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Abstract—Modeling and predicting human behaviors, such
as the activity level and intensity, is the key to prevent the
cascades of obesity, and help spread wellness and healthy
behavior in a social network. The user diversity, dynamic
behaviors, and hidden social influences make the problem
more challenging. In this work, we propose a deep learning
model named Social Restricted Boltzmann Machine (SRBM)
for human behavior modeling and prediction in health social
networks. In the proposed SRBM model, we naturally incor-
porate self-motivation, implicit and explicit social influences,
and environmental events together into three layers which are
historical, visible, and hidden layers. The interactions among
these behavior determinants are naturally simulated through
parameters connecting these layers together. The contrastive
divergence and back-propagation algorithms are employed for
training the model. A comprehensive experiment on real and
synthetic data has shown the great effectiveness of our deep
learning model compared with conventional methods.

I. INTRODUCTION

Overweight and obesity are major risk factors for a
number of chronic diseases, including diabetes, cardiovas-
cular diseases, and cancers. Once considered a problem
only in high-income countries, overweight and obesity are
now dramatically on the rise in low- and middle-income
countries. Recent studies have shown obesity can spread over
the social network [3], bearing similarity to the diffusion
of innovation [4] and word-of-mouth effects in marketing
[6]. To reduce the risk of obesity related diseases, regular
exercise is strongly recommended [14]. However, there have
been few scientific and quantitative studies to elucidate how
social relationships and personal factors may contribute to
macro-level human behaviors.

The Internet is identified as an important source of
health information and may thus be an appropriate delivery
for health behavior interventions [13]. In addition, mobile
devices can track and record the walking/jogging/running
distance and intensity of an individual. Utilizing these
technologies, our recent study, named YesiWell, was con-
ducted in 2010-2011 as a collaboration between PeaceHealth
Laboratories, SK Telecom Americas, and the University of
Oregon to record daily physical activities, social activities
(i.e., text messages, social games, events, competitions, etc.),

biomarkers, and biometric measures (i.e., cholesterol, BMI,
etc.) for a group of 254 individuals. Physical activities were
reported via a mobile device carried by each user. All users
enrolled an online social network allowing them to make
friends and communicate with each other. Users’ biomarkers
and biometric measures were recorded via monthly medical
tests performed at our laboratories. The fundamental prob-
lems this study seeks to answer, which are also the key in
understanding the determinants of human behaviors, are as
follows:

• How could social communities affect individual behav-
iors?

• How could we leverage individual features and social
communities to help predict the individual behavior?

It is nontrivial to determine how much impact social
influences could have on someone’s behavior. Our start-
ing observation is that human behavior is the outcome
of interacting determinants such as self-motivation, social
influences, and environmental events. This observation is
rooted in sociology and psychology, characterized as human
agency in social cognitive theory [1]. An individual’s level of
self-motivation can be captured by learning the correlations
between his or her historical and current characteristics.
Modeling social influences in health social networks is
challenging since they are categorized into implicit and
explicit social influences [2]. In reality, all the users in our
program have participated in many other social activities
such as offline events, physical activity competitions, social
games, etc. Thus, they have unreported relationships which
can cause implicit social influences. The social context
also is a potential cause of implicit social influences, since
human behaviors usually respond to the changing of the
social communities [1]. In addition, a user can be influenced
by unacquainted users, since they participate in the same
program. The hidden social influences are composed of
unreported social relationships, unacquainted users, and the
changing of social context. This problem is known as the
hidden social influence of health social networks [2].

Explicit social influences demand a novel function to bet-
ter capture the influences on individuals from their friends.
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Unlike common developed online social networks (e.g.,
Facebook, etc.), our health social network is developed from
scratch. Users do not have many connections initially. As
time goes by, they will have more connections to other
users. Thus, conventional social influence functions (e.g.,
information propagation cascade models [8], [17]) may not
fit our context.

