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ABSTRACT
Human behavior prediction is a key component to study-
ing the spread of wellness and healthy behavior in a so-
cial network. In this paper, we introduce an ontology-based
Restricted Boltzmann Machine (ORBM) model for human
behavior prediction in health social networks. We first pro-
pose a bottom-up algorithm to learn the user representa-
tion from ontologies. Then the user representation is used
to incorporate self-motivation, social influences, and envi-
ronmental events together in a human behavior prediction
model, which extends a well-known deep learning method,
Restricted Boltzmann Machines (RBMs), so that the in-
teractions among the behavior determinants are naturally
simulated through parameters. To our best knowledge, the
ORBM model is the first ontology-based deep learning ap-
proach in health informatics for human behavior prediction.
Experiments conducted on both real and synthetic data from
health social networks have shown the tremendous effective-
ness of our approach compared with conventional methods.

Categories and Subject Descriptors
J.3 [Computer Applications]: LIFE AND MEDICAL
SCIENCES—Health; H.2.8 [Database Management]:
Database Applications—Data Mining

General Terms
Theory, Algorithms, Experimentation

Keywords
Ontology, deep learning, social network, health informatics

1. INTRODUCTION
Being overweight or obese is a major risk factor for a num-

ber of chronic diseases, including diabetes, cardiovascular
diseases, and cancers. Once considered a problem only in
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high-income countries, overweight and obesity are now dra-
matically on the rise in low- and middle-income countries.
Recent studies have shown obesity can spread over the so-
cial network [6], bearing similarity to the diffusion of inno-
vation [8] and word-of-mouth effects in marketing [13]. To
reduce the risk of obesity-related diseases, regular exercise is
strongly recommended (i.e., at least 30 minutes of moderate-
intensity physical activity on 5 or more days a week [23]).
However, there have been few scientific and quantitative
studies to elucidate how social relationships and personal
factors may contribute to macro-level human behaviors, such
as physical exercise.

The Internet is identified as an important source of health
information and may thus be an appropriate delivery vector
for health behavior interventions [21]. In addition, mobile
devices can track and record the distance and intensity of
an individual’s walking, jogging, and running. We utilized
these technologies in our recent study, named YesiWell [26],
conducted in 2010-2011 as a collaboration between Peace-
Health Laboratories, SK Telecom Americas, and the Uni-
versity of Oregon to record daily physical activities, social
activities (i.e., text messages, social games, events, competi-
tions, etc.), biomarkers, and biometric measures (i.e., choles-
terol, triglycerides, BMI, etc.) for a group of 254 individuals.
Physical activities were reported via a mobile device carried
by each user. All users enrolled in an online social network
allowing them to friend and communicate with each other.
Users’ biomarkers and biometric measures were recorded via
monthly medical tests performed at our laboratories. The
fundamental problems this study seeks to answer, which are
also the key in understanding the determinants of human
behaviors, are as follows:

• How could social communities affect individual behav-
iors?

• Could we illuminate the roles of social communities and
personal factors in shaping individual behaviors?

• How could we leverage personal factors and social com-
munities to help predict an individual’s behaviors?

• Could domain knowledge, e.g., ontologies, help us predict
an individual’s behaviors? If yes, then how?

It is nontrivial to determine how much impact social in-
fluences could have on someone’s behavior. Our starting
observation is that human behavior is the outcome of in-
teracting determinants such as self-motivation, social influ-
ences, and environmental events. This observation is rooted
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in sociology and psychology, where it goes under the name
human agency in social cognitive theory [4]. An individual’s
self-motivation can be captured by learning correlations be-
tween his or her historical and current characteristics. In
addition, users’ behaviors can be influenced by their friends
on social networks through what are known as social in-
fluences. The effect of environmental events is composed of
unobserved social relationships, unacquainted users, and the
changing of social contexts [5].

Based on this observation we propose an ontology-based
deep learning model for human behavior prediction. Our
model extends a well-used deep learning method, Restricted
Boltzmann Machines (RBMs) [32], with domain ontolo-
gies [9]. The reason we utilize the ontologies is that they can
help us generate better user representations, which is par-
ticularly important for human behavior prediction in health
social networks. Another crucial reason is that common deep
learning architectures, such as the RBMs [32], Convolutional
Neural Networks (CNNs) [16], and Sum-Product Networks
(SPNs) [27], take a flat representation of characteristics as
an input. However, the characteristics are commonly in
structural designs such as ontologies in the biomedical and
health domain. Therefore, it would be better if a model can
have the ability to learn the representations of individuals
in health social networks from ontologies.

