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Abstract The remarkable development of deep learning in medicine and healthcare domain
presents obvious privacy issues, when deep neural networks are built on users’ personal and
highly sensitive data, e.g., clinical records, user profiles, biomedical images, etc. However,
only a few scientific studies on preserving privacy in deep learning have been conducted. In
this paper, we focus on developing a private convolutional deep belief network (pCDBN),
which essentially is a convolutional deep belief network (CDBN) under differential privacy.
Our main idea of enforcing ε-differential privacy is to leverage the functional mechanism to
perturb the energy-based objective functions of traditional CDBNs, rather than their results.
One key contribution of this work is that we propose the use of Chebyshev expansion to
derive the approximate polynomial representation of objective functions. Our theoretical
analysis shows that we can further derive the sensitivity and error bounds of the approximate
polynomial representation. As a result, preserving differential privacy in CDBNs is feasible.
We applied our model in a health social network, i.e., YesiWell data, and in a handwriting
digit dataset, i.e., MNIST data, for human behavior prediction, human behavior classifica-
tion, and handwriting digit recognition tasks. Theoretical analysis and rigorous experimental
evaluations show that the pCDBN is highly effective. It significantly outperforms existing
solutions.
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1 Introduction

Today, amid rapid adoption of electronic health records and wearables, the global health care
systems are systematically collecting longitudinal patient health information, e.g., diagnoses,
medication, lab tests, procedures, demography, clinical notes, etc. The patient health infor-
mation is generated by one or more encounters in any healthcare delivery systems (Jamoom
et al. 2016). Healthcare data is now measured in exabytes, and it will reach the zettabyte and
the yottabyte range in the near future (Fang et al. 2016). Although appropriate in a variety
of situations, many traditional methods of analysis do not automatically capture complex
and hidden features from large-scale and perhaps unlabeled data (Miotto et al. 2016). In
practice, many health applications depend on including domain knowledge to construct rel-
evant features, some of which are further based on supplemental data. This process is not
straightforward and time consuming. That may result in missing opportunities to discover
novel patterns and features.

This is where deep learning, which is one of the state-of-the-art machine learning tech-
niques, comes in to take advantage of the potential that large-scale healthcare data holds,
especially in the age of digital health. Deep neural networks can discover novel patterns and
dependencies in both unlabeled and labeled data by applying state-of-the-art training algo-
rithms, e.g., greedy-layer wise (Hinton et al. 2006), contrastive divergent algorithm (Hinton
2002), etc. That makes it easier to extract useful information when building classifiers and
predictors (LeCun et al. 2015).

Deep learning has applications in a number of healthcare areas, e.g., phenotype extraction
and health risk prediction (Cheng et al. 2016), prediction of the development of various dis-
eases including schizophrenia, a variety of cancers, diabetes, heart failure, etc. (Choi et al.
2016; Li et al. 2015; Miotto et al. 2016; Roumia and Steinhubl 2014; Wu et al. 2010), predic-
tion of risk of readmission (Wu et al. 2010), Alzheimer’s diagnosis (Liu et al. 2014; Ortiz et al.
2016), risk prediction for chronic kidney disease progression (Perotte et al. 2015), physical
activity prediction (Phan et al. 2015a, b, 2016a, c), feature learning from fMRI data (Plis et al.
2014), diagnosis code assignment (Gottlieb et al. 2013; Perotte et al. 2014), reconstruction of
brain circuits (Helmstaedter et al. 2013), prediction of the activity of potential drugmolecules
(Ma et al. 2015), the effects of mutations in non-coding DNA on gene expressions (Leung
et al. 2014; Xiong et al. 2015), and many more.

The development of deep learning in the domain of medicine and healthcare presents
obvious privacy issues, when deep neural networks are built based on patients’ personal and
highly sensitive data, e.g., clinical records, user profiles, biomedical images, etc. To convince
individuals to allow that their data be included in deep learning projects, principled and rig-
orous privacy guarantees must be provided. However, only a few deep learning techniques
have yet been developed that incorporate privacy protections. In clinical trials, such lack of
protection and efficacy may put patient data at high risk and expose healthcare providers
to legal action based on HIPAA/HITECH law (U.S. Department of Health and Human Ser-
vices 2016a, b). Motivated by this, we aim to develop an algorithm to preserve privacy in
fundamental deep learning models in this paper.

Releasing sensitive results of statistical analyses and data mining while protecting privacy
has been studied in the past few decades. One state-of-the-art privacy model is ε-differential
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privacy (Dwork et al. 2006). A differential privacy model ensures that the adversary cannot
infer any information about any particular data record with high confidence (controlled by
a privacy budget ε) from the released learning models. This strong standard for privacy
guarantees is still valid, even if the adversary possesses all the remaining tuples of the sensitive
data. The privacy budget ε controls the amount by which the output distributions induced
by two neighboring databases may differ. We say that two databases are neighboring if they
differ in a single data record, that is, if one data record is present in one database and absent
in the other. It is clear that the smaller values of ε enforce a stronger privacy guarantee.
This is because it is more difficult to infer any particular data record by distinguishing any
two neighboring databases from the output distributions. Differential privacy research has
been studied from the theoretical perspective, e.g., Chaudhuri and Monteleoni (2008a), Hay
et al. (2010), Kifer and Machanavajjhala (2011) and Lee and Clifton (2012). Different types
of mechanisms [e.g., the Laplace mechanism (Dwork et al. 2006), the smooth sensitivity
(Nissim et al. 2007), the exponential mechanism (McSherry and Talwar 2007a), and the
perturbation of objective function (Chaudhuri and Monteleoni 2008a)] have been studied to
enforce differential privacy.

Combining differential privacy and deep learning, i.e., the two state-of-the-art techniques
in privacy preserving andmachine learning, is timely and crucial. This is a non-trivial task, and
therefore only a few scientific studies have been conducted. In Shokri and Shmatikov (2015),
the authors proposed a distributed training method, which directly injects noise into gradient
descents of parameters, to preserve privacy in neural networks. The method is attractive for
applications of deep learning on mobile devices. However, it may consume an unnecessarily
large portion of the privacy budget to ensuremodel accuracy, as the number of training epochs
and the number of shared parameters among multiple parties are often large. To improve this,
based on the composition theorem (Dwork and Lei 2009; Abadi et al. 2016) proposed a
privacy accountant, which keeps track of privacy spending and enforces applicable privacy
policies. The approach is still dependent on the number of training epochs. With a small
privacy budget ε, only a small number of epochs can be used to train the model. In practice,
that could potentially affect the model utility, when the number of training epochs needs to
be large to guarantee the model accuracy.

Recently, Phan et al. (2016c) proposed deep private auto-encoders (dPAs), in which dif-
ferential privacy is enforced by perturbing the objective functions of deep auto-encoders
(Bengio 2009). It is worthy to note that the privacy budget consumed by dPAs is independent
of the number of training epochs. A different method, named CryptoNets, was proposed
in Dowlin et al. (2016) towards the application of neural networks to encrypted data. A
data owner can send their encrypted data to a cloud service that hosts the network, and get
encrypted predictions in return. This method is different from our context, since it does not
aim at releasing learning models under privacy protections.

Existing differential privacy preserving algorithms in deep learning pose major concerns
about their applicability. They are either designed for a specific deep learning model, i.e.,
deep auto-encoders (Phan et al. 2016c), or they are affected by the number of training epochs
(Shokri and Shmatikov 2015; Abadi et al. 2016). Therefore, there is an urgent demand for
the development of a privacy preserving framework, such that: (1) It is totally independent
of the number of training epochs in consuming privacy budget; and (2) It has the potential to
be applied in typical energy-based deep neural networks. Such frameworks will significantly
promote the application of privacy preservation in deep learning.

