
Article

Journal of Information Science

2016, Vol. 42(6) 798–820

� The Author(s) 2015

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0165551515610989

jis.sagepub.com

A hybrid ontology-based information
extraction system

Fernando Gutierrez
University of Oregon, USA

Dejing Dou
University of Oregon, USA

Stephen Fickas
University of Oregon, USA

Daya Wimalasuriya
University of Moratuwa, Sri Lanka

Hui Zong
University of Virginia, USA

Abstract
Information Extraction is the process of automatically obtaining knowledge from plain text. Because of the ambiguity of written natural
language, Information Extraction is a difficult task. Ontology-based Information Extraction (OBIE) reduces this complexity by including
contextual information in the form of a domain ontology. The ontology provides guidance to the extraction process by providing con-
cepts and relationships about the domain. However, OBIE systems have not been widely adopted because of the difficulties in deploy-
ment and maintenance. The Ontology-based Components for Information Extraction (OBCIE) architecture has been proposed as a
form to encourage the adoption of OBIE by promoting reusability through modularity. In this paper, we propose two orthogonal exten-
sions to OBCIE that allow the construction of hybrid OBIE systems with higher extraction accuracy and a new functionality. The first
extension utilizes OBCIE modularity to integrate different types of implementation into one extraction system, producing a more accu-
rate extraction. For each concept or relationship in the ontology, we can select the best implementation for extraction, or we can
combine both implementations under an ensemble learning schema. The second extension is a novel ontology-based error detection
mechanism. Following a heuristic approach, we can identify sentences that are logically inconsistent with the domain ontology. Because
the implementation strategy for the extraction of a concept is independent of the functionality of the extraction, we can design a hybrid
OBIE system with concepts utilizing different implementation strategies for extracting correct or incorrect sentences. Our evaluation
shows that, in the implementation extension, our proposed method is more accurate in terms of correctness and completeness of the
extraction. Moreover, our error detection method can identify incorrect statements with a high accuracy.

Keywords
Ensemble learning; error detection; information extraction; machine learning; ontology

Corresponding author:

Fernando Gutierrez, Department of Computer and Information Science, University of Oregon, 1585 E 13th Ave, Eugene, OR 97403, USA.

Email: fernando@cs.uoregon.edu



1. Introduction

Information Extraction (IE) is the process of automatically transforming natural language text into structured information

(e.g. relational databases) [1], by identifying semantic relevant elements such as entities and relationships. However,

because of the inherent ambiguity of natural language (e.g. words have multiple meanings), the process of extracting

information from text is far from trivial.

Ontology-based Information Extraction (OBIE), a subfield of IE, mitigates this difficulty by integrating domain

knowledge using a domain ontology. An ontology is an explicit specification of a shared conceptualization that repre-

sents knowledge through concepts, relationships and individuals [2]. These concepts and properties guide the extraction

process in OBIE [3, 4]. However, OBIE can introduce new problems to the extraction process. Creating and maintaining

an ontology used by an OBIE system are rather complex tasks. These difficulties can be mitigated by utilizing domain

ontologies offered by a third party (e.g. Bioportal) [5, 6], although some cases require application-specific ontologies

[7]. On the other hand, because OBIE systems are created with a specific ontology in mind, they need to be redesigned

when used under a different ontology. These obstacles translate into costly deployment and maintenance of OBIE sys-

tems, limiting their adoption.

As a way to promote the adoption of OBIE, Wimalasuriya and Dou have proposed the Ontology-based Components

for Information Extraction (OBCIE) architecture [8]. OBCIE aims to encourage re-usability by modelling the compo-

nents of the IE system with as much modularity as possible. This modularity is achieved through the separation between

domain-dependent components (i.e. information extractors) and domain-independent components (i.e. IE platform com-

ponents). Information extractors are the IE components that perform the extraction task. Each information extractor

encodes a specific component of the ontology (e.g. concept), making extractions based only on this ontological element.

On the other hand, the IE platform components are the elements of the system that implement IE techniques, which are

domain and corpus independent. These techniques can be as simple as preprocessing modules (e.g. removing special

characters from the text) to complex ontology learning components (i.e. determining hierarchy and relationships between

extracted elements).