To address this issue, we propose a bottom-up algorithm
to learn the representation of users based on the ontologies
of personal characteristics in the health domain. The key
idea of our algorithm is that a representation of a concept
will be learned by its own properties, the properties of its re-
lated concepts, and the representations of its sub-concepts.
Our algorithm will learn a structure of representation which
replicates the original structure of personal characteristics.
This representation structure is further used to model hu-
man behaviors in our health social network. Additionally,
self-motivation can be captured by learning correlations be-
tween an individual’s historical and current features. The
effect of the implicit social influences on an individual is es-
timated by an aggregation function of the past of the social
network. Meanwhile, we define a statistical function to cap-
ture social influences on individuals from their neighboring
users. The environmental events such as competitions are
integrated into the model as observed variables which will
directly affect the user behaviors. The effect of environ-
mental events can be captured by learning the influences of
unacquainted users and the evolving of the social network’s
parameters. The effectiveness of our model is verified by
experiments on real and synthetic data from health social
networks. Our main contributions of are as follows:

• We introduce an ontology-based deep learning model,
ORBM, for human behavior prediction in health social
networks.

• We propose a bottom-up algorithm to learn the individ-
ual representation, given structural designs of personal
characteristics with ontologies. To our best knowledge,
our algorithm is the first work to formally combine deep
learning with ontologies in health informatics. It can
be applied to other biomedical and health domains with
ontologies available.

• Our experimental assessment on both real and synthetic
data confirms that our model is very accurate in human
behavior prediction.

In Section 2, we first introduce the related works and
background in physical activity intervention, RBMs, and hu-
man behavior prediction. We then introduce the developed
SMASH ontology in Section 3. We present our ontology-
based deep learning algorithm for user representations in
Section 4 and our human behavior prediction model in Sec-
tion 5. The details of experimental evaluation are described
in Section 6, and the work is concluded in Section 7.

2. RELATED WORKS AND BACK-
GROUND

2.1 Physical Activity Intervention
Regular physical activity decreases the risk of developing

cardiovascular disease, diabetes, obesity, osteoporosis, some
cancers, and other chronic conditions. Website-delivered
physical activity interventions have the potential to over-
come many of the barriers associated with traditional face-
to-face exercise counseling or group-based physical activity
programs. An Internet user can seek advice at any time,
any place, and often at a lower cost compared with other
delivery modalities [29]. In 2000, a set of articles that iden-
tified the potential of interactive health communications, in-
cluding Internet and website-delivered interventions, for im-
proving health behaviors were published [20, 24, 28]. Since
then, over fifteen studies have been reported [36] that eval-
uate website-delivered interventions to improve physical ac-
tivity. Better outcomes were identified when interventions
had more than five contacts with participants and when the
time to follow-up was short (≤3 months; 60% positive out-
comes), compared to medium-term (3-6 months, 50%) and
long-term (≥6 months, 40%) follow-up. A little over half
of the controlled trials of website-delivered physical activity
interventions have reported positive behavioral outcomes.

However, intervention effects were short-lived, and there
was limited evidence of maintenance of physical activity
changes. Although the website-delivered approaches re-
ported positive results, research is needed to identify ele-
ments that can improve behavioral outcomes. Indeed, so-
cial networks have potential for being adopted, since they
take the advantage of natural social relationships to deliver
healthy behaviors. Furthermore, social networks can be a
long-life environment, and thus the retention of participants
could be improved. Human behavior prediction is a key
component for further research since it offers us a powerful
tool to understand the spread of physical activity in a health
social network.

2.2 Human Behavior Prediction
Prediction of human social behavior has recently been

studied, in such forms as analysis of user interactions on
Facebook [37], activity recommendation [17], and user ac-
tivity level prediction [41]. In [41], the authors focus on pre-
dicting users who have a tendency to reduce their activity
levels. This problem is known as churn prediction. Churn
prediction aims to find users who will leave a network or a
service. By finding such users, service providers could an-
alyze the reasons and figure out the strategies to maintain
such users. Social churn prediction has been studied in dif-
ferent applications, including online social games [14], Q &
A forum [39], etc. The users in these applications usually
have simple user behaviors. Meanwhile our models enrich
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the application area by incorporating various personal fac-
tors. The work that relates most closely to our study is
the Socialized Gaussian Process Model (SGP) [31]. How-
ever, the SGP model is not designed to work with structural
design of user characteristics.

2.3 Restricted Boltzmann Machines

Figure 1: RBM

The Restricted Boltzmann Ma-
chines (RBMs) [32] is a deep learn-
ing structure that has a layer of vis-
ible units fully connected to a layer
of hidden units but no connections
within a layer (Figure 1). Typically,
RBMs use stochastic binary units for
both visible and hidden variables.
The stochastic binary units of RBMs
can be generalized to any distribu-
tion that falls in the exponential
family [38]. To model real-valued
data, a modified RBM with binary

logistic hidden units and real-valued Gaussian visible units
can be used. In Figure 1, vi and hj are respectively used
to denote the states of visible unit i and hidden unit j. ai
and bj are used to distinguish biases on the visible units and
hidden units. The RBM assigns a probability to any joint
setting of the visible units, v and hidden units, h:

p(v,h) =
exp(−E(v,h))