Motivated by the above challenging issues, we present
a novel Social Restricted Boltzmann Machine (SRBM) for
human behavior prediction, based on the well-known deep
learning model, Restricted Boltzmann Machine (RBM) [19].
In the SRBM model, the human behavior determinants
which are self-motivation, explicit and implicit social in-
fluences, and environmental events are integrated into three
layers which are historical, visible, and hidden layers. Self-
motivation can be captured by learning correlations between
an individual’s historical and current features. The effect of
the implicit social influences on an individual is estimated
by an aggregation function of the past of the social network.
We define a new temporal smoothing and statistical function
to capture explicit social influences on individuals from
their neighboring users. By combining implicit and explicit
social influences into a linear adaptive bias, we are able to
model the social influences. The environment events, such
as competitions, are integrated into the model as observed
variables which will directly affect the user’s behaviors. The
effectiveness of our model is verified by experiments on both
real-world and synthetic health social networks. Our main
contributions of are as follows:

• We introduce a new method for human behavior predic-
tion based on the well-known deep learning model, Re-
stricted Boltzman Machine (RBM). The proposed SRBM
model incorporates self-motivation, explicit and implicit
social influences, and environmental events together.

• Our experimental assessment on both real and synthetic
data confirms that our model is very accurate in human
behavior prediction.

In Sec. 2, we introduce the RBM and related works.
We present our SRBM model in Sec. 3. The experimental
evaluation is in Sec. 4 and we conclude the paper in Sec. 5.

II. THE RBMS AND RELATED WORKS

Figure 1. The
RBM.

The Restricted Boltzmann Machine
(RBM) [19] is a deep learning structure
that has a layer of visible units fully
connected to a layer of hidden units but
no connections within a layer (Figure
1). Typically, RBMs use stochastic bi-
nary units for both visible and hidden
variables. The stochastic binary units of
RBMs can be generalized to any distri-
bution that falls in the exponential family

[22]. To model real-valued data, a modified RBM with

binary logistic hidden units and real-valued Gaussian visible
units can be used. In Figure 1, vi and hj are respectively
used to denote the states of visible unit i and hidden unit
j. ai and bj are used to distinguish biases on the visible
units and hidden units. The RBM assigns a probability to
any joint setting of the visible units, v and hidden units, h:

p(v,h) =
exp(−E(v,h))

Z
(1)

where E(v,h) is an energy function,

E(v,h) =
∑
i

(vi − ai)2

2σ2
i

−
∑
j

bjhj −
∑
ij

vi
σi
hjWij (2)

where σi is the standard deviation of the Gaussian noise for
visible unit i. In practice, fixing σi at 1 makes the learning
work well. Z is a partition function which is intractable as
it involves a sum over the (exponential) number of possible
joint configurations: Z =

∑
v′,h′ E(v′,h′). W is a weight

matrix which bipartitely connects the hidden and visible
layers together, e.g., Wij links vi and hj . The conditional
distributions (assuming σi = 1) are:

p(hj = 1|v) = σ
(
bj +

∑
i

viWij

)
(3)

p(vi|h) = N
(
ai +

∑
j

hjWij , 1
)

(4)

where σ(.) is a logistic function, N (µ, V ) is a Gaussian.
Given a training set of state vectors, the weights and

biases in a RBM can be learned following the gradient of
contrastive divergence [5]. The learning rule are:

∆Wij = 〈vihj〉d − 〈vihj〉r; ∆bj = 〈hj〉d − 〈hj〉r (5)

where the first expectation 〈.〉d is based on the data dis-
tribution and the second expectation 〈.〉r is based on the
distribution of “reconstructed” data. The reconstructions are
generated by starting a Markov chain at the data distribution.
The hidden units can be updated by sampling Eq. 3, then
updating the visible units by sampling Eq. 4.

To incorporate temporal dependencies into the RBM, the
CRBM [20] adds autoregressive connections from the visible
and hidden variables of an individual to his/her historical
variables. The CRBM simulates well human motion in
the single agent scenario. However, it cannot capture the
social influences on individual behaviors in the multiple
agent scenario. Li et al. [12] proposed a ctRBM model for
link prediction in dynamic networks. The ctRBM simulates
the social influences by adding the prediction expectations
of local neighbors on an individual into a dynamic bias.
However, the ctRBM cannot directly incorporate personal
features with social influences to predict human behaviors.
This is because the visible layer in the ctRBM does not take
individual features as an input.