Motivated by this, we aim at developing a private convolutional deep belief network
(pCDBN), which essentially is a convolutional deep belief network (CDBN) (Lee et al. 2009)
under differential privacy. CDBN is a typical and well-known deep learning model. It is an
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energy-based model. Preserving differential privacy in CDBNs is non-trivial, since CDBNs
are more complicated compared with other fundamental models, such as auto-encoders and
Restricted Boltzmann Machines (RBM) (Smolensky 1986), in terms of structural designs
and learning algorithms. In fact, there are multiple groups of hidden units in each of which
parameters are shared in a CDBN. Inappropriate analysis might result in consuming toomuch
of a privacy budget in training phases. The privacy consumption also must be independent
of the number of training epochs to guarantee the potential to work with large datasets.

Our key idea is to applyChebyshevExpansion (Rivlin 1990) to derive polynomial approxi-
mations of non-linear objective functions used in CDBNs, such that the design of differential
privacy-preserving deep learning is feasible. Then, we inject noise into these polynomial
forms, so that the ε-differential privacy is satisfied in the training phases of each hidden layer
by leveraging functional mechanism (Zhang et al. 2012). Third, hidden layers now become
private hidden layers, which can be stacked on each other to produce a private convolutional
deep belief network (pCDBN).

To demonstrate the effectiveness of our framework, we applied our model for binomial
human behavior prediction and classification tasks in a health social network. A novel human
behavior model based on the pCDBN is proposed to predict whether an overweight or obese
individual will increase physical exercise in a real health social network. To illustrate the
ability to work with large-scale datasets of our model, we also conducted additional exper-
iments on the well-known handwriting digit dataset (MNIST data) (Lecun et al. 1998). We
compare our model with the private stochastic gradient descent algorithm, denoted pSGD,
from Abadi et al. (2016), and the deep private auto-encoders (dPAs) (Phan et al. 2016c). The
pSGD and dPAs are the state-of-the-art algorithms in preserving differential privacy in deep
learning. Theoretical analysis and rigorous experimental evaluations show that our model is
highly effective. It significantly outperforms existing solutions.

The rest of the paper is organized as follows. In Sect. 2, we introduce preliminaries and
related works. We present our private convolutional deep belief network in Sect. 3. The
experimental evaluation is in Sect. 4, and we conclude the paper in Sect. 5.

2 Preliminaries and related works

In this section, we briefly revisit the definition of differential privacy, functional mechanism
(Zhang et al. 2012), convolutional deep belief networks (Lee et al. 2009), and the Chebyshev
Expansion (Rivlin 1990). Let D be a database that contains n tuples t1, t2, . . . , tn and d+1
attributes X1, X2, . . . , Xd , Y . For each tuple ti = (xi1, xi2, . . . , xid , yi ), we assume, without

loss of generality,
√∑d

j=1 x
2
i j ≤ 1 where xi j ≥ 0, yi follows a binomial distribution. Our

objective is to construct a deep neural network ρ from D that (i) takes xi = (xi1, xi2, . . . , xid)
as input and (ii) outputs a prediction of yi that is as accurate as possible. ti and xi are used
exchangeably to indicate the data tuple i . The model function ρ contains a model parameter
vector W . To evaluate whether W leads to an accurate model, a cost function fD(W ) is
often used to measure the difference between the original and predicted values of yi . As the
released model parameterW may disclose sensitive information of D, to protect the privacy,
we require that the model training should be performed with an algorithm that satisfies
ε-differential privacy.

Differential privacy (Dwork et al. 2006) establishes a strong standard for privacy guar-
antees for algorithms, e.g., training algorithms of machine learning models, on aggregate
databases. It is defined in the context of neighboring databases. We say that two databases
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are neighboring if they differ in a single data record. That is, if one data record is present in
one database and absent in the other. The definition of differential privacy is as follows:

Definition 1 [ε-Different Privacy (Dwork et al. 2006)]. A randomized algorithm A fulfills
ε-differential privacy, iff for any two databases D and D′ differing at most one tuple, and for
all O ⊆ Range(A), we have:

Pr [A(D) = O] ≤ eεPr [A(D′) = O] (1)

where the privacy budget ε controls the amount by which the distributions induced by two
neighboring datasets may differ. Smaller values of ε enforce a stronger privacy guarantee
of A.

A general method for computing an approximation to any function f (on D) while pre-
serving ε-differential privacy is the Laplacemechanism (Dwork et al. 2006), where the output
of f is a vector of real numbers. In particular, the mechanism exploits the global sensitivity
of f over any two neighboring databases (differing at most one record), which is denoted as
GS f (D). Given GS f (D), the Laplace mechanism ensures ε-differential privacy by injecting
noise η into each value in the output of f (D) as

pd f (η) = ε

2GS f (D)
exp

(
−|η| · ε

GS f (D)

)
(2)

where η is drawn i.i.d. from Laplace distribution with zero mean and scale GS f (D)/ε.
Research in differential privacy has been significantly studied, from both the theoretical

perspective, e.g., Chaudhuri andMonteleoni (2008b), Kifer andMachanavajjhala (2011), and
the application perspective, e.g., data collection (Erlingsson et al. 2014), data streams (Chan
et al. 2012), stochastic gradient descents (Song et al. 2013), recommendation (McSherry
and Mironov 2009), regression (Chaudhuri and Monteleoni 2008b), online learning (Jain
et al. 2012), publishing contingency tables (Xiao et al. 2010), and spectral graph analysis
(Wang et al. 2013). The mechanisms of achieving differential privacy mainly include the
classic approach of adding Laplacian noise (Dwork et al. 2006), the exponential mechanism
(McSherry and Talwar 2007b), and the functional perturbation approach (Chaudhuri and
Monteleoni 2008b).

2.1 Functional mechanism revisited

Functional mechanism (Zhang et al. 2012) is an extension of the Laplace mechanism. It
achieves ε-differential privacy by perturbing the objective function fD(W ) and then releasing
themodel parameterW thatminimizes the perturbed objective function f D(W ) instead of the
original one. The functional mechanism exploits the polynomial representation of fD(W ).
The model parameter W is a vector that contains d values W1, . . . ,Wd . Let φ(W ) denote
a product of W1, . . . ,Wd , namely, φ(W ) = Wc1

1 · Wc2
2 · · · Wcd

d for some c1, . . . , cd ∈ N.
Let Φ j ( j ∈ N) denote the set of all products of W1, . . . ,Wd with degree j , i.e., Φ j ={
Wc1

1 · Wc2
2 · · · Wcd

d

∣∣∣∑d
l=1 cl = j

}
. By the Stone-Weierstrass Theorem, any continuous

and differentiable f (ti ,W ) can always be written as a polynomial of W1, . . . ,Wd , for some
J ∈ [0,∞], i.e., f (ti ,W ) = ∑J

j=0
∑

φ∈Φ j
λφti φ(W )where λφti ∈ R denotes the coefficient

of φ(W ) in the polynomial. Note that ti and xi are used exchangeably to indicate the data
tuple i .