Z
(1)

where E(v,h) is an energy function,

E(v,h) =
∑
i

(vi − ai)2

2σ2
i

−
∑
j

bjhj −
∑
ij

vi
σi
hjWij (2)

where σi is the standard deviation of the Gaussian noise for
visible unit i. In practice, fixing σi at 1 makes the learning
work well. Z is a partition function which is intractable as
it involves a sum over the (exponential) number of possible
joint configurations: Z =

∑
v′,h′ E(v′,h′). The conditional

distributions (assuming σi = 1) are:

p(hj = 1|v) = σ
(
bj +

∑
i

viWij

)
(3)

p(vi|h) = N
(
ai +

∑
j

hjWij , 1
)

(4)

where σ(.) is a logistic function, N (µ, V ) is a Gaussian.
Given a training set of state vectors, the weights and bi-

ases in an RBM can be learned following the gradient of
contrastive divergence [11]. The learning rule is:

∆Wij = 〈vihj〉d − 〈vihj〉r; ∆bj = 〈hj〉d − 〈hj〉r (5)

where the first expectation 〈.〉d is based on the data dis-
tribution and the second expectation 〈.〉r is based on the
distribution of “reconstructed” data. The reconstructions
are generated by starting a Markov chain at the data distri-
bution. The hidden units can be updated by sampling Eq.
3, then updating the visible units by sampling Eq. 4.

To incorporate temporal dependencies into the RBM, the
CRBM [34] adds autoregressive connections from the visi-
ble and hidden variables of an individual to his/her historical
variables. The CRBM is effective at simulating the behavior
of humans in the single agent scenario. However, it cannot

Figure 2: Social Restricted Boltzmann Machine [25].

capture the social influences on individual behaviors in the
multiple agent scenario. Li et al. [18] proposed the ctRBM
model for link prediction in dynamic networks. The ctRBM
simulates the social influences by adding the prediction ex-
pectations of local neighbors on an individual into a dynamic
bias. However, it is difficult to utilize personal characteris-
tics in ctRBMs. Thus, the ctRBM cannot directly integrate
personal characteristics with social influences to predict hu-
man behaviors.

2.4 Social Restricted Boltzmann Machine
In order to leverage the RBMs for human behavior predic-

tion in social networks, we have proposed Social Restricted
Boltzmann Machines (SRBM) [25]. Figure 2 illustrates the
human behavior modeling in the SRBM model. The model
includes three layers: the visible layer v, hidden layer h, and
historical layer H. Given a user, each visible variable vi in
the visible layer v corresponds to an individual feature fi at
time t. All the visible variables of all the users in the pre-
vious N time intervals {t−N, . . . , t− 1} (i.e., N < M) are
included in a historical layer, denoted by Ht<. In addition,
all the variables in the historical layer are called historical
variables. Obviously, we will have |F| × |U | × N historical
variables, where F is a set of individual features f . The hid-
den layer h consists of |h| hidden variables. In the SRBM
model, visible layer, hidden layer, and historical layer are
pair-wise fully bipartite-connected. The conditional distri-
butions (assuming σi = 1) are:

p(hj,t = 1|vt,Ht<) = σ
(
b̂j,t +

∑
i

vi,tWij

)
(6)

p(vi,t|ht,Ht<) = N
(
âi,t +

∑
j

hj,tWij , 1
)

(7)

where b̂j,t and âi,t are dynamic biases which are computed
as:

b̂j,t = bj +
∑

k∈{1,...,N}

∑
f∈F

∑
u∈U

Bjfu,t−kHfu,t−k + βjη
u
t

âi,t = ai +
∑

k∈{1,...,N}

∑
f∈F

∑
u∈U

Aifu,t−kHfu,t−k + βiη
u
t (8)

where βi and βj are parameters which present the ability
to observe the social influences ηut from neighboring users of
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Figure 3: Partial View of the SMASH Ontology and its Hidden Variables.

user u given vi and hj . The energy function then becomes:

E(vt,ht|Ht< , θ) =
∑
i∈v

(vi,t − âi,t)2

2σ2
i

−
∑
j∈h

b̂j,thj,t

−
∑

i∈v,j∈h

vi,t
σi
hj,tWij (9)

The SRBMs can accurately predict human behaviors since
they capture the interactions among behavior determinants
which are self-motivation, implicit and explicit social influ-
ences, and environmental events [4, 25]. In this paper, the
SRBMs are adopted to predict physical activity behaviors
in our YesiWell health social network.

3. THE SMASH ONTOLOGY
Ontology [10, 33] is the formal specification of concepts

and relationships for a particular domain (e.g., genetics).
Prominent examples of biomedical ontologies include the
Gene Ontology (GO [35]), Unified Medical Language System
(UMLS [19]), and more than 300 ontologies in the National
Center for Biomedical Ontology (NCBO [3]). The encoded
formal semantics in ontologies is primarily used for effective
sharing and reusing of knowledge and data. They also can
assist in the new research on systematic incorporation of
domain knowledge in data mining, which is called semantic
data mining [7].