Regarding human behavior prediction, social behavior has
been studied recently such as analysis of user interactions

2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

425



on Facebook [21], activity recommendation [11], and user
activity level prediction [25]. In [25], the authors focus on
predicting users who have a tendency to decline their activity
levels. This problem is known as churn prediction. Churn
prediction aims to find users who will leave a network or
a service. By finding such users, service providers could
analyze the reasons and figure out the strategies to retain
such users. Social churn prediction has been studied in
different applications, including online social games [7],
Q&A forums [23], etc. Our study is similar to social churn
prediction because we also aim to predict the future activity
level of a user. The users in these applications usually have
simple user behaviors. Meanwhile our models enrich the
application area by incorporating various personal features.
The work most closely related to our study is the Socialized
Gaussian Process Model (SGP) [18].

III. THE SRBM MODEL

In this section, we present our SRBM model for hu-
man behavior prediction. Given an online social network
G = {U,E,F} where U is a set of all users and E is a
set of edges, every edge eu,m exists in E if u and m are
friends with each other on G; otherwise eu,m does not exist.
Each user has a set of individual features F = {f1, . . . , fn}.
The social network G grows from scratch over a set of
time points T = {t1, . . . , tm}. To illustrate this we use
ET = {Et1 , . . . , Etm} to denote the topology of the network
G over time, where Et is a set of edges which have been
made until time t in the network, and ∀t ∈ T : Et ⊆ Et+1.
For each user, the values of individual features in F also
change over time. We denote the values of individual fea-
tures of a user u at time t as F tu. At each time point t, each
user u associates with a binomial behavior ytu ∈ {0, 1}.
ytu could be “decrease/increase exercise”, “inactive/active in
exercise”. We will describe ytu clearly in our experimental
result section.

Problem Formulation: Given the health social network
in M timestamps Tdata = {t−M, . . . , t}, we would like to
predict the behavior of all the users in the next timestamps
t + 1. In formal, given {F tu, ytu, Et|t ∈ Tdata, u ∈ U} we
aim at predicting {yt+1

u |u ∈ U}.
Figure 2 illustrates the proposed SRBM model. Our model

includes three layers which are visible layer v, hidden layer
h, and historical layer H. Given a user, each visible variable
vi in the visible layer v corresponds to an individual feature
fi at time t. All the visible variables of all the users in the
previous N time intervals {t − N, . . . , t − 1} (i.e., N <
M ) are included in a historical layer, denoted by Ht<. In
addition, all the variables in the historical layer are called
historical variables. Obviously, we will have |F| × |U | ×
N historical variables. The hidden layer h consists of |h|
hidden variables. The issue now becomes connecting the
three layers together and modeling the variables. Let us start
with the modeling of self-motivation.

Figure 2. The SRBM model.

Self-motivation. The self-motivation is composed of
many dimensions including attitudes, intentions, effort, and
withdrawal which can all affect the motivation that an in-
dividual experiences [16]. In our YesiWell study, individual
features are specially designed to capture self-motivation of
each user. Some of the key measures are as follows:
• Personal ability: BMI, fitness, cholesterol, etc.
• Attitudes: the number of off-line events each user par-

ticipates in, individual sending/receiving messages, the
number of goals set and achieved, Wellness-score [9],
etc. Wellness-score is a measure to evaluate how well
a user lives their life. In essence, be active in social
activities, setting and achieving more goals, and getting
higher Wellness-score result in a better attitude of a user.

• Intentions: the number of competitions each user joins,
the number of goals set, etc. They are intent to exercise,
so they join the competitions and set more goals.

• Effort: the number of exercise days, walking/running
steps, the distances, and speed.

• Withdrawal: BMI slope, Wellness-score slope, etc. The
increase of BMI slope or decrease of Wellness-score [9]
indicate not good signs in the self-motivation. The users
may give up their progresses.