For instance, the polynomial expression of the loss function in the linear regression is as
follows: f (xi ,W ) = (yi − xTi W )2 = y2i − ∑d

j=1(2yi xi j )Wj + ∑
1≤ j,l≤d(xi j xil)WjWl .
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Fig. 1 Convolutional restricted
Boltzmann machine (CRBM)

We can see that it only involves monomials in Φ0 = {1}, Φ1 = {W1, . . . ,Wd}, and
Φ2 = {WiWj

∣∣i, j ∈ [1, d]}. Each φ(W ) has its own coefficient, e.g., for Wj , its poly-
nomial coefficient λφti

= −2yi xi j . Similarly, fD(W ) can also be expressed as a polynomial
of W1, . . . ,Wd .

fD(W ) =
J∑

j=0

∑
φ∈Φ j

∑
ti∈D

λφti φ(W ) (3)

Lemma 1 (Zhang et al. 2012) Let D and D′ be any two neighboring datasets. Let fD(W )

and fD′(W ) be the objective functions of regression analysis on D and D′, respectively. The
following inequality holds

Δ =
J∑

j=1

2∑
φ∈Φ j

∥∥∥
∑
ti∈D

λφti −
∑

t ′i∈D′
λφt ′i

∥∥∥
1

≤ 2max
t

J∑
j=1

∑
φ∈Φ j

‖λφt‖1

where ti , t ′i or t is an arbitrary tuple.

To achieve ε-differential privacy, fD(W ) is perturbed by injecting Laplace noise Lap(Δ
ε
)

into its polynomial coefficients λφ , and then the model parameter W is derived to minimize
the perturbed function f D(W ), where Δ = 2maxt

∑J
j=1

∑
φ∈Φ j

‖λφt‖1, according to the
Lemma 1.

2.2 Convolutional deep belief networks

The basic convolutional restricted Boltzmann machine (CRBM) (Lee et al. 2009) consists
of two layers: an input layer V and a hidden layer H (Fig. 1). The layer of hidden units
consists of K groups, each of which is an NH × NH array of binary units. There are N 2

H K
hidden units in total. Each group (in K groups) is associated with a NW × NW filter, where
NW = NV − NH + 1. The filter weights are shared across all the hidden units within the
group. In addition, each group of hidden units has a bias bk , and all visible units share a
single bias c. Training a CRBM is to minimize the following energy function E(v,h) as:

E(v,h) = −
K∑

k=1

NH∑
i, j=1

NW∑
r,s=1

hki jW
k
rsvi+r−1, j+s−1 −

K∑
k=1

bk

NH∑
i, j=1

hki j − c
NV∑

i, j=1

vi j (4)
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Gibbs sampling can be applied using the following conditional distributions:

P(hki j = 1|v) = σ
(
(W̃ k ∗ v)i j + bk

)
(5)

P(vi j = 1|h) = σ

⎛
⎝
(∑

k

Wk ∗ hk
)

i j

+ c

⎞
⎠ (6)

where σ is the sigmoid function.
The energy function given the dataset D is as follows:

E(D,W ) = −
∑
t∈D

K∑
k=1

NH∑
i, j=1

NW∑
r,s=1

hk,ti j W
k
rsv

t
i+r−1, j+s−1

−
∑
t∈D

K∑
k=1

bk

NH∑
i, j=1

hk,ti j − c
∑
t∈D

NV∑
i, j=1

vti j (7)

The max-pooling layer plays the role of a signal filter. By stacking multiple CRBMs on
top of each other, we can construct a convolutional deep belief network (CDBN) (Lee et al.
2009). Regarding the softmax layer, we use the cross-entropy error function for a binomial
prediction task. LetYT be a set of labeled data points used to train themodel, the cross-entropy
error function is given by

C(YT , θ) = −
|YT |∑
i=1

(
yi log ŷi + (1 − yi ) log(1 − ŷi )

)
(8)

where ‘T ’ in YT is used to denote “training” data.
We can use the layer-wise unsupervised training algorithm (Bengio et al. 2007) and back-

propagation to train CDBNs.

2.3 Chebyshev polynomials

In principle, many polynomial approximation techniques, e.g., Taylor Expansion, Bernoulli
polynomial, Euler polynomial, Fourier series, Discrete Fourier transform, Legendre poly-
nomial, Hermite polynomial, Gegenbauer polynomial, Laguerre polynomial, Jacobi poly-
nomial, and even the state-of-the-art techniques in the twentieth century, including spectral
methods andFinite Elementmethods (Harper 2012), can be applied to approximate non-linear
energy functions used in CDBNs. However, figuring out an appropriate way to use each of
them is non-trivial. First, estimating the lower and upper bounds of the approximation error
incurred by applying a particular polynomial in deep neural networks is not straightforward;
it is very challenging. It is significant to have a strong guarantee in terms of approximation
errors incurred by the use of any approximation approach to ensure model utility in deep neu-
ral networks. In addition, the approximation error bounds must be independent of the number
of data instances to guarantee the ability to be applied in large datasets without consuming
excessive privacy budgets.

With these challenging issues, Chebyshev polynomial really stands out. The most impor-
tant reason behind the usage of Chebyshev polynomial is that the upper and lower bounds
of the error incurred by approximating activation functions and energy functions can be
estimated and proved, as shown in the next section. Furthermore, these error bounds do not
depend on the number of data instances, as we will present in Sect. 3.4. This is a substan-
tial result when working with complex models, such as deep neural networks on large-scale
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datasets. In addition, Chebyshev polynomials are well-known, efficient, and widely used
in many real-world applications (Mason and Handscomb 2002). Therefore, we propose to
use Chebyshev polynomials in our work to preserve differential privacy in deep convolution
belief networks.

The four kinds of Chebyshev polynomials can be generated from the two-term recursion
formula:

Tk+1(x) = 2xTk(x) − Tk−1(x), T0(x) = 1 (9)

with different choices of initial values T1(x) = x, 2x, 2x − 1, 2x + 1.
According to the well-known result (Rivlin 1990), if a function f (x) is the Riemann inte-

grable on interval [−1, 1], f (x) can be presented in a Chebyshev polynomial approximation
as follows:

f (x) =
∞∑
k=0

AkTk(x) = A′X
(
T (x)

)
(10)

where Ak = 2
π

∫ 1
−1

f (x)Tk (x)√
1−x2

dx , k ∈ N, A′ = [ 1
2 A0, . . . , Ak, . . .

]
, Tk(x) is Chebyshev

polynomial of degree k, X
(
T (x)

) = [T0(x) . . . Tk(x) . . .].
The closed form expression for Chebyshev polynomials of any order is:

Ti (x) =
[i/2]∑
j=0

(−1) j
(

i
2 j

)
xi−2 j (1 − x2) j (11)

where [i/2] is the integer part of i
2 .

3 Private convolutional deep belief network

In this section, we formally present our framework (Algorithm 1) to develop a convolutional
deep belief network under ε-differential privacy. Intuitively, the algorithm used to develop
dPAs can be applied toCDBNs.However, themain issue is that their approximation technique
has been especially designed for cross-entropy error-based objective functions (Bengio 2009).
There are many challenging issues in adapting their technique in CDBNs. The cross entropy
error-based objective function is very different from the energy-based objective function
(Eq. 7). As such: (1) It is difficult to derive its global sensitivity used in the functional
mechanism, and (2) It is difficult to identify the approximation error bounds in CDBNs. To
achieve private convolutional deep belief networks (pCDBNs), we figure out a new approach
of using the Chebyshev Expansion (Rivlin 1990) to derive polynomial approximations of
non-linear energy-based objective functions (Eq. 7), such that differential privacy can be
preserved by leveraging the functional mechanism.

Our framework to construct the pCDBN includes four steps (Algorithm 1).