We have developed an ontology for health social networks
in the SMASH (Semantic Mining of Activity, Social, and
Health data) project based on the YesiWell study. Our
general workflow of ontology development can be described
as a top-down (knowledge-driven), followed by a bottom-
up (data-driven) validation and refinement approach. In
the SMASH ontology, we have focused on defining concepts
that are associated with sustained weight loss, especially
the ones related with continued intervention with frequent
social contacts. We first follow the traditional top-down
design paradigm by identifying the core concepts of three
modules in the SMASH system: social networks, physical
activity, and health informatics. We specify the core con-
cepts and relationships related to overweight and obesity

in these modules such as biomedical measures, trends, on-
line and off-line events, competitions, social community, and
support groups, etc. In the next step, these concepts and
relationships are subsequently coded in the Web Ontology
Language (OWL [1]) with Protégé [2]. In the last step, we
further validate and refine our ontology design through the
data we collected from our distributed personnel devices and
web-based social network platform in YesiWell.

The three modules, biomarker measures, physical activ-
ities, and social activities, in our SMASH ontology can be
described as follows:

• Biomarkers: a collection of biomedical indicators that
generally refer to biological states or conditions, in our
case specifically, health conditions.

• Social Activities: a set of interactions between social
entities, either persons or social communities, that ex-
change thoughts and ideas, communicate information,
and share emotions and experiences.

• Physical Activities: any bodily activity involved in daily
life. Some of the activities are conducted in order to
enhance or maintain physical fitness and overall well-
ness/health.

The SMASH ontology has been submitted to the NCBO
BioPortal1. Figure 3 illustrates a partial view of the SMASH
ontology and its hidden variables in the corresponding
RBMs (more details will be discussed in the next section).

4. ONTOLOGY-BASED USER REPRESEN-
TATION IN DEEP LEARNING

In this section, we present our algorithm to learn user rep-
resentations based on concepts and characteristics (proper-
ties) in ontologies. The representational primitives of ontolo-
gies are typically concepts, characteristics (datatype prop-
erties), and relationships (object properties). For instance,
in Figure 3, the main concept is Person. With this con-
cept, we have sub-concepts, relationships, and characteris-
tics. Each person has a related concept Biological Measure

1http://bioportal.bioontology.org/ontologies/SMASH
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which contains a set of characteristics such as BMI, weight,
slope, wellness, etc. They are related to another concept
Social Activity which contains sub-concepts such as Offline
Activity and Online Activity.

Given a health social network ontology H, the first step
to utilize the formal semantics in deep learning is to learn
the representation of all concepts, sub-concepts, and rela-
tionships given the characteristics. Our key hypothesis is
that a concept or a sub-concept S ∈ H can be represented
by its own characteristics, its sub-concepts, and its related
concepts. In essence, S ∈ H is represented by a set of learn-
able hidden variables hS. The learning process of the hS is
as follows. S is composed of a set of characteristics VS, a
set of sub-concepts CS, and a set of relationships FS. Let
us denote ΨS =

⋃
F∈FS

VF as the union of all characteris-

tics from its relationships FS, ΘS =
⋃

C∈CS
hC as the union

of all the hidden variables from its sub-concepts CS. The
hidden variables hS can be learned from VS, ΨS, and ΘS in
different ways by applying existing machine learning models
such as linear or logistic regressions, and SVM. However, in
this paper, we utilize the RBMs as a deep learning model
since it very well fits to our goals which aim to generate a
deeper analysis for human behavior prediction. By using
the RBMs, the hS is considered as a hidden layer and all the
variables vi ∈ VS ∪ΨS ∪ΘS are considered as a visible layer
in a RBM (Figure 1). The conditional probabilities of an
hj ∈ hS and vi ∈ VS ∪ΨS ∪ΘS are given by:

p(hj |VS, CS, FS) = N
(
bj +

∑
vi∈VS∪ΨS∪ΘS

viWij

)
(10)

p(vi|hS) = N
(
ai +

∑
hj∈hS

hjWij

)
(11)

where ai and bj are static biases, and Wij is a parameter
associated with hj and vi. By denoting vS = VS ∪ΨS ∪ΘS,
the energy function of the RBM for S is:

E(vS,hS|θ) =

vS∑
vi

(vi − ai)2

2σ2
i

+

hS∑
hj

(hj − bj)2

2σ2
j

−
vS,hS∑
vi,hj

vi
σi

hj

σj
Wij

By using contrastive divergence [11], we can train this
RBM and learn all the parameters which are used to esti-
mate the hidden variables hS. In fact, hS can be consid-
ered as the representation of S. Note that we use normal
distributions for the hidden variables in hS because they
will be used to learn the representation of the parent con-
cepts of S, denoted PS. PS may contain real-valued char-
acteristics (datatype properties). So the consistency in the
learning process is guaranteed. The representations of all
the concepts and sub-concepts can be learned by apply-
ing the bottom-up greedy-layer wise algorithm [12] following
the structure of the ontology H. For instance, in Figure 3,
we can learn all the representations in the following order:
hL,hA,hOff ,hOn first, then hB ,hP ,hS , and hR finally.