In order to model self-motivation of a user u, we first
fully bipartite connect the hidden and visible layers via a
weight matrix W (Figure 2). Then each visible variable vi
and hidden variable hj will be connected to all the historical
variables of u, denoted by Hfu,t−k where f ∈ F and
k ∈ {1, . . . , N}. These connections are presented by the
two weight matrices A and B (Figure 2). Each historical
variable Hfu,t−k essentially is the state of feature f of the
user u at time point t−k. Note that all the historical variables
are treated as additional observed inputs. The hidden layer
can learn the correlations among the features and the effect
of the historical variables to capture self-motivation. This
effect can be integrated into a dynamic bias:

b̂j,t = bj +
∑

k∈{1,...,N}

∑
f∈F

Bjfu,t−kHfu,t−k (6)

which includes a static bias bj , and the contribution from
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the past of the social network. Bj is a |h|× |U |×N weight
matrix which summarizes the autoregressive parameters to
the hidden variable hj . This modifies the factorial distribu-
tion over hidden variables: bj in Eq. 3 is replaced with b̂j,t
to obtain

p(hj,t = 1|vt,Ht<) = σ
(
b̂j,t +

∑
i

vi,tWij

)
(7)

where hj,t is the state of hidden variable j at time t, the
weight Wij connects vi and hj . The self-motivation has
a similar effect on the visible units. The reconstruction
distribution in Eq. 4 becomes

p(vi,t|ht,Ht<) = N
(
âi,t +

∑
j

hj,tWij , 1
)

(8)

where âi,t is also a dynamic bias:

âi,t = ai +
∑

k∈{1,...,N}

∑
f∈F

Aifu,t−kHfu,t−k (9)

Implicit Social Influences and Environmental Events.
The hidden social influences are composed of unobserved
social relationships, unacquainted users, and the changing of
social context [2]. In other words, a user can be influenced by
any users via any features in health social networks. It is hard
to exactly define the implicit social influences. Fortunately,
the dynamic of neural networks offers us a great solution
to capture the flexibility of implicit social influences. In
fact, given a user u, each visible variable vi and hidden
variable hj are connected to all historical variables of all
other users. It is similar to self-motivation modeling, the
influence effects of each user, and the social context on the
user u are captured via the weight matrices A and B. These
effects can be integrated into the dynamic biases âi,t and b̂j,t
as well. The dynamic biases in Eq. 6 and Eq. 9 become:

b̂j,t = bj +
∑

k∈{1,...,N}

∑
f∈F

∑
u∈U

Bjfu,t−kHfu,t−k (10)

âi,t = ai +
∑

k∈{1,...,N}

∑
f∈F

∑
u∈U

Aifu,t−kHfu,t−k (11)

The environmental events such as the number of com-
petitions and meet-up events are included in individual
features. Therefore, the effect of environmental events is
well embedded into the model. It will interact with self-
motivation and implicit social influences to capture the
behaviors of the users. Next, we will incorporate explicit
social influence into our model.

Statistical Explicit Social Influences. Individuals tend to
be influenced to perform similar behaviors as their friends
(homophily principle). Let us define user similarity as fol-
lows. Given two neighboring users u and m, a simple way
to quantify their similarity is to applying a cosine function
of their individual features (i.e., vu and vm). In addition,
the hidden layer h detects higher features of v and thus it

Figure 3. A sample of user similarity distributions.

Figure 4. The cumulative number of friend connections in the YesiWell
study.

can reflect the user similarity as well. The user similarity
between u and m at time t, denoted st(u,m), is defined as:

st(u,m) = cost(u,m|v)× cost(u,m|h) (12)

where cost(·) is a cosine similarity function, i.e.,

cost(u,m|v) =
p(vut |hut ,Hut<) · p(vmt |hmt ,Hmt<)

‖p(vut |hut ,Hut<)‖‖p(vmt |hmt ,Hmt<)‖
(13)

cost(u,m|h) =
p(hut |vut ,Hut<) · p(hmt |vmt ,Hmt<)

‖p(hut |vut ,Hut<)‖‖p(hmt |vmt ,Hmt<)‖
(14)