– First, we derive a polynomial approximation of energy-based function E(D,W ) (Eq. 7),
using the Chebyshev Expansion. The polynomial approximation is denoted as Ê(D,W ).

– Second, the functional mechanism is used to perturb the approximation function
Ê(D,W ); the perturbed function is denoted as E(D,W ). We introduce a new result
of sensitivity computation for CDBNs. Next, we train the model to obtain the optimal
perturbed parameters W by using gradient descent. That results in private hidden layers,
which are used to produce max-pooling layers. Note that we do not need to enforce dif-
ferential privacy in max-pooling layers. This is because max-pooling layers play roles as
signal filters only.

123



Mach Learn (2017) 106:1681–1704 1689

Algorithm 1: Private Convolutional Deep Belief Network

1: Derive a polynomial approximation of the energy function E(D,W ) (Eq. 7), denoted as Ê(D,W )

2: The function Ê(D,W ) is perturbed by using functional mechanism (FM) (Zhang et al. 2012), the
perturbed function is denoted as E(D,W )

3: Stack the private hidden and pooling layers
4: By using the technique in Phan et al. (2016c), we derive and perturb the polynomial approximation of
the softmax layer Ĉ(θ) (Eq. 17), the perturbed function is denoted as C(θ), Return θ = argminθ C(θ)

– Third, we stack multiple pairs of a private hidden layer and a max-pooling layer (H, P)

on top of each other to construct the private convolutional deep belief network (pCDBN).
– Finally, we apply the technique presented in Phan et al. (2016c) to enforce differential

privacy in the softmax layer for prediction and classification tasks.

Let us first derive the polynomial approximation form of E(D,W ) by applyingChebyshev
Expansion, as follows.

3.1 Polynomial approximation of the energy function

There are two challenges in the energy function E(D,W ) that prevent us from applying it
for private data reconstruction analysis: (1) Gibbs sampling is used to estimate the value
of every hki j ; and (2) The probability of every hki j equal to 1 is a sigmoid function which

is not a polynomial function with parameters Wk . Therefore, it is difficult to derive the
sensitivity and error bounds of the approximation polynomial representation of the energy
function E(D,W ). Perturbing Gibbs sampling is challenging. Meanwhile, injecting noise in
the results of Gibbs sampling will significantly affect the properties of hidden variables, i.e.,
values of hidden variables might be out of their original bounds, i.e., [0, 1].

To address this, we propose to preserve differential privacy in the model before apply-
ing Gibbs sampling. The generality is still guaranteed since Gibbs sampling is applied for
all hidden units. In addition, we need to derive an effective polynomial approximation of
the energy function, so that differential privacy preserving is feasible. First, we propose to
consider the probability P(hki j = 1|v) = σ

(
(Wk ∗ v)i j + bk

)
instead of hki j in the energy

function E(D,W ). The main goal of minimizing the energy function, i.e., “the better the
reconstruction of v is, the better the parameters W are,” remains the same. Therefore, the
generality of our proposed approach is still guaranteed. The energy function can be rewritten
as follows:

Ẽ(D,W ) =
∑
t∈D

⎡
⎣−

K∑
k=1

NH∑
i, j=1

NW∑
r,s=1

σ
(
(Wk ∗ vt )i j + bk

)× Wk
rsv

t
i+r−1, j+s−1

−
K∑

k=1

bk

NH∑
i, j=1

σ
(
(Wk ∗ vt )i j + bk

)− c
NV∑

i, j=1

vti j

⎤
⎦ (12)

As the sigmoid function σ(·) in neural networks satisfies the Reimann integrable condition
(Vlcek 2012), it can be approximated by the Chebyshev series. We propose to derive a
Chebyshev polynomial approximation function for the σ

(
(Wk ∗ vt )i j + bk

)
that results

in a polynomial approximation function for our energy function Ẽ(·). To make our sigmoid

function satisfy theRiemann integrable condition on [−1, 1], we rewrite it as:σ ( (Wk∗vt )i j+bk
Zk
i j

)

where Zk
i j is a local response normalization (LRN) term which can be computed as follows:
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Zk
i j = max

(∣∣(Wk ∗vt )i j +bk
∣∣,
[
q+α

∑min(K−1,k+l/2)
m=max(0,k−l/2)

(
(Wm ∗vt )i j +bm

)2]β), where the
constants q, l, α, and β are hyper-parameters, K is the total number of feature maps. As in
Krizhevsky et al. (2012), we used q = 2, l = 5, α = 10−4, and β = 0.75 in our experiments.

From Eq. (10), the Chebyshev polynomial approximation of our sigmoid function is as
follows:

σ

(
(Wk ∗ vt )i j + bk

Zk
i j

)
=

∞∑
l=0

AlTl

(
(Wk ∗ vt )i j + bk

Zk
i j

)
(13)

where Al and Tl can be computed using Eqs. (10) and (11).
Now, there is still a challenge that prevents us from applying the functional mechanism to

preserve differential privacy in applying Eq. (13): The equation involves an infinite summa-
tion. To address this problem, we remove all orders greater than L . Based on the Chebyshev
series, the polynomial approximation of the energy function Ẽ(·) can be written as:

Ê(D,W ) =
∑
t∈D

⎡
⎣−

K∑
k=1

NH∑
i, j=1

NW∑
r,s=1

(
L∑

l=0

AlTl

(
(Wk ∗ vt )i j + bk

Zk
i j

))
× Wk

rsv
t
i+r−1, j+s−1

−
K∑

k=1

bk

NH∑
i, j=1

L∑
l=0

AlTl

(
(Wk ∗ vt )i j + bk

Zk
i j

)
− c

NV∑
i, j=1

vti j

⎤
⎦ (14)

Ê(·) is a polynomial approximation function of the original energy function E(·) in

Eq. (7). Furthermore, the term
∑L

l=0 AlTl

(
(Wk∗vt )i j+bk

Zk
i j

)
can be rewritten as:

∑L
l=0 αl

(
(Wk∗vt )i j+bk

Zk
i j

)l

, where α are the Chebyshev polynomial coefficients. For instance, given

L = 7, we have
∑L=7

l=0 AlTl(X) = 1
25

(−5X7 + 21X5 − 35X3 + 35X + 16), where

X = (Wk∗vt )i j+bk
Zk
i j

.

3.2 Perturbation of objective functions

We employ the functional mechanism (Zhang et al. 2012) to perturb the objective function
Ê(·) by injecting Laplace noise into its polynomial coefficients. The hidden layer contains
K groups of hidden units. Each group is trained with a local region of input neurons, which
will not be merged with each other in the learning process. Therefore, it is not necessary to
aggregate sensitivities of the training algorithm in K groups to the sensitivity of the function
Ê(·). Instead, the sensitivity of the function Ê(·) can be considered the maximal sensitivity
given any single group. As a result, the sensitivity of the function Ê(·) can be computed in
the following lemma.