In this paper, we present two orthogonal extensions to OBCIE. We first extend OBCIE by considering the implemen-

tation strategy as a defining characteristic of an information extractor. Independent of the ontological component it repre-

sents, an information extractor can be implemented as an extraction rule or by applying machine learning methods [8].

Based on regular expressions, extraction rules capture information by identifying specific elements in a text. They can

be based on lexical elements (i.e. keywords), syntactical elements (e.g. noun phrases), or both. On the other hand, infor-

mation extractors can also be based on machine learning methods such as Naive Bayes [9] and Conditional Random

Fields [10]. Under this approach, the information extraction process is transformed into a supervised learning task where

classification methods and probabilistic models try to identify which elements of a sentence are part of the sought infor-

mation [8]. Although for any given implementation strategy, there are concepts that are more difficult to extract than oth-

ers, most IE systems only consider one type of implementation. With this in mind, we have proposed a hybrid OBIE

system, which incorporates both extraction rules and machine learning-based information extractors. We have found that

our combination of information extractors that have different implementations can obtain a higher precision and recall

than using only one type of implementation. In order to obtain the best performance from this hybrid implementation

approach, we also propose two types of strategies for combining information extractors: selection and integration. While

the selection strategy identifies the set of information extractors that commits the minimal amount of extraction errors,

the integration strategy combines the outputs of different implementations to produce a more accurate extraction. For

each one of these strategies, we propose a specific method that focuses on obtaining the highest accuracy. For the selec-

tion strategy, we follow an error minimization approach in order to obtain the subset of information extractors that per-

form the most accurate extraction. In other words, for each concept and functionality, we select the implementation that

commits fewer extraction errors. In the case of the integration strategy, we propose to integrate the outputs of both imple-

mentations under the ensemble learning schema of stacking. A top-level classifier is trained with the outputs produced

by both implementations of information extractors.

The second extension we propose to the OBCIE architecture is error detection. Although traditional IE makes the

assumption that the content of the text is correct, when we consider domains such as the Internet, where there are no

guarantees about the correctness of the content, this assumption does not hold. We have extended the OBCIE architec-

ture to detect errors in text. Despite text being a rich source of information (e.g. to identify contradicting statements [11,

12]), text itself is not sufficient to determine the correctness of its content. In order to overcome this limitation, we have

proposed an ontology-based mechanism to determine the correctness of document content. Based on ontology debug-

ging, which is the area of research that identifies the origin of inconsistency in an ontology [13], and ontological con-

straints (e.g. disjointness between concepts), we have proposed an approach that creates axioms that are inconsistent

Gutierrez et al. 799

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



with respect to the domain ontology. These domain-inconsistent axioms are encoded as information extractors that will

identify incorrect text. This leads to information extractors being dependent not only on the ontological element they

represent, but also on the type of extraction they can perform (i.e. to extract correct or incorrect statements).

Our proposed extensions to OBCIE are based on a new expanded definition of information extractors. We propose

that an information extractor encodes a specific ontological element, for a defined functionality, under a specific imple-

mentation strategy. In OBCIE, information extractors are self-contained so that the extraction process can be modified

with minimal impact on the OBIE system. Our new definition of information extractor needs to keep its modularity to

apply to OBCIE. These orthogonal dimensions can be specified for each information extractor independently from the

rest. Information extractors in OBCIE contain implementation elements in the extractor by default. On the other hand,

the functionality of an information extractor refers to the logical relation between the extractor and the domain, and not

between information extractors. With this new characterization, we can have information extractors of different natures

in the same OBIE system (i.e. a hybrid OBIE), which allows our proposed extensions to be integrated to OBCIE.

We have evaluated correctness (i.e. precision) and completeness (i.e. recall) for both selection and integration strate-

gies in order to determine their performance impact in an OBIE system. We have used a synthetic data set generated

from real students’ answers to a cell biology final exam question. We have compared our method against a single imple-

mentation IE and with information extractors with different implementation that do not have any combination strategy

(i.e. hybrid OBIE) [14]. Our evaluation experiments show that our proposed strategies have a higher precision than the

methods with which we compared them. In the case of recall, both proposed strategies outperform the single- and the

multiple-implementations IE in most cases. Integration strategy seems to be more accurate when considering extraction

functionality on correct statements, while the selection strategy performs slightly better when extracting from incorrect

statements. In any case, extracting from incorrect statements is prone to more errors than when extracting from correct

statements.