Let us denote the root concept (e.g., Person) and its repre-
sentation hR which also is individual representation. Differ-
ent applications may have different settings. The challenge
becomes how we organize the training data so that individ-
ual representation can be learned. In fact, the data of each
user u will be collected in a set of time intervals T , denoted
by Du = {Ku

1 , . . . ,K
u
T } where K is the set of all personal

characteristics at all the concepts and sub-concepts. Du will
be used to train the model. After training the model, for

every t ∈ T we can navigate the Ku
t following the ontology

structure to estimate the representation of root concept hR

which is also the representation of user u at time t. We train
the model for each user independently. Each user will have
different representations at different time intervals. In the
next section, we show how to use those ontology-based user
representations (i.e., RBMs) for human behavior prediction.

5. HUMAN BEHAVIOR PREDICTION
WITH ONTOLOGY-BASED RBMS

In this section, we present how to conduct human be-
havior prediction with our Ontology-based RBM (ORBM)
model. Given an online social network G = {U,E} where
U is a set of all users and E is a set of edges. Every edge
eu,m exists in E if u and m friend each other in G; other-
wise eu,m does not exist. Each user has a set of individual
representation features F = {f1, . . . , fn}. In essence, F is
the hR which has been learned for each user in the previous
Section. The social network G grows from scratch over a set
of time points T = {t1, . . . , tm}. To illustrate this we use
ET = {Et1 , . . . , Etm} to denote the topology of the network
G over time, where Et is a set of edges which have been
made until time t in the network, and ∀t ∈ T : Et ⊆ Et+1.
For each user, the values of individual features in F also
change over time. We denote the values of individual fea-
tures of a user u at time t as F t

u. At each time point t, each
user u is associated with a binomial behavior ytu ∈ {0, 1}.
ytu could be “decrease/increase exercise,” or “inactive/active
in exercise.” ytu will be clearly described in our experimental
result section.

Problem Formulation: Given the health social network
in M timestamps Tdata = {t−M+1, . . . , t}, we would like to
predict the behavior of all the users in the next timestamp
t+ 1. More formally, given {F t

u, y
t
u, Et|t ∈ Tdata, u ∈ U} we

aim at predicting {yt+1
u |u ∈ U}.

Self-motivation and Environmental Events. Self-
motivation is composed of many dimensions including atti-
tudes, intentions, effort, and withdrawal which can all affect
the motivation that an individual experiences [30]. In our
YesiWell study, individual features are specially designed to
capture the self-motivation of each user. Some of the key
measures are as follows:

• Personal ability : BMI, fitness, cholesterol, etc.

• Attitudes: the number of off-line events in which each
user participates, individual sending/receiving messages,
the number of goals set and achieved, Wellness-score [15],
etc. Wellness-score is a measure to evaluate how well a
user lives his or her life. In general, being active in so-
cial activities, setting and achieving more goals, and ob-
taining higher Wellness-score results in better attitudes
among users.

• Intentions: the number of competitions each user joins,
the number of goals set, etc. Users are intent on ex-
ercising, and some join competitions and set additional
goals.

• Effort : the number of days for exercise, walking/running
steps, the distances, and speed.

• Withdrawal : BMI slope, Wellness-score slope [15] , etc.
The increase of BMI slope or decrease of Wellness-score
indicates negative signs in self-motivation. The users
may temporarily give up their progress.
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Figure 4: A sample of user similarity distributions.

Additionally, the effect of environmental events is com-
posed of unobserved social relationships, unacquainted
users, and the changing of social context [5, 25]. In other
words, a user can be influenced by any users via any fea-
tures in health social networks. It is hard to exactly define
the influences of environmental events. Fortunately, the dy-
namic of the SRBM model [25] offers us a good solution to
capture the flexibility of implicit social influences, as well as
self-motivation. In fact, the individual features of a user,
denoted as Fu, can be considered as the visible variables in
the SRBMs (Figure 2). Given a user u, each visible variable
vi and hidden variable hj are connected to all historical vari-
ables of all other users. It is similar to the self-motivation
modeling, the influence effects of each user and the social
context on the user u are captured via the weight matrices
A and B. These effects can be integrated into the dynamic
biases âi,t and b̂j,t in Eq. 8 as well.

The quantitative environmental events, such as the num-
ber of competitions and meet-up events, are included in indi-
vidual characteristics. Therefore, the effect of environmen-
tal events is better embedded into the model. Next, we will
incorporate the social influence into the SRBM model [25].