Figure 3 illustrates a sample of user similarity spectrum
(i.e., st(·, ·)) of all the edges in our social network over time.
We randomly select 35 similarities of neighboring users
for each day in ten months. Apparently the distributions
are not uniform and different time intervals present various
distributions. To well qualify the similarity between individ-
uals and their friends, it potentially requires a cumulative
distribution function (CDF). This quality of similarities is
considered as the explicit social influences of local neighbors
on individuals. In addition, our health social network is
developed from scratch. Users do not have many friends
initially. As time goes by, they will have more connections
to other users (Figure 4). Thus a temporal smoothing is
demanded to better capture the explicit social influences. To
formulate this idea, we propose a statistical explicit social
influence function as follows:

Definition 1: The statistical explicit social influence ηut
of a user u at time t is defined as an exponential similarity
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average of the cumulative distribution function (CDF) of the
instant similarity over the user similarity spectrum, i.e.,

ηut = αηut−τ +(1−α)
1

|Zut |

|U |∑
m=1

lt(u,m)×p
(
st ≤ st(u,m)

)
where Zut =

∑|U |
m=1 lt(u,m), and the indicator function lt

is 1 if user u is connected to user m until time t (i.e.,
eu,m ∈ Et), and 0 otherwise. st is the similarity between
two arbitrary neighboring users in the social network at time
t. p(st ≤ st(u,m)) represents the probability that similarity
is less than or equal to the instant similarity st(u,m). α and
τ are two parameters to capture the dynamic of η.

The effect of explicit social influences is integrated to the
dynamic biases of hidden and visible variables. The dynamic
bias b̂j,t and âi,t in Eq. 10 and Eq. 11 now becomes:

b̂j,t = bj +
∑

k∈{1,...,N}

∑
f∈F

∑
u∈U

Bjfu,t−kHfu,t−k + βjη
u
t

âi,t = ai +
∑

k∈{1,...,N}

∑
f∈F

∑
u∈U

Aifu,t−kHfu,t−k + βiη
u
t

(15)

where parameters βi and βj present the ability to observe
the explicit social influences ηut of user u given vi and hj .

Inference and Learning. Inference in the SRBM model is
no more difficult than in the RBM. The states of the hidden
variables are determined by both the input they receive from
the visible variables and the input they receive from the
historical variables. The conditional probability of hidden
and visible variables at time interval t can be computed as
in Eq. 7, Eq. 8, and Eq. 15. The energy function becomes:
E(vt,ht|Ht< , θ) =

∑
i∈v

(vi,t−âi,t)2
2σ2

i
−
∑
j∈h b̂j,thj,t −∑

i∈v,j∈h
vi,t
σi
hj,tWij .

Contrastive divergence [5] is used to train the SRBM. The
updates for the symmetric weights, W , as well as the static
biases, a and b, have the same form as Eq. 5. However they
have a different effect because the states of the hidden and
visible variables are now influenced by the implicit and ex-
plicit social influences. The updates for the directed weights,
A and B, are also based on simple pairwise products. The
gradients are summed over all the training time intervals
t ∈ Ttrain = Tdata \ {t−M + 1, . . . , t−M +N}:
∆Wij =

∑
t

(
〈vi,thj,t〉d − 〈vi,thj,t〉r

)
; ∆ai =

∑
t(

〈vi,t〉d − 〈vi,t〉r
)
; ∆bj =

∑
t

(
〈hj,t〉d − 〈hj,t〉r

)
;

∆Aifu,t−k =
∑
t

(
〈vi,tHfu,t−k〉d − 〈vi,tHfu,t−k〉r

)
;

∆Bjfu,t−k =
∑
t

(
〈hj,tHfu,t−k〉d − 〈hf,tHfu,t−k〉r

)
;

∆βi =
∑
t

(
〈vi,t〉d − 〈vi,t〉r

)
ηut ; ∆βj =

∑
t

(
〈hj,t〉d −

〈hj,t〉r
)
ηut .

We train the SRBM for each user independently. At any
time we update the parameters, we will update the explicit
social influences for all the users.