The remainder of this paper is organized as follows. We provide a brief review of OBCIE in Section 2. We introduce

some related works on implementations of IE and error detection in text in Section 3. In Section 4, we present our pro-

posed extensions to OBCIE architecture. We report our experimental setting in Section 5 and the results in Section 6. We

conclude the paper by summarizing our contributions and discussing the future work in Section 7.

2. Background

2.1. Ontology-based Information Extraction

As mentioned, OBIE uses a formal representation of the domain (i.e. ontology) to guide the extraction process [3].

Because of this guidance in the extraction process, OBIE systems have mostly been implemented following a supervised

approach [8], that is, labelled data for machine learning or handcrafted patterns, in the case of extraction rules. Given

the manual labelling of data and the handcrafted extraction patterns, OBIE can produce very accurate extractions. Some

OBIE systems follow a semi-supervised approach to data labelling, where known relationships from a knowledge base

help determine training data [15–18].

OBIE allows the possibility of Semantic Annotation because it can connect text with a domain ontology through the

extraction process. Semantic Annotation adds meta-data information (e.g. concepts) to text [4]. Nebhi [19] proposed an

OBIE system for disambiguating Twitter messages. By combining concepts from Freebase and extraction rules based on

dependency trees, Nebhi’s approach determines the meaning (and context) of entities mentioned in the messages. Nebhi

[20] improved the accuracy of the disambiguation process by replacing the pattern-based approach with a classifier, using

Support Vector Machine.

2.2. Ontology-based Components for Information Extraction

As mentioned, OBCIE architecture was proposed to promote the adoption of OBIE systems by reducing the costs of

deployment and management through modularity. In OBCIE, an IE system is constituted by a set of modules that per-

form specific tasks. The modules can be grouped as domain dependent (i.e. information extractors) and domain indepen-

dent (i.e. IE platform). This separation in OBCIE promotes re-usability in two forms: by allowing an information

extractor to be used (and re-used) by any IE platform, and by allowing an IE platform to use any set of information

extractors it requires.

In order to provide a clearer understanding of our proposed strategies, in the following section we provide a brief

introduction to the main OBCIE components that are involved in the extraction process (Figure 1), which interact with

the elements of our hybrid approach.

Gutierrez et al. 800

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



2.2.1. Ontology. As previously mentioned, an ontology is an explicit specification of a shared conceptualization [2].

Through concepts, relationships, axiomatic constraints and individuals, an ontology provides a formal representation of

domain knowledge. In OBCIE, the ontology is also a module that can be reused. Therefore, for any given domain where

the OBCIE platform is going to be deployed, if there are available ontologies, they can be used for the OBIE process.

For example, in the biomedical domain there are publicly accessible ontologies. Through BioPortal [21] at the National

Center of Biomedical Ontology, it is possible to access more than 300 ontologies (e.g. BioModels Ontology, CRISP).

2.2.2. Preprocessors. Preprocessors are the modules that perform modifications to the text to facilitate and improve the

extraction process. The modifications can filter unwanted elements from the text (e.g. stopword removal), enhance the

text with new information (e.g. as part-of-speech tagging) or transform the representation of the text (e.g. vector repre-

sentation). These modifications are mostly independent of each other, and they are usually applied in a sequence. For

example, it is very common that before a text is transformed into a vector representation, stopwords are filtered and part-

of-speech tagging is applied.

In general, preprocessors are independent of the domain and the information extractors because they remove noisy

features and enhance the text’s representation. However, there are preprocessing tasks that are developed for a specific

domain. For example, in some domains, concepts might be referred to by their name and their acronym (e.g. ETC and

electron transport chain). To avoid multiple interpretations between different representations of the same concept, a pre-

processor would replace all representations of a concept into a single one (e.g. ETC, ETCs and electron transport chain

are changed to ETC). It is also the case that some information extractors have specific requirements. For example, a

machine learning-based information extractor will very likely require a vector representation of the text, such as term

frequency–inverse document frequency. In some cases, the information extractor might require a vector representation

that includes alternative features, such as the position of the words in the sentence [15].