Lemma 2 Let D and D′ be any two neighboring datasets. Let Ê(D,W ) and Ê(D′,W ) be
the objective functions of regression analysis on D and D′, respectively. α are Chebyshev
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polynomial coefficients. The following inequality holds:

Δ ≤ 2max
t,k

NH∑
i, j=1

L∑
l=0

|αl |
⎡
⎣
(∑NW

r,s=1 v
t,k
i j,rs + 1

Zk
i j

)l

+
NW∑
r,s=1

⎛
⎝
∑NW

r ′,s′=1 v
t,k
i j,r ′s′ + 1

Zk
i j

⎞
⎠

l

|vt,ki j,rs |
⎤
⎥⎦+

NV∑
i, j=1

|vti j | (15)

Proof By replacingWt
rs (i.e., ∀r, s), bk , and c in Ê(D,W ) with 1, we have the function with

only polynomial coefficients of Ê(D,W ), denoted λφD . We have that

λφD =
∑
t∈D

λφt

where

λφt = −
K∑

k=1

NH∑
i, j=1

NW∑
r,s=1

⎛
⎜⎝

L∑
l=0

αl

⎛
⎝
∑NW

r ′,s′=1 vti j,r ′s′ + 1

Zk
i j

⎞
⎠

l
⎞
⎟⎠ vti j,rs

−
K∑

k=1

bk

NH∑
i, j=1

L∑
l=0

αl

(∑NW
r,s=1 vti j,rs + 1

Zk
i j

)l

−
NV∑

i, j=1

vti j

The Ê(·)’s sensitivity can be computed as follows:

Δ =
∥∥∥
∑
ti∈D

λφti −
∑

t ′i∈D′
λφt ′i

∥∥∥
1

≤ 2max
t

‖λφt‖1

≤ 2max
t

K∑
k=1

NH∑
i, j=1

L∑
l=0

|αl |
⎡
⎣
(∑NW

r,s=1 v
t,k
i j,rs + 1

Zk
i j

)l

+
NW∑
r,s=1

⎛
⎝
∑NW

r ′,s′=1 v
t,k
i j,r ′s′ + 1

Zk
i j

⎞
⎠

l

|vt,ki j,rs |
⎤
⎥⎦+

NV∑
i, j=1

|vti j | (16)

The current sensitivity is an aggregation of sensitivities from all K groups of hidden units.
However, each of them is trained with a local region of input neurons, which will not be
merged with the others in the learning process. Therefore, the sensitivity of the function Ê(·)
can be considered the maximal sensitivity given any single group of hidden units in a hidden
layer. From Eq. (16), the final sensitivity of the function Ê(·) is as follows:

Δ ≤ 2max
t,k

NH∑
i, j=1

L∑
l=0

|αl |
⎡
⎣
(∑NW

r,s=1 v
t,k
i j,rs + 1

Zk
i j

)l

+
NW∑
r,s=1

⎛
⎝
∑NW

r ′,s′=1 v
t,k
i j,r ′s′ + 1

Zk
i j

⎞
⎠

l

|vt,ki j,rs |
⎤
⎥⎦+

NV∑
i, j=1

|vti j |

Consequently, the Eq. (15) holds.
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We use gradient descent to train the perturbed model E(·). That results in private hidden
layers. To construct a private convolutional deep belief network (pCDBN), we stack multiple
private hidden layers and max-pooling layers on top of each other. The pooling layers only
play the roles of signal filters of the private hidden layers. Therefore, there is no need to
enforce privacy in max-pooling layers.

3.3 Perturbation of softmax layer

On top of the pCDBN, we add an output layer, which includes a single binomial variable to
predict Y . The output variable ŷ is fully linked to the hidden variables of the highest hidden
(pooling) layer, denoted p(o), by weighted connectionsW(o), where o is the number of hidden
(pooling) layers in the CDBNs. We use the logistic function as an activation function of ŷ,
i.e., ŷ = σ(W(o) p(o)). Cross-entropy error, which is a typical objective function in deep
learning (Bengio 2009), is used as a loss function. The cross-entropy error function has been
widely used and applied in real-world applications (Bengio 2009). Therefore, it is critical
to preserve differential privacy under the use of the cross-entropy error function. However,
other loss functions, e.g., square errors, can be applied in the softmax layer as well. Let YT
be a set of labeled data points used to train the model, the cross-entropy error function is
given by:

C(YT , θ) = −
|YT |∑
i=1

(
yi log(1 + e−W(o) pi(o) ) + (1 − yi ) log(1 + eW(o) pi(o) )

)
(17)

By applying the technique in Phan et al. (2016c), based on Taylor Expansion (Arfken
1985), we can derive the polynomial approximation of the cross-entropy error function as
follows:

Ĉ(YT , θ) =
|YT |∑
i=1

2∑
l=1

2∑
R=0

f (R)
l (0)

R!
(
W(o) pi(o)

)R (18)

where
g1(ti ,W(o)) = W(o) pi(o) , g2(ti ,W(o)) = W(o) pi(o)

f1(z) = yi log(1 + e−z) , f2(z) = (1 − yi ) log(1 + ez)

To preserve the differential privacy, the softmax layer is perturbed by using the functional
mechanism (Phan et al. 2016c; Zhang et al. 2012). The sensitivity of the softmax layer, ΔC ,
is estimated as ΔC = |p(o)| + 1

4 |p(o)|2 (Phan et al. 2016c).

3.4 Approximation error bounds

The following lemma shows how much error our approximation approaches incur. The aver-
age error of the approximations is always bounded, as presented in the following lemma:

Lemma 3 Approximation Error bounds. Let SL(E) = ‖E(D,W ) − Ê(D,W )‖, UL(E) =
‖E(D,W )− E∗(D,W )‖ where E(D,W ) is the target function, Ê(D,W ) is the approxima-
tion function learned by our model, and E∗(D,W ) is the best uniform approximation. The
lower and upper bounds of the sum square error are as follows:

(
4 + 4

π2 log L
)
N 2
H K ×UL(E) > SL(E) ≥ UL(E) ≥ π

4
N 2
H K |AL+1| (19)
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Proof As the well-known results in Rivlin (1990), given a target sigmoid function σ , a poly-
nomial approximation function σ̂ learned by the model, and the best uniform approximation
of σ , SL(σ ) = ‖σ − σ̂‖, UL(σ ) = ‖σ − σ ∗‖, we have that:

SL(σ ) ≥ UL(σ ) ≥ π

4
|AL+1| (20)

Since there are N 2
H K hidden units in our pCDBN model, we have SL(E) ≥ UL(E) ≥

π
4 N

2
H K |AL+1|. Similarly, in Rivlin (1990), we also have

UL(σ ) ≤ SL(σ ) <
(
4 + 4

π2 log L
)
UL(σ ) (21)

Since there are N 2
H K hidden units in our pCDBN model, we have
(
4 + 4

π2 log L
)
N 2
H K ×UL(E) > SL(E) ≥ UL(E) (22)

Therefore, the Eq. (19) holds.

The approximation error depends on the structure of the energy function E(D,W ), i.e.,
the number of hidden neurons N 2

H K and |AL+1|, and the number of attributes of the dataset.
Lemma 3 can be used to determinewhen it should stop learning the approximationmodel. For
each group of N 2

H hidden units, the upper bound of the sum square error is only π
4 N

2
H |AL+1|,

i.e., |AL+1| is tiny when L is large enough.
Importantly, Lemmas 2 and 3 show that the sensitivity Δ and the approximation error

bounds of the energy-based function are entirely independent of the number of data instances.
This sufficiently guarantees that our differential privacy preserving framework can be applied
in large datasets without consuming excessive privacy budgets. This is a substantial result
when working with complex models, such as deep neural networks on large-scale datasets.
It is worth noting that non-linear activation functions, which are continuously differentiable
[Stone-Weierstrass Theorem (Rudin 1976)] and satisfy the Riemann-integrable condition,
can be approximated by using Chebyshev Expansion. Therefore, our framework can be
applied given such activation functions as, e.g., tanh, arctan, sigmoid, softsign, sinusoid,
sinc, Gaussian, etc. (Wikipedia 2016). In the experiment section, we will show that our
approach leads to accurate results.