Human Behavior Prediction. On top of the SRBM
model, we put an output layer which is commonly called
softmax layer for a user behavior prediction task. Our goal

is to predict whether a user increases or decreases physical
exercises. Thus the softmax layer contains a single output
variable ŷ and binary target values: 1 for increases, and 0 for
decreases. The output variable ŷ is fully linked to the hidden
variables by weighted connections S which includes |h|
parameters sj . We use the logistic function as an activation
function to saturate the two target values, i.e.,

ŷ = σ(c+
∑
j∈h

hjsj) (16)

where c is a static bias. Given a user u ∈ U , a set of training
vectors X = {F tu, Et|t ∈ Ttrain} and an output vector Y =
{yt|t ∈ Ttrain}, the probability of a binary output yt ∈
{0, 1} given the input xt as follows:

P (Y |X, θ) =
∏

t∈Ttrain

ŷytt (1− ŷt)1−yt (17)

where ŷt = P (yt = 1|xt, θ).
A loss function to appropriately deal with the binomial

problem is cross-entropy error. It is given by

C(θ) = −
∑

t∈Ttrain

(
yt log ŷt + (1− yt) log(1− ŷt)

)
(18)

As this last training, Back-propagation is used to fine-tune
all the parameters together. The derivatives of the objective
C(θ) with respect to all the parameters over all the training
cases t ∈ Ttrain can be computed as:
∂C(θ)
∂sj

= −
∑
t(yt − ŷt)hj ;

∂C(θ)
∂c = −

∑
t(yt − ŷt)

∂C(θ)
∂Wij

= −
∑
t(yt − ŷt)sjhj(1− hj)vi

∂C(θ)
∂ai

= −
∑
t(yt − ŷt)sjhj(1− hj)Wij

∂C(θ)
∂bj

= −
∑
t(yt − ŷt)sjhj(1− hj)

∂C(θ)
∂Aifu,t−k

= −
∑
t(yt − ŷt)sjhj(1− hj)WijHfu,t−k

∂C(θ)
∂Bjfu,t−k

= −
∑
t(yt − ŷt)sjhj(1− hj)Hfu,t−k

∂C(θ)
∂βi

= −
∑
t(yt − ŷt)sjhj(1− hj)Wijη

u
t

Causal Generation. In the prediction task, we need
to predict the yut+1 without observing the F t+1

u . In other
words, the visible and hidden variables are not observed
at the future time point t + 1. Thus we need a causal
generation step to initiate these variables. Causal generation
from a learned SRBM can be done just like the learning
procedure. We always keep the historical variables fixed
and perform alternating Gibbs sampling to obtain a joint
sample of the visible and hidden variables from the SRBM.
To start alternating Gibbs sampling, a good choice is to set
vt = vt−1 since vt−1 can be considered as a strong prior
of vt. This picks new hidden and visible variables that are
compatible with each other and with the recent historical
variables. Afterward, we aggregate the hidden variables to
evaluate the output ŷ.

IV. EXPERIMENTS

We have carried out a series of experiments using both
real-world and synthetic health social networks to vali-
date our proposed SRBM model. We first elaborate the
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(a) Friend connections (b) Received messages
Figure 5. Some distributions in our dataset.

experiment configurations, evaluation metrics, and baseline
approaches. Then, we introduce the experimental results.

The YesiWell data and Experiment Configurations.
The YesiWell social network data were collected from Oct
2010 to Aug 2011 as a collaboration between PeaceHealth
Laboratories, SK Telecoms Americas, and University of
Oregon to record daily physical activities, social activities
(i.e., text messages, competitions, etc.), biomarkers, and
biometric measures (i.e., cholesterol, BMI, etc.) for a group
of 254 individuals. Physical activity information including
the number of walking and running steps were reported via
a mobile device carried by each user. All users enrolled an
online social network allowing them to make friends and
communicate each other. Users’ biomarkers and biometric
measures are recorded via daily/weekly/monthly medical
tests performed at home (i.e., individually) or at Peace-
Health’s laboratories.