Social Influences. It is well-known that individuals tend
to be friends with people who perform similar behaviors as
them (homophily principle [22]). Extended from our work in
[25], we define user similarity given two neighboring users u
and m as a cosine function of their individual features (i.e.,
vu and vm) and their hidden features (i.e., hu and hm). The
user similarity between u and m at time t, denoted st(u,m),
is defined as:

st(u,m) = cost(u,m|v)× cost(u,m|h)

where cost(·) is the cosine similarity function, cost(u,m|v) is
the cosine similarity of p(vu

t |hu
t ,Hu

t<) and p(vm
t |hm

t ,Hm
t<),

and cost(u,m|h) is the cosine similarity of p(hu
t |vu

t ,Hu
t<)

and p(hm
t |vm

t ,Hm
t<).

Figure 4 illustrates a sample of user similarity spectrum
(i.e., st(·, ·)) of all the edges in our social network over time.
We randomly select 35 similarities of neighboring users for
each day in ten months. Apparently the distributions are not
uniform, and different time intervals present various distri-
butions. To well qualify the similarity between individuals
and their friends, it potentially requires a cumulative distri-
bution function (CDF). This quality of similarities demon-
strates the social influences of local neighbors on individuals.

Definition 1. The explicit social influence ηut of a user
u at time t is defined as an exponential similarity average
of the cumulative distribution function (CDF) of the instant
similarity over the user similarity spectrum, i.e.,

ηut =
1

|Zu
t |

|U|∑
m=1

lt(u,m)× p
(
st ≤ st(u,m)

)
(12)

where Zu
t =

∑|U|
m=1 lt(u,m), and the indicator function lt is 1

if user u is connected to user m until time t (i.e., eu,m ∈ Et),
and 0 otherwise. st is the similarity between two arbitrary
neighboring users in the social network at time t. p(st ≤
st(u,m)) represents the probability that similarity is less
than or equal to the instant similarity st(u,m).

The effect of explicit social influences, ηut , is integrated to
the dynamic biases of visible and hidden variables (Eq. 8)
in the SRBMs.

Inference and Learning. Inference in the ORBM model
is no more difficult than in the SRBMs. The states of the
hidden variables are determined by both the input they re-
ceive from the visible variables and the input they receive
from the historical variables. The conditional probability of
hidden and visible variables at time interval t can be com-
puted as in Equations 6, 7, and 8. The energy function is
similar to the SRBMs (i.e., Eq. 9).

We can use contrastive divergence [11] for training the
ORBM. The updates for the symmetric weights, W , as well
as the static biases, a and b, have the same form as Eq. 5.
However, they have a different effect because the states of
the hidden and visible variables are now influenced by the
implicit and explicit social influences. The updates for the
directed weights, A and B, are also based on simple pairwise
products. The gradients are summed over all the training
time intervals t ∈ Ttrain = Tdata\{t−M+1, . . . , t−M+N}.
We train the ORBM for each user independently. At any
time we update the parameters, we will update the explicit
social influences for all the users.

Human Behavior Prediction. On top of the ORBM
model, we put a softmax layer for the user behavior predic-
tion task. Our goal is to predict whether a user is active
or inactive in physical exercises. Thus the softmax layer
contains a single output variable ŷ and binary target val-
ues: 1 for active, and 0 for inactive. The output variable ŷ
is fully linked to the hidden variables by weighted connec-
tions S which includes |h| parameters sj . We use the logistic
function as an activation function to saturate the two target
values, i.e.,

ŷ = σ(c+
∑
j∈h

hjsj) (13)

where c is a static bias. Given a user u ∈ U , a set of training
vectors X = {F t

u, Et|t ∈ Ttrain} and an output vector Y =
{yt|t ∈ Ttrain}, the probability of a binary output yt ∈ {0, 1}
given the input xt is as follows:

P (Y |X, θ) =
∏

t∈Ttrain

ŷytt (1− ŷt)1−yt (14)

where ŷt = P (yt = 1|xt, θ).
A loss function to appropriately deal with the binomial

problem is cross-entropy error. It is given by

C(θ) = −
∑

t∈Ttrain

(
yt log ŷt + (1− yt) log(1− ŷt)

)
(15)
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Table 1: Personal Characteristics.

Behaviors
#joining competitions #exercising days

#goals set #goals achieved∑
(distances) avg(speeds)

Encouragement Fitness
Followup Games

Competition Personal
Social Study protocol Technique

Communications Progress report Meetups
(the number of Social network Goal
inbox messages) Wellness meter Feedback

Heckling Explanation
Invitation Notice

Technical fitness Physical

Biomarkers
Wellness Score BMI

Wellness Score slope BMI slope

As this last step of the training, Back-propagation is used
to fine-tune all the parameters together including the pa-
rameters in user representation learning based on ontolo-
gies (i.e., Section 4). The derivatives of the objective C(θ)
with respect to all the parameters over all the training cases
t ∈ Ttrain = Tdata \ {t−M + 1, . . . , t−M +N}.