Note that the proofs of Lemmas 2 and 3 do not depend on the assumption of the data
features being non-negative, and that the target follows by a binomial distribution. The proofs
are generally applicable for inputs and the target, which are not restricted by any constraint.
As shown in the next section, our approach efficiently works with a multi-class classification
task on the MNIST dataset (Lecun et al. 1998). The cross-entropy error function is applied
in the softmax layer.

4 Experiments

To validate our approach, we have conducted an extensive experiment on well-known and
large-scale datasets, including a health social network, YesiWell data (Phan et al. 2016c), and
a handwriting digit dataset, MNIST (Lecun et al. 1998). Our task of validation focuses on
four key issues: (1) The effectiveness and robustness of our pCDBNmodel; (2) The effects of
our model and hyper-parameter selections, including the use of Chebyshev polynomial, the
impact of the polynomial degree L , and the effect of probabilities P(hki j = 1|v) in approxi-
mating the energy function; (3) The ability to work on large-scale datasets of our model; and
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(4) The benefits of being independent of the number of training epochs in consuming privacy
budget.

We carry out the validation through three approaches. One is by conducting the human
behavior prediction with various settings of data cardinality, privacy budget ε, noisy vs.
noiseless models, and original versus approximated models. By this we rigorously examine
the effectiveness of our model compared with the state-of-the-art algorithms, i.e., Phan et al.
(2016c) and Abadi et al. (2016). The second approach is to discover gold standards in our
model configuration by examining various settings of hyper-parameters. The third approach
is to access the benefits of being independent of the number of training epochs in terms of
consuming privacy budget of our pCDBNmodel. In fact, we present the prediction accuracies
of our pCDBN and existing algorithms as a function of the number of training epochs.

4.1 Human behavior modeling

In this experiment, we have developed a private convolutional deep belief network (pCDBN)
for human behavior prediction and classification tasks in the YesiWell health social network
(Phan et al. 2016c).

Health social network data To be able to compare our model with the state-of-the-art deep
private auto-encoders for human behavior prediction (dPAH), we use the same dataset used
in Phan et al. (2016c). Data were collected from Oct 2010 to Aug 2011 as a collaboration
between PeaceHealth Laboratories, SK Telecom Americas, and the University of Oregon to
record daily physical activities, social activities (text messages, competitions, etc.), biomark-
ers, and biometric measures (cholesterol, BMI, etc.) for a group of 254 overweight and obese
individuals. Physical activities, including information about the number of walking and run-
ning steps, were reported via a mobile device carried by each user. All users enrolled in an
online social network, allowing them to friend and communicate with each other. Users’
biomarkers and biometric measures were recorded via daily/weekly/monthly medical tests
performed at home individually or at our laboratories.

In total, we consider three groups of attributes:

– Behaviors: #competitions joined, #exercising days, #goals set, #goals achieved,∑
(distances), avg(speeds);

– #Inbox Messages: Encouragement, Fitness, Followup, Competition, Games, Personal,
Study protocol, Progress report, Technique, Social network, Meetups, Goal, Wellness
meter, Feedback, Heckling, Explanation, Invitation, Notice, Technical fitness, Physical;

– Biomarkers and Biometric Measures: Wellness Score, BMI, BMI slope, Wellness Score
slope.

pCDBN for human behavior modeling Our starting observation is that a human behav-
ior is the outcome of behavior determinants such as self-motivation, social influences, and
environmental events. This observation is rooted in human agency in social cognitive the-
ory (Bandura 1989). In ourmodel, these human behavior determinants are combined together
to model human behaviors. Given a tuple ti , xi1, . . . , xid are the personal attributes and yi is
a binomial parameter that indicates whether a user increases or decreases his/her exercises.
To describe the pCDBN model, we adjust the notations xi1 and yi a little bit to denote the
temporal dimension, and our social network information. Specifically, xtu = {xt1u, . . . , xtdu}
is used to denote the d attributes of user u at time point t . Meanwhile, ytu is used to denote the
status of the user u at time point t . ytu = 1 denotes u increases exercises at time t ; otherwise
ytu = 0.
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In fact, the current behavior at time-stamp t of a user u is conditional on his/her behavior
in the past N time-stamps, i.e., t − N , . . . , t −1. To model this effect [i.e., also considered as
a form of self-motivation in social cognitive theory (Bandura 1989)], we first aggregate his
personal attributes in the last N timestamps into a d×N matrix, which will be considered the
visible input V . Then, to model self-motivation and social influence, we add an aggregation
of his/her attributes and the effects from his/her friends at the current timestamp t into the
dynamic biases, i.e., b̂tk and ĉ

t , of the hidden and visible units (Eqs. 23–26). The hidden and
visible variables at time t are

hki, j,t = σ
(
(W̃ k ∗ vt )i j + b̂tk

)
(23)

vi, j,t = σ

⎛
⎝
(∑

k

Wk ∗ hk
)t

i j

+ ĉt

⎞
⎠ (24)

where

b̂tk = bk +
d∑

e=1

Bk
e x

t
eu + ηk

|Fu |
∑
v∈Fu

ψt (v, u) (25)

ĉt = c +
d∑

e=1

Aex
t
eu + η

|Fu |
∑
v∈Fu

ψt (v, u) (26)

where b̂tk and ĉ
t are dynamic biases, Bk

e is a matrix of weights which connects xtu with hidden
variables in the group k. ψt (v, u) is the probability that v influences u on physical activity at
time t . ψt (v, u) is derived from the TaCPP model (Phan et al. 2016b). Fu is a set of friends
of u in the social network. η and ηk are parameters which present the ability to observe the
explicit social influences from neighboring users.

The model includes two hidden layers. We trained 10 first layer bases, each 4 × 12
variables v, and 10 second layer bases, each 2 × 6. The pooling ratio was 2 for both layers.
In our work, contrastive divergent algorithm (Hinton 2002) was used to optimize the energy
function, and back-propagation was used to optimize the cross-entropy error function in the
softmax layer. The implementations of our models using Tensorflow1 and Python were made
publicly available on GitHub.2 The results and algorithms can be reproduced on either a
single workstation or a Hadoop cluster. To examine the effectiveness of our pCDBN, we
established two experiments, i.e., prediction and classification, as follows.

4.1.1 Human behavior prediction

Experimental setting Our pCDBN model is used to predict the statuses of all the users in
the next time point t + 1 given M past time points t − M + 1,…, t . The model has been
trained on daily andweekly datasets. Both datasets contain 300 time points, 30 attributes, 254
users, 2766 messages, 1383 friend connections, 11,458 competitions, etc. For each dataset,
we have, in total, 254 users ×300 timestamps = 76, 200 data points.

The number of previous time intervals N is set to 4. N is used as a time window to
generate training samples. For instance, given 10days of data (M = 10), a time window
of 4days N = 4, and d data features, e.g., BMI, #steps, etc., a single input V will be a

1 https://www.tensorflow.org.
2 https://github.com/haiphanNJIT/PrivateDeepLearning/releases/tag/V1.0.
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d × N (= d × 4) matrix. A single input V is considered as a data sample to model human
behavior in our prediction model. If we move the window N on 10days of data, i.e., M,
we will have M − N + 1 training samples for each individual, i.e., 10 − 4 + 1 = 7 in this
example. So, we have, in total, 254(M− N + 1) = 254 × 7 = 1, 778 training samples for
every 10days of data M to predict whether an individual will increase physical activity in
the next day t + 1.

