0.763 0.791 0.758 0.772 0.740
RNN 0.753 0.746 0.755 0.769 0.740

E. Case study on Self-Attention
This section provides a case study on the impact of the self-

attention component. Table I shows the attention heatmap for
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TABLE VII: Ablation study on Twitter 16

Model Accuracy F1 NR F1 FR F1 TR F1 UR
Full Model 0.768 0.825 0.751 0.768 0.789
-SA 0.665 0.643 0.651 0.608 0.689
-Prediction 0.749 0.795 0.723 0.741 0.770
-SA -Prediction 0.592 0.604 0.624 0.598 0.651
Diff 0.756 0.812 0.742 0.751 0.761
Discriminator 0.761 0.819 0.745 0.758 0.769
RNN 0.755 0.809 0.756 0.759 0.772

(a) With Self-Attention (b) Without Sefl-Attention

Fig. 2: t-SNE diagrams for thread representations.

four input threads in Twitter15 from different classes. These
heatmaps illustrate the attention weights between the pairs of
tweets in the input threads. One notable point is that there are
no direct relations between the reply tweets in such threads
based on the inherent structures of the networks. However,
from the heatmaps, we see that the reply tweets can be related
to each other via the semantic modeling. This helps to enrich
the representations for the individual tweets in the threads
(based on the self-attention mechanism) to improve the overall
performance for rumor detection.

Finally, to further understand the effect of the self-attention
component on the proposed model, we draw the t-SNE dia-
grams for the final representations of the threads in the test
datasets when the self-attention component is included and
excluded from the model. Figure 2 shows the diagrams. These
diagrams suggest that combining the contextual information
from the other tweets of the same threads helps to promote
the separability of the classes, thus improving the prediction
performance for rumor detection.

VI. CONCLUSION

Fake news and rumors are one of the main problems
in social networks. Due to the nature of these networks,
rumors can reach out thousands of people quickly and have
devastating effects on different aspects of the society. In this
paper we introduce a novel method for rumor detection in
Twitter. Compared to the previous work, instead of using the
explicit structures in the social network structure (i.e., the
direct reply relations), our model learns the implicit relations
among the main tweet and its replies based on their content. In
addition, we present a novel method for preserving important
information about the main tweet across the model computa-
tions. The extensive experiments prove the effectiveness of the
proposed model for rumor detection in Twitter.
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