2.2.3. Information extractors. Information extractors are the main components of the OBIE system since they perform the

extraction from the text. Each information extractor is defined by an ontological element, to which they are bound [8,

16]. An information extractor identifies the textual representation of a specific ontological element. In other words, for

each concept (or property) of the ontology we intend to extract from the text, we need to define a specific information

extractor. More formally, let us consider the sentence xs � X�, where X� corresponds to a set of sentences from the

domain �. Let us also consider a concept c from the ontology O� of the same domain �. An information extractor ec

will determine the connection between sentence xs and concept c by resolving the sentence’s semantic content yc
s in the

form:

ec xsð Þ= yc
s ð1Þ

Depending on how ec is specified, yc
s can vary. In the most simple case, yc

s ∈ 0, 1f g tells us if sentence xs contains a ref-

erence to concepts c (i.e. yc
s = 1), or if it does not contain the reference (i.e. yc

s = 0). It is also possible that yc
s ⊆ xs, mean-

ing that there is a specific part of the sentence that is referring to concept c. This output is useful when performing tasks

such as semantic annotation over the text. Another alternative is for the information extractor ec to produce a triple as

output. In this case, yc
s =Rc a, bð Þ, where Rc represents a property of c (i.e. relationship), with a as domain of Rc (and

also as an instance of c), and b as range. This output is useful when trying to populate a knowledge base with informa-

tion from text.

Figure 1. Ontology-based Components for Information Extraction.

Gutierrez et al. 801

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



Independent of the ontological component it represents, an information extractor can be implemented as an extraction

rule or by applying machine learning methods [8]. Based on regular expressions, extraction rules capture information

by identifying specific elements in the text based on lexical elements (i.e. keywords), syntactical elements (e.g. noun

phrases) or both. For example, it is very likely that, in a sentence, the word followed by ‘Corporation’ is the name of a

corporation. Extraction rules are, in most cases, simple to design, and they have relatively good performance. However,

since they are based on specific cues crafted manually, extraction rules are difficult to generalize [22, 23]. Information

extractors can also be based on machine learning methods, such as Naive Bayes or Conditional Random Fields. The

information extraction process is transformed into a supervised learning task, where classification methods and probabil-

istic models try to identify which elements of a sentence are part of the sought information [8].

In OBCIE, an information extractor component must contain most (if not all) of the elements that are required for it

to be used by the system. For example, a rule-based extractor component has defined the extraction patterns it uses, plus

gazetteer lists that are associated with that component. For a machine learning-based extractor, it will have the set of fea-

tures (e.g. keywords) needed for the extraction. This approach (i.e. self-contained extractor) allows us to reconfigure the

OBIE system, in terms of extraction, with minimal change to the whole system. We can remove or add extractors with-

out affecting the rest of the extractors or the domain-independent components.

2.2.4. Aggregators. In most cases, the outputs of the information extractors of an OBIE system correspond to the final

extraction output. However, there are cases where the combination of extracted outputs can improve the extraction pro-

cess. For example, Wimalasuriya and Dou [6] have proposed a mechanism to do OBIE by using two or more ontologies

of the same domain. By using mappings between concepts from different ontologies, we can determine which informa-

tion extractors to combine (through set operators). Because two ontologies, in most cases, can offer different interpreta-

tions of the same domain, Wimalasuriya and Dou’s approach can produce a more semantically complete extraction.

OBCIE architecture has included this combination approach as an aggregation module [8].

3. Related works

We extend OBCIE through the redefinition of information extractor. We have realized that an information extractor is

characterized not only by the ontological element it encodes (e.g. concept) but also by the implementation strategy it

uses. In most cases, the selection of an implementation strategy in OBIE is a guideline that is applied to all information

extractors. We argue that by considering multiple implementations for an information extractor, we can improve the per-

formance of the OBIE system. This improvement can be obtained through the selection of the most accurate implemen-

tation or by combining the output of different implementations. An information extractor is also defined by the function

it performs: extracting correct or incorrect information (i.e. error detection in text) [7]. The following reviews the most

relevant research according to implementation and functionality of an information extractor.

3.1. Implementation of information extractors

In general, information extractors can be implemented under two main strategies [2, 8]: as extraction rules or based on

machine learning methods.