In total, we have 30 features taken into account (Table I).
All the features are weekly summarized. Figure 5 illustrates
the distributions of friend connections, and the number
of received messages in the health social network. They
clearly follow the Power law distribution. Note that, given
a week if a user does exercise more than the previous
week, he/she is considered increasing exercise in that week.
Otherwise, the user will be considered decreasing exercise.
The number of hidden units and the number of previous
time intervals N respectively are set to 200 and 3. The
weights are randomly initialized from a zero-mean Gaussian
with a standard deviation of 0.01. All the learning rates are
set to 10−3. A contrastive divergence CD20 [5] is used to
maximize likelihood learning. We train the model for each
user independently.

Evaluation Metrics. In the experiment, we leverage the
previous 10 week records to predict the behaviors of all the
users (i.e., increase or decrease exercises) in the next week.
The prediction quality metric, i.e., accuracy, is as follows:

accuracy =

∑
i=1..|U | I(yi = ŷi)

|U |
(19)

where yi is the true user activity of the user ui, and ŷi
denotes the predicted value, I is the indication function.

Competitive Prediction Models. We compare the SRBM
model with the conventional methods reported in [18].

Table I
PERSONAL CHARACTERISTICS.

Behaviors
#joining competitions #exercising days

#goals set #goals achieved∑
(distances) avg(speeds)

Encouragement Fitness
Followup Games

Competition Personal
Social Study protocol Technique

Communications Progress report Meetups
(the number of Social network Goal
inbox messages) Wellness meter Feedback

Heckling Explanation
Invitation Notice

Technical fitness Physical

Biomarkers Wellness Score BMI
Wellness Score slope BMI slope

The competitive methods are divided into two categories:
personalized behavior prediction methods and socialized
behavior prediction methods. Personalized methods only
leverage individual’s past behavior records for future behav-
ior predictions. Socialized methods use both one person’s
past behavior records and his or her friends’ past behaviors
for predictions. Specifically, five models reported in [18] are
Socialized Gaussian Process (SGP) model, Socialized Lo-
gistical Autoregression (SLAR) model, Personalized Gaus-
sian Process (PGP) model, Logistical Autoregression (LAR)
model, and Behavior Pattern Search (BPS) model.

In addition, we also consider the RBM related extensions,
i.e., the CRBM and ctRBM, as competitive models. The
CRBM can be directly apply to our problem by ignoring
the implicit and explicit influences in our SRBM. Since the
ctRBM cannot directly incorporate individual features with
social influences to model human behaviors, we only can
apply its social influence function into our model. In fact,
we replace our statistical explicit social influence function by
the ctRBM’s social influence function. We call this version
of ctRBM as a Socialized ctRBM (SctRBM).

Validation of the SRBM Model. Our task of validation
concerns on three key issues: 1) which configurations of the
parameters α and τ produces the best-fit social influence
distribution, 2) which of potential social influence functions
and our statistical explicit social function produce a better-
fit social influence distribution, and 3) whether the SRBM
model is better than the competitive models in terms of
prediction accuracy.

We carry out the validation through three approaches.
One is by conducting the human behavior prediction with
various settings of α and τ . By this we look for an optimal
configuration for the statistical explicit social influence func-
tion. The second approach is to compare the optimal setting
of our statistical explicit social influence function with its
different forms and existing algorithms. The third approach
is to compare our SRBM model with the competitive models
in terms of prediction accuracy.
• Figure 6a illustrates the surface of the behavior pre-

diction accuracy of the SRBM model with variations of the
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(a) Prediction accuracy with (b) Prediction accuracies with (c) The SRBM vs competitive models
different α and τ different explicit social influences in terms of prediction accuracy

Figure 6. Validation of the SRBM model on the YesiWell health social network.