The Chebyshev polynomial approximation degree L and learning rates are set to 7 and
10−3. To avoid over-fitting,we apply the L1-regularization and the dropout technique (Srivas-
tava et al. 2014), i.e., the dropout probability is set to 0.5. Regarding K-fold cross-validation
or bootstrapping, it is either unnecessary or impractical to apply them in deep learning, and
particularly in our study (Bengio 2017; Reed et al. 2014). This is because: (1) It is too
expensive and time consuming to train K deep neural networks, each of which usually has a
large number of parameters, e.g., hundreds of thousands of parameters (Bengio 2017); and
(2) Bootstrapping is only used to train neural networks when class labels may be missing,
objects in the image may not be localized, and in general, the labeling may be subjective,
noisy, and incomplete (Reed et al. 2014). This is out of the scope of our focus. Our models
were trained on a graphic card NVIDIA GTX TITAN X, 12 GB RAM with 3072 CUDA
cores.

Competitive models We compare our pCDBN with two types of state-of-the-art models, as
follows:

(a) Deep learning models for human behavior prediction, including: (1) The original convo-
lutional deep neural network (CDBN) for human behavior prediction without enforcing
differential privacy; (2) The truncated version of the CDBNs, in which the energy func-
tion is approximated without injecting noise to preserve differential privacy, denoted
TCDBN; and (3) The conditional Restricted BoltzmannMachine, denoted SctRBM (Li
et al. 2014). None of these models enforces ε-differential privacy.

(b) Deep Private Auto-Encoder (dPAH) (Phan et al. 2016c), which is the state-of-the-art
deep learningmodel under differential privacy for human behavior prediction. The dPAH
model outperforms general methods for regression analysis under ε-differential privacy,
i.e., functional mechanism (Zhang et al. 2012), DPME (Lei 2011), and filter-priority
(Cormode 2011). Therefore, we only compare our model with the dPAH.

• Accuracy versus dataset cardinality Fig. 2 shows the prediction accuracy of each algo-
rithm as a function of the dataset cardinality. We vary the size of M, which also can be
considered as the sampling rate of the dataset. ε is 1.0 in this experiment. In both datasets,
there is a gap between the prediction accuracy of pCDBN and the original convolutional deep

Fig. 2 Prediction accuracy versus dataset cardinality
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Fig. 3 Prediction accuracy versus privacy budget ε

belief network (CDBN). However, the gap dramatically gets smaller with the increase of the
dataset cardinality (M). In addition, our pCDBN outperforms the state-of-the-art dPAH in
most of the cases, and the results are statistically significant (p = 5.3828e−05, performed by
paired t test). It also is significantly better than the SctRBMwhen the sampling rate goes just
a bit higher, i.e., > 0.2 or > 0.3 (p = 8.8350e−04, performed by paired t test). Either 0.2 or
0.3 is a small sampling rate; thus, this is a remarkable result.

• Accuracy versus privacy budget Fig. 3 illustrates the prediction accuracy of each model
as a function of the privacy budget ε. M is set to 12 ≈ 0.32%. The prediction accuracies
of privacy non-enforcing models remain unchanged for all ε. Since a smaller ε requires
a larger amount of noise to be injected, privacy enforcing models incur higher inaccurate
prediction results when ε decreases. pCDBN outperforms dPAH in all cases, and the results
are statistically significant (p = 2.7266e−12, performed by paired t test). In addition, it is
relatively robust against the change of ε. In fact, the pCDBN model is competitive even with
privacy non-enforcing models, i.e., SctRBM.

• Probabilities P(hki j = 1|v) and Gibbs sampling To approximate the energy function

E(D,W ), we propose to use the probabilities P(hki j = 1|v) instead of the values of hki j ,

which are estimated by applying Gibbs Sampling on the P(hki j = 1|v). To illustrate the
effect of our approach, we conducted both theoretical analysis and experimental evaluations
as follows. Let’s use hki j to estimate the sensitivity Δ of the energy function E(D,W ) (Eq.
7) by following Lemma 1 as follows:

Δ = 2max
t,k

NH∑
i, j=1

NW∑
r,s=1

∣∣∣hk,ti j vti+r−1, j+s−1

∣∣∣+
NH∑

i, j=1

∣∣∣hk,ti j

∣∣∣+
NV∑

i, j=1

∣∣∣vti j
∣∣∣ (27)

There are several issues in the Eq. (27) that prevent us from applying it. First, hki j cannot
be considered an observed variable, since its value can only be estimated by applying Gibbs
sampling from observed variables v and parameters W . In other words, the value of Δ

is significantly dependent on Gibbs sampling given P(hki j = 1|v). Therefore, Δ can be
uncertain in every sampling step. That may lead to a violation of the guarantee of privacy
protection under a differential privacy mechanism. To address this issue, one may set all the
hidden variables hki j to 1. That leads to the use of a maximal value of the sensitivity Δ as
follows:

Δ = 2max
t,k

NH∑
i, j=1

NW∑
r,s=1

∣∣vti+r−1, j+s−1

∣∣+ N 2
H +

NV∑
i, j=1

∣∣vti j
∣∣ (28)
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Fig. 4 Results of classification accuracy for different noise levels, different approximation approaches, and
the number of training epochs

The maximal value of Δ (Eq. 28) is huge and is not an optimal bound. In other words, the
model efficiency will be affected, since too much noise will be unnecessarily injected into
the model.

To tackle this challenge, our solution is to consider the probabilities P(hki j = 1|v) instead

of hki j . As a result, the sensitivity Δ in Lemma 2 is only dependent on observed variables v

instead of Gibbs samplings. That leads to a smaller amount of noise injected into the model.
To demonstrate the effect of this approach, our model is compared with its truncated version,
in which the energy function is approximated without injecting noise to preserve differential
privacy, denoted TCDBN. Experimental results illustrated in Figs. 2 and 3 show that the
impact of our approach on the original model CDBN is marginal in terms of prediction
accuracy. On average, the prediction accuracy is only less than 1% lower compared with the
original model. This is a practical result.

4.1.2 Human behavior classification

In this experiment, we aim to examine: (1) The robustness of our approach when it is trained
with a large number of epochs at different noise levels; and (2) The effectiveness of different
approximation approaches, includingChebyshev, Taylor, and Piecewise approximations. Our
experiment setting is as follows:

We consider every pair (u, t) is a data point. Given t is a week, we have, in total, 9652 data
points (254 users × 38weeks). We randomly select 10% data points as a testing set, and the
remaining data points are used as a training set. At each training step, themodel is trainedwith
111 randomly selected data points, i.e., batch size = 111. To avoid the imbalance in the data,
each training batch consists of a balanced number of data samples from different data classes.
With this technique, data points in the under-represented class can be incidentally sampled
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more than the others (Brownlee 2015). The model is used to classify the statuses of all the
users given their features. In this experiment, we compare our model with state-of-the-art
polynomial approximation approaches in digital implementations, including truncated Taylor

Expansion: σ(x) = tanh x ≈ x − x3
3 + 2x5

15 (Lee and Jeng 1998; Vlcek 2012) (pCDBN_TE),
and linear piecewise approximation: σ(x) ≈ c1x + c2 (Armato et al. 2009) (pCDBN_PW).
Other baseline models, i.e., dPAH and SctRBM, cannot be directly applied to this task; so,
we do not include them in this experiment.