3.1.1. Extraction rules. Extraction rules capture information by identifying specific syntactic and lexical elements in a

text, such as keywords, part-of-speech labels and other syntactic structures. Because they are handcrafted from known

examples, extraction rules can be very accurate. However, their extraction process can be incomplete (i.e. it can over-

look relevant entities in the text) as a result of not generalizing well to unseen examples. Although extraction rules can

be defined following regular expression, languages like SystemT’s Annotation Query Language (AQL) [24] and GATE’s

Java Annotation Patterns Engine (JAPE) [25] have been created to specify extraction patterns. These specially designed

languages allow the creation of complex extraction rules through the manipulation of annotations.

One of the most well-known sets of extraction rules is Hearst’s extraction patterns [26]. Hearst has identified a small

set of specific linguistic structures (combination of lexical and syntactical elements) that represent a hyponymy relation-

ship between two or more entities. A hyponymy relation between two entities NP0 and NP1 refers to membership rela-

tions in the form NP0 is a (kind of) NP1. For example, if the extraction pattern

NP0 such as NP1, NP2, . . . , andjorð ÞNPn½ � ð2Þ

Gutierrez et al. 802

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



is applied to the sentence ‘Cetaceans such as whales and dolphins, are marine mammals’, it leads to the extraction of the

relations hyponym(whales, cetaceans) and hyponym(dolphins, cetaceans).

Under the label Open Information Extraction, which is an unsupervised and domain-independent IE, systems like

KnowItAll [27, 28] and TextRunner [10] have extended Hearst’s original set of extraction patterns to consider other types

of relations. These extensions come from generalizing lexical elements in the extraction patterns to syntactical elements,

such as in the case of the extraction rule NP0 Verb NP1. In their case study, Banko and Etzioni [10] found that this

extended set of extraction rules can cover up to 95% of all binary relationships from their text corpus sample. Although

TextRunner can extract a large portion of the relationships that are presented in the text, it can produce an erroneous

extraction by not identifying correctly the entities that are part of the relation. To reduce these erroneous extractions,

ReVerb [29] proposes a refinement of the extraction patterns by better defining the syntactical structure that represents

the relationship. This refinement can significantly reduce the number of erroneous extractions, allowing ReVerb to pro-

duce more accurate extractions.

While the set of general extraction rules used by previously mentioned systems should allow the extraction of most

types of relationships (from 85% [24] to 95% [10] of all binary relationships), it is possible to extend it by discovering

more robust extraction models and patterns. From the initial extraction, it is possible to extend the extraction strategy

following an approach similar to a semi-supervised extraction. The initial set of extracted relations is used to learn new

extraction patterns [26, 30] or an extraction model [10]. In the case of OLLIE [30], the new extraction patterns are tem-

plates. From a set of high confidence relations extracted by ReVerb, OLLIE analyses the dependency of the extractions

to discover more general patterns. By including dependency parsing, OLLIE can manage complex relationships, defined

by verb phrase structure, between complex entities. This approach leads to higher coverage of the extraction patterns

without losing accuracy.

Although most of the previously mentioned systems are domain-independent IE, extraction rules can easily be adapted

for OBIE. This adaptation can be obtained by specializing the extraction rule. For example, if, as in the aforementioned

example of Hearst’s extraction patterns, we replace NP0 with Cetaceans, the extraction rule will identify the relations

hyponym(whales, cetaceans) and hyponym(dolphins, cetaceans). However, no relationships will be identified if this new

extraction rule is applied to the sentence ‘Motor vehicles such as automobiles, and motorcycles’. If we add the fact that

hyponymy is roughly equivalent to the ontological relation between a concept and its super concept, the new rule identi-

fies only subclasses of the concept cetaceans.

3.1.2. Machine learning-based extraction. An information extractor can also be based on machine learning methods. Under

this approach, classification methods and probabilistic models try to identify which elements of a sentence are part of

the sought-after information. However, machine learning techniques are data driven, so the performance of these meth-

ods depends on the quality and quantity of the data used for the training. This training data can come from instances in a

knowledge base or from labelled sentences.