(a) #increase exercise users (b) #times joining competitions
Figure 7. The distributions of users’ activities.

two parameters α and τ on our health social network. We
observed that the smaller values of τ tend to have higher
prediction accuracies. It is quite reasonable since the more
recent behaviors have stronger influences. The temporal
smoothing parameter τ has similar effects to a time decay
function [25]. Meanwhile, the middle range values of α offer
better prediction accuracies. Obviously, the optimal setting
values of α and τ are 0.5 and 1 respectively.
• To test the correctness, we compare our optimal setting

(i.e., τ=1, α=0.5) of the explicit social influence function
with its different forms such as: 1) without temporal smooth-
ing component

(
i.e., ηut = 1

|Fu
t |
∑
m∈Fu

t
p
(
st ≤ st(u,m)

))
,

and 2) replacing our function by the social influence func-
tion in the ctRBM [12], this becomes the aforementioned
SctRBM. Figure 6b shows that either the SRBM without
temporal smoothing or the SctRBM have significant lower
prediction accuracies compared with the SRBM with optimal
setting. So, our function is effective, and the optimal setting
improves the prediction accuracy by 12% in our health
social network. It also offers a better performance for the
SRBM compared with other social influence functions. This
is because our health social network is developed from
scratch. Users do not have many connections initially. They
will have more connections over time (Figure 4). In other
words, our function produces a better-fit social influence
distribution in our health social network. From now, we use
the optimal setting of the SRBM in other experiments.
• To examine the prediction accuracy, we compare the

proposed SRBM model with the competitive models in terms
of human behavior prediction. Figure 6c shows the accuracy
comparison in 37 weeks in our health social network. It

Figure 8. Accuracies on the synthetic data.

is clear that the SRBM outperforms the other models. The
accuracies of the competitive models tend to be dropped in
the middle period of the study. In essence, all the behav-
ior determinants and their interactions potentially become
stronger since all the users improve their activities such as
walking and running, participating more competitions, and
etc. (Figure 7) in the middle weeks. Either insufficiently or
laking of modeling one of the determinants and their inter-
actions results in a low and unstable prediction performance.
This is the case of the competitive models. They do not well
capture the social influences and environmental events.

Meanwhile, the SRBM comprehensively models all the
determinants. The correlation between the personal charac-
teristics and the implicit social influences can be detected
by the hidden variables. Thus, much information has been
leveraged to predict individual behaviors. In addition, our
prediction accuracy stably increases over time. That means
our model well captures the growing of our health social
network (Figure 4). In obvious, our model achieves higher
prediction accuracy and a more stable performance. The
SRBM achieves the best accuracy in average as 0.887.

Synthetic Health Social Network. To illustrate that our
model can be generally applied on different datasets, we
perform further experiments on a synthetic health social
network. To generate the synthetic data, we use software
Pajek1 to generate graphs under the Scale-Free/Power Law
Model2. However the vertices in the current synthetic graph
do not have individual features similar to the real-word data.

1http://vlado.fmf.uni-lj.si/pub/networks/pajek/
2Scale-Free/Power Law Model (SF) is a network model whose node

degrees follow the power law distribution or at least asymptotically.
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An appropriate solution to this problem is to apply a graph
matching algorithm to map pairwise vertices between the
synthetic and real social networks. In order to do so, we first
generate a graph with 254 nodes and the average node degree
is 5.4 (i.e., similar to the real YesiWell data). Then, we
apply PATH [24] which is a very well-known and efficient
graph matching algorithm to find a correspondence between
vertices of the synthetic network and vertices of the YesiWell
network. The source code of the PATH algorithm is available
in the graph matching package GraphM (http://cbio.ensmp.
fr/graphm/). Then, we can assign all the individual features
and behaviors of any real user to corresponding vertices in
the synthetic network. Consequently, we have a synthetic
health social network which imitates our real-world dataset.
Figure 8 shows the accuracies of the conventional models
and the SRBM model on the synthetic data. We can see that
the our model still outperforms the conventional models in
terms of the prediction accuracy.

V. CONCLUSIONS AND FUTURE WORKS

This paper introduces the SRBM, a novel deep learning
model for human behavior prediction in health social net-
works. By incorporating all the human behavior determi-
nants which are self-motivation, implicit and explicit social
influences, and environmental events, our SRBM model
predicts the future activity levels of users more accurately
and more stably than conventional methods.

Our work can be extended in several directions. First, we
can leverage the domain knowledge to generate explanations
for predicted behaviors. Second, although the approach
explored in this paper is rooted on the RBM [19], other
alternatives are possible, which can be based on CNNs [10]
or Sum-Product Networks [15]. We plan to explore and
compare these different strategies in the future work.
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