• Figure 4 shows classification accuracies for different levels of privacy budget ε. Each
plot illustrates the evolution of the testing accuracy of each algorithm and its power fit curve
as a function of the number of epochs. After 600 epochs, our pCDBN can achieve 88% with
ε = 0.1, 92% with ε = 2, and 94% with ε = 8. In addition, our model outperforms baseline
approaches, i.e., pCDBN_TE and pCDBN_PW, and the results are statistically significant
(p = 4.4293e−07, performed by paired t test). One of the important observations we acquire
from this result is that: The Chebyshev polynomial approximation is more effective than
the competitive approaches in preserving differential privacy in convolutional deep belief
networks. One of the reasons is that Chebyshev polynomial approximation incurs fewer
errors than the other two approaches (Harper 2012; Vlcek 2012). Similar to Layer-wise
Relevance Propagation (Bach et al. 2015), the approximation errors will propagate across
neural layers. Therefore, the smaller the error, the more accurate the models will be.

Note that our observations (i.e., data points) in the YesiWell data are not strictly indepen-
dent. Therefore, the simple use of paired t test may not give rigorous conclusions. However,
the very small p values under the paired t test can still indicate the significant improvement
of our approach over baselines.

4.2 Handwriting digit recognition

To further demonstrate the ability to work on large-scale datasets, we conducted additional
experiments on the well-known MNIST dataset (Lecun et al. 1998). The MNIST database
of handwritten digits consists of 60,000 training examples, and a test set of 10,000 examples
(Lecun et al. 1998). Each example is a 28 × 28 size gray-level image. The MNIST dataset is
completely balanced, with 6000 images for each category, with 10 categories in total.

We compare our model with the private stochastic gradient descent algorithm, denoted
pSGD, from Abadi et al. (2016). The pSGD is the state-of-the-art algorithm in preserving
differential privacy in deep learning. pSGD is an advanced version of Shokri and Shmatikov
(2015); therefore, there is no need to include the work proposed by Shokri and Shmatikov
(2015) in our experiments. The two approaches, i.e., our proposed algorithm and the pSGD,
are built on the same structure of a convolutional deep belief network. As in prior work
(Abadi et al. 2016), two convolution layers, one with 32 features and one with 64 features,
and each hidden neuron which connects with a 5 × 5 unit patch are applied. On top of the
convolution layers, there are a fully-connected layer with 1024 units, and a softmax of 10
classes (corresponding to the 10 digits) with cross-entropy loss.

• Figure 5a illustrates the prediction accuracies of each algorithm as a function of the
privacy budget ε. We can see that our model pCDBN outperforms the pSGD in terms of
prediction accuracies with small values of the privacy budget ε, i.e., ε ≤ 1.0. This is a
substantial result, since smaller values of ε enforce a stronger privacy guarantee of the model.
With higher values of ε (>1.0), i.e., small injected noise, the two models converge to similar
prediction accuracies.

• Figure 5b demonstrates the benefit of being independent of the number of training
epochs in consuming the privacy budget of our mechanism. In this experiment, ε is set
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Fig. 5 Accuracy for different noise levels on the MNIST dataset

Fig. 6 The impact of different
values of L on the MNIST dataset

to 0.5, i.e., large injected noise. The pSGD achieves higher prediction accuracies after
using a small number of training epochs, i.e., 88.75% after 18 epochs, compared with the
pCDBN. More epochs cannot be used to train the pSGD, since it will violate the privacy
protection guarantee. Meanwhile, our model, the pCDBN, can be trained with an unlim-
ited number of epochs. After a certain number of training epochs, i.e., 162 epochs, the
pCDBN outperforms the pSGD in terms of prediction accuracy, with 91.71% compared with
88.75%.

Our experimental results clearly show the ability to work with large-scale datasets using
our mechanism. In addition, it is significant to be independent of the number of training
epochs in consuming privacy budget ε. Our mechanism is the first of its kind offering this
distinctive ability.

• The impact of polynomial degree L Figure 6 shows the prediction accuracies of our
model by using different values of L on the MNIST dataset (Lecun et al. 1998). After a
certain number of training epochs, it is clear that the impact of L is not significant when L
is larger than or equal to 3. In fact, the models with L ≥ 3 converge to similar prediction
accuracies after 162 training epochs. The difference is notable with small numbers of training
epochs. With L larger than 7, the prediction accuracies are very much the same. Therefore
we did not show them in Fig. 6. Our observation can be used as a gold standard in selecting
L when approximating energy functions based on Chebyshev polynomials.

•Computational performanceGiven theMNISTdataset, it takes an averageof 761 seconds
to train our model, after 162 epochs, by using a GPU (NVIDIA GTX TITANX, 12GB RAM
with 3072 CUDA cores). Meanwhile, training the pSGD is faster than our model, since only
a small number of training epochs is needed to train the pSGD. On average, training the
pSGD takes 86s, after 18 training epochs. For the YesiWell dataset, training our pCDBN
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model takes an average of 2910s, after 600 epochs, compared with 2141s of the dPAH
model.

5 Conclusions and discussions

In this paper, we propose a novel framework for developing convolutional deep belief net-
works under differential privacy. Our approach conducts both sensitivity analysis and noise
insertion on the energy-based objective functions. Distinctive characteristics offered by our
model include: (1) It is totally independent of the number of training epochs in consuming
privacy budget; (2) It has the potential to be applied in typical energy-based deep neural
networks; (3) Non-linear activation functions, which are continuously differentiable [Stone-
Weierstrass Theorem (Rudin 1976)] and satisfy the Riemann-integrable condition, e.g., tanh,
arctan, sigmoid, softsign, sinusoid, sinc, Gaussian, etc. (Wikipedia 2016), can be applied;
and (4) It has the ability to work with large-scale datasets. With these fundamental abilities,
our framework could significantly improve the applicability of differential privacy preserva-
tion in deep learning. To illustrate the effectiveness of our framework, we propose a novel
model based on our private convolutional deep belief network (pCDBN), for human behavior
modeling. Experimental evaluations on a health social network, YesiWell data, and a hand-
writing digit dataset, MNIST data, validate our theoretical results and the effectiveness of
our approach.

In futurework, it isworthwhile to study howwemight be able to extract private information
fromdeep neural networks.Wewill also examine potential approaches to preserve differential
privacy in more complex deep learning models, such as Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber 1997).Another open direction is how to adapt our framework to
multiparty computational settings, in which multiple parties can jointly train a deep learning
model under differential privacy. Innovative multiparty computational protocols for deep
learning under differential privacy must have the ability to work with large-scale datasets.

In principle, our mechanism can be applied on rectified linear units (ReLUs) (Glorot
et al. 2011) and on parametric rectified linear units (PReLUs) (He et al. 2015). The main
difference is that we do not need to approximate the energy function. This is because the
energy function is a polynomial function when applying ReLU units. However, we need to
add a local response normalization (LRN) layer (Krizhevsky et al. 2012) to bound the values
of hidden neurons. This is a common stepwhen dealingwithReLUunits. The implementation
of this layer and ReLU units under differential privacy is an exciting opportunity for other
researchers in future work.

Another challenging problem is identifying the exact risk of re-identification/re-
construction of the data under differential privacy. In Lee and Clifton (2012), the authors
proposed differential identifiability to link individual identifiability to ε differential privacy.
However, this is still a non-trivial question.A fancy solution is to design innovative approaches
to reconstruct original models from noisy deep neural networks. Then, one could use the orig-
inal models to infer sensitive information in the training data. However, how to reconstruct
the original models from differentially private deep neural networks is an open question. Of
course, it is very challenging and will require a significant effort of the whole community to
answer.
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