Machine learning methods can use, as training data, tuples from a knowledge base, such as FreeBase [31] or

Wikipedia’s infoboxes [15, 16]. Under this approach, we can find systems such as Snowball [17], Distant Supervision

(DS) [31] and the system by Snow et al. [32]. This knowledge base approach intends to identify sentences that make ref-

erence to elements of the knowledge base (Figure 2). If a sentence contains a pair of entities that are known to be related

(i.e. in a tuple of a knowledge base), the sentence most likely represents the relationship. This relatedness assumption

does not always hold, since it is possible for a pair of entities to have sentences representing different relationships [28].

However, it is expected that if there is a group of sentences that have the same pair of entities, then it is very likely that

they represent the same relationship. Before using the sentences for training by any machine learning methods, they are

generalized from their textual form into a set of linguistic features, which are presented as a vector. Most systems con-

sider features such as part-of-speech [15, 16] and syntactic dependencies [18, 31]. Other types of features used by these

systems include named entities [17, 18, 31], words in the sentence [15, 16, 32] and in-sentence word location (e.g. mid-

dle of the sentence) [15, 16]. Usually, an IE system will use a combination of these features, for example, Kylin uses

part-of-speech and in-sentence location. Once the selected sentences have been transformed, the machine learning

method is trained with the transformed sentences. In the case of Snowball, this task is mostly reduced to evaluating the

set of extraction patterns to determine the best set of extractors for the example sentences. The evaluation is done by

determining a matching score between a pattern and the set of example sentences. For Kylin [15, 16] and DS [31], this

task consists of applying a machine learning technique. Kylin uses Conditional Random Fields to learn a sequence model

from the sentence. Kylin uses a large set of features, such as the actual words from the sentence, part-of-speech, whether

the word is in the first or second half of the sentence, and also the output of the sentence and document classifiers. In

the case of DS, the system uses a multi-class logistic classifier. The output is a relation name and a confidence score.

Gutierrez et al. 803

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



The training data set for a machine learning-based information extractor can also come from labelled sentences [7, 8].

In essence, this approach is very similar to the one used by systems that are based on knowledge instances. Sentences are

transformed by generalizing features and selecting the most relevant. Then the entities are extracted following a two-

phase classification approach. The first classifier determines if a given sentence contains the instances sought. If the sen-

tence does contain the relational instance, then it is passed to a sequence model to extract the relationship. Our machine

learning-based information extractors also follow this approach [7]. Using labelled sentences as training data differs,

however, from using knowledge base training sets by removing the assumption that all sentences that mention the same

entities represent the same relationship. In general, the removal of this assumption can lead to more accurate information

extractors. By not having this assumption, sentences that might have been considered positive examples for the informa-

tion extractor are no longer included, or they are used as negative examples.

3.1.3. Hybrid implementations of IE. As mentioned, for most IE systems the selection of an implementation strategy is a

design guideline that is extended to all information extractors of the system. However, there are some IE systems that will

combine both implementation strategies into a hybrid extraction mechanism. A hybrid approach to IE is to use rule-based

extraction to generate training sets for a machine learning-based extractor. TextRunner follows this approach by using a

small set of rules, similar to Hearst extraction patterns [26], to generate a labelled set. A Naive Bayes extractor [9] and

Conditional Random Fields extractor [10] use this labelled data for training the actual extractor, which is applied to the

text. The system described by Yakushiji et al. [33] follows a similar approach, with dependency-based extraction rules to

capture instances of protein interaction. The instances are later used to train a Support Vector Machine classifier.

Another hybrid approach to IE is to evaluate the quality of the extractors. Systems such as OLLIE [29] and Snowball

[17] use a confidence measure to promote rule-based extractors that are more accurate. Both systems generate large sets

of rule-based extractors based on in text elements such as named entities and dependency trees. While Snowball uses a

set of weights to determine the overall confidence of each rule-based extractor, OLLIE associates a probability to each

extractor that represents its precision (i.e. correctness of the extraction). If an extractor has a high confidence value, then

it is included into the system.

Although these hybrid methods might seem similar to our proposed approach because they incorporate both types of

implementation, they differ in how the extraction system applies the implementations. As mentioned, these systems use

the implementation in a sequential fashion, that is, a rule-based extractor provides a training set for the machine learning

method, which then is finally applied to the text. On the other hand, our hybrid method simultaneously (or, in parallel)

extracts information with both types of implementations.