Causal Generation. In the prediction task, we need to
predict the yut+1 without observing F t+1

u . In other words,
the visible and hidden variables are not observed at the fu-
ture time point t + 1. Thus we need a causal generation
step to initiate these variables. Causal generation from a
trained ORBM can be done just like the learning procedure.
We always keep the historical variables fixed and perform
alternating Gibbs sampling to obtain a joint sample of the
visible and hidden variables from the ORBM. To start al-
ternating Gibbs sampling, a good choice is to set vt = vt−1,
since vt−1 can be considered as a strong prior of vt. This
picks new hidden and visible variables that are compatible
with each other and with the recent historical variables. Af-
terward, we aggregate the hidden variables to evaluate the
output variable ŷ.

6. EXPERIMENTS
We have carried out a series of experiments using datasets

from both real-world and synthetic health social networks
to validate our proposed ORBM model (source codes and
data2). We first elaborate the experiment configurations on
the data sets, evaluation metrics, and baseline approaches.
Then, we introduce the experimental results.

The YesiWell data and Experiment Configura-
tions. The YesiWell social network data were collected from
Oct 2010 to Aug 2011 as a collaboration between Peace-
Health Laboratories, SK Telecoms Americas, and Univer-
sity of Oregon to record daily physical activities, social ac-
tivities (i.e., text messages, competitions, etc.), biomarkers,
and biometric measures (i.e., cholesterol, BMI, etc.) for a
group of 254 individuals. Physical activities, including in-
formation of the number of walking and running steps, were
reported via a mobile device carried by each user. All users
enrolled in an online social network allowing them to friend
and communicate with each other. Users’ biomarkers and
biometric measures are recorded via daily/weekly/monthly
medical tests performed at home (i.e., individually) or at

2https://www.dropbox.com/s/ciajf63c89besbk/ORBM.
rar?dl=0

Figure 6: ORBM vs baselines in terms of accuracy.

Table 2: ORBM vs state-of-the-art models in terms
of accuracy in the whole data set.

SGP PGP SLAR LAR BPS SRBM ORBM

0.677 0.684 0.663 0.662 0.675 0.83 0.859

our laboratories.
In total, we have 30 features taken into account (Table

1). All the features are weekly summarized. Figure 5 illus-
trates the distributions of friend connections, and the num-
ber of received messages in the health social network. They
clearly follow the Power law distribution. The number of
hidden units and the number of previous time intervals N
respectively are set to 200 and 3. In the user representa-
tion learning, the number of hidden units at all the concepts
and sub-concepts in the SMASH ontology will double the
number of visible units. The weights are randomly initial-
ized from a zero-mean Gaussian with a standard deviation
of 0.01. All the learning rates are set to 10−3. A contrastive
divergence CD20 [11] is used for maximum likelihood learn-
ing. We train the model for each user independently.

Evaluation Metrics. In the experiment, we leverage the
previous 10 week records to predict the behaviors of all the
users (i.e., active or inactive in doing exercises) in the next
week. The prediction quality metric, i.e., accuracy, is as
follows:

accuracy =

∑
i=1..|U| I(yi = ŷi)

|U | (16)

where yi is the true user activity of the user ui, and ŷi
denotes the predicted value, I is the indication function.

Competitive Prediction Models. We compare the
ORBM model with the conventional methods reported in
[31]. The competitive methods are divided into two cat-
egories: personalized behavior prediction methods and so-
cialized behavior prediction methods. Personalized methods
only leverage individuals’ past behavior records for future
behavior predictions. Socialized methods use both individ-
uals’ past behavior records and his or her friends’ past be-
haviors for prediction. Specifically, five models reported in
[31] are Socialized Gaussian Process (SGP) model, Social-
ized Logistical Autoregression (SLAR) model, Personalized
Gaussian Process (PGP) model, Logistical Autoregression
(LAR) model, and Behavior Pattern Search (BPS) model.
In addition, we consider a SRBM model [25] which is simi-
lar to ORBMs in the learning and inference process but does
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(a) (b) (c)

Figure 5: The distributions of friend connections (a), inbox messages (b), and active users (c) in YesiWell
study.

(a) The number of active users (b) The number of walking and running steps (c) The number of received messages

Figure 7: Users’ activities of our health social network over time.

Figure 8: ORBM vs SRBM in terms of cross-entropy
errors (i.e., Equation 15). Lower is better.

not use ontologies to generate user representations. The
SRBM model treats all personal features flatly as visible
units in the model because it does not consider semantics
(e.g., concept hierarchy) in the ontology.

6.1 ORBM vs State-of-The-Art Models
Figure 6 and Table 2 show the accuracy comparison over

25 weeks (i.e., weeks 10th-34th) with the YesiWell dataset. It
is clear that the ORBM outperforms the other models. One
of the most interesting points is the accuracy curves of the
models. The accuracies tend to drop in the middle period
of the study. To explain this, we illustrate the summarized
activities of all the users in the whole dataset in Figure 7.
In Figure 7a, we can see that the number of active users is

significantly higher in the middle weeks than the beginning
and ending weeks. Thus many users will become active even
though they have never been active before. If we only used
the exercise status of the users in the beginning weeks, we
would not have enough information to predict the users’
behavior in the middle weeks. The existing models do not
capture the influences of environmental events. As a result,
they give rise to a lot of noises in the prediction results.
Consequently, they have low and unstable performances at
the middle weeks.

Meanwhile, the ORBM and SRBM, two deep learning
models, well capture the self-motivation, influences of en-
vironmental events, and social influences which become
stronger at the middle weeks (i.e., all the activities such as
social communications and physical activities are improved).
In addition, the correlation between the personal features
and the hidden social influences can be adequately detected
by the hidden variables. Thus, much information has been
leveraged to predict individual behaviors. Our models not
only achieve higher prediction accuracy but also the per-
formance is stable over time. Overall, the ORBM model
achieves 0.859 accuracy. Meanwhile, the SRBM model
achieves 0.83 (Table 2).

6.2 The Effectiveness of User Representation
Learning using the SMASH Ontology

In Figure 6, the ORBM and SRBM models both achieve
higher prediction accuracy than state-of-art prediction mod-
els because of deep learning. To show the advantage of us-
ing the SMASH ontology in the ORBM model, we further
compare ORBM with SRBM in more detail. The ORBM
outperforms the SRBM-1 and the SRBM-2 (‘1’ and ‘2’ in-
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dicate the number of hidden layers) by 3% (0.859 vs 0.83).
We do not distinguish SRBM-1 and SRBM-2 in Figure 6
since they achieves the same results. From another perspec-
tive, the ORBM model has better cross-entropy errors (i.e.,
Equation 15) compared with the two SRBM models. The
detailed comparisons are shown in Figure 8. This is because
ontology-based user representation provides better features,
which encode semantics of the data structure from domain
knowledge to the ORBM model. Even when we stack an-
other hidden layer on the SRBM-1 to be the SRBM-2, the
accuracy and the cross-entropy error are not (or are not
much) improved, compared with the effect of ontology-based
user representation. Consequently, we can conclude that: 1)
the SMASH ontology helps us to organize data features in
a suitable way; 2) our algorithm can learn meaningful user
representations from ontologies; and 3) meaningful user rep-
resentations can further improve accuracies of deep learning
approaches for human behavior prediction.

6.3 Synthetic Health Social Network
To illustrate that the ORBM model can be generally ap-

plied on different datasets, we perform further experiments
on a synthetic health social network. To generate the syn-
thetic data, we use software Pajek3 to generate graphs under
the Scale-Free/Power Law Model, which is a network model
whose node degrees follow the power law distribution, or at
least do asymptotically. However the vertices in the cur-
rent synthetic graph do not have individual features similar
to the real-word YesiWell data. An appropriate solution to
this problem is to apply a graph matching algorithm to map
pairwise vertices between the synthetic and real social net-
works. In order to do so, we first generate a graph with 254
nodes and average node degree is 5.4 (i.e., similar to the real
YesiWell data). Then, we apply PATH [40] which is a very
well-known and efficient graph matching algorithm to find
a correspondence between vertices of the synthetic network
and vertices of the YesiWell network. The source code of the
PATH algorithm is available in the graph matching package
GraphM4. Then, we can assign all the individual features
and behaviors of real users to corresponding vertices in the
synthetic network. Consequently, we have a synthetic health
social network which imitates our real-world dataset. Figure
9 shows the accuracies of the conventional models, SRBM
model, and the ORBM model on the synthetic data. We
can see that the ORBM model still outperforms the conven-
tional models in terms of the prediction accuracy. In Figure
9, the SRBM is used to indicate SRBM-1 and SRBM-2 which
achieve the same accuracy in terms of prediction.

7. CONCLUSIONS AND FUTURE WORKS
This paper introduces ORBM, a novel ontology-based

deep learning model for human behavior prediction in health
social networks. We contribute several novel techniques to
deal with health social network ontologies, self-motivation,
social influence, and environmental event modeling. We
first propose a bottom-up algorithm to learn user repre-
sentations given the ontologies. Then, we build up a deep
learning model to incorporate human behavior determinants
which are self-motivation, social influences, and environmen-
tal events from user representations. Our empirical analy-

3http://vlado.fmf.uni-lj.si/pub/networks/pajek/
4http://cbio.ensmp.fr/graphm/

Figure 9: Accuracies on the synthetic data.

sis over real and synthetic health social networks illustrates
that our ORBM model predicts the future activity levels of
users more accurately and stably than conventional meth-
ods. More importantly, the experiment also emphasizes
the three meaningful observations: 1) the SMASH ontology
helps us to organize data features in an suitable way; 2) our
algorithm can learn meaningful user representations from
ontologies; and 3) meaningful user representations could fur-
ther improve accuracies of deep learning approaches.

Our work can be extended in several directions. First,
we can leverage the ontologies to generate descriptive ex-
planations for predicted behaviors. Second, the approach
explored in this paper is rooted on the RBM [32]. However,
other alternatives are possible, which can be based on CNNs
[16] or Sum-Product Networks [27]. We plan to explore and
compare these different strategies in future work.
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