3.2. Error detection in text

Research in IE has mainly been used for data documents with curated content (i.e. peer-reviewed scientific documents)

[4, 26, 34]. This approach has led to the assumption that the information contained in the documents is correct. In other

words, the information obtained from an information extractor is semantically correct. However, even in these specific

cases of curated documents, correctness cannot be guaranteed [35, 36]. Considering that current research in IE is moving

towards domains where quality of content is not controllable, such as the Internet [10, 26, 37], we need to consider the

presence of incorrect statements in our data set.

By incorrect statement, we refer to a natural language statement that is either false or contradicts the domain knowl-

edge. Most efforts toward determining semantic errors in text (i.e. error extraction functionality) have indirectly

addressed the problem as a divergence from correctness, or as the presence of a contradiction.

Figure 2. Examples from a knowledge base or a database (1) are used to gather sentences (2) representing a specific relationship.
These sentences are then transformed into some general representation (3) and used as training for a machine learning method.

Gutierrez et al. 804

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



3.2.1. Error as divergence. The evaluation of the correctness of a text is the main goal for the education-related research

area of automatic text evaluation. Because summaries and essays enhance long-term retention of information [38], it is

an ideal tool when compared with other evaluation mechanisms (e.g. fill-in the blanks) [39]. If performed manually, the

feedback produced by the text evaluation process would take too long to reach the student. This delay in feedback signif-

icantly reduces the effectiveness of using summaries and essays as an evaluation tool. Advancements in Natural

Language Processing (NLP) have lead to three main approaches in automatic text grading. The first approach is based

on the identification of coincident words and n-grams [40]. n-Gram co-occurrence methods have been shown to be ade-

quate for automatic text grading, especially when evaluating characteristics such as the fluency of the text. The second

approach uses NLP techniques, with the most popular being Latent Semantic Analysis (LSA) [41, 42]. LSA treats the

text as a matrix of word frequencies and applies Singular Value Decomposition to the matrix to find an underlying

semantic space. Based on the distance between the vector representations of the student’s document and a gold standard

(i.e. correct text) in this semantic space, the similarity of the documents is estimated, which can then be transformed into

a grade. LSA has been shown to be quite accurate when compared with human grading. Finally, the third approach is

based on Information Extraction (IE) [43, 44], which intends to capture the underlying semantics of the text. Because

automatic text grading needs to determine the meaning (i.e. semantics) behind the student’s writing, IE is a natural

choice for analysing text. It uses NLP tools to identify relevant semantic elements from the text, such as concepts, indi-

viduals and relationships. These semantic elements can provide a structural representation of the information in the text.

All of the previously mentioned methods share a common characteristic: they do not have an effective way of deter-

mining what is incorrect in a text. These methods can only determine what is less correct, based on how dissimilar they

are to the gold standard or based on missing elements. Methods such as n-gram co-occurrence and IE-based can identify

specific elements in the text from previously known patterns (e.g. n-gram methods) or expected domain elements (e.g. IE

regular expression patterns). Therefore, to find incorrect text, these methods would require a reference of incorrectness,

such as text with incorrect statements or incorrect facts of domain knowledge. However, because the incorrectness of a

statement can be originated by many different factors, this reference of incorrectness would need to be very large to pro-

vide useful coverage of content, which would be impractical. In the case of LSA-based methods, determining if a text is

incorrect is even more difficult because the correctness of the text is measured regarding its similarity to a gold standard.

It is possible to argue that a low similarity is an indication of incorrectness. However, even a correct text can obtain a

low similarity with respect to the gold standard if it is written in an unexpected fashion or contains more information

[45].

3.2.2. Error as contradiction. Another alternative to capture incorrectness in text is by identifying logical contradiction.

Since we have defined incorrect text as a false or contradicting statement, it is reasonable to consider logic as a mechan-

ism to identify it. Through logic, the truth value of a statement (i.e. a statement is true or false) can be determined from

a set of facts. Logic consequence in text is studied by textual entailment, which intends to determine if a body of text is

a logical consequence of another body of text [46]. However, this research area is mostly focused on determining logical

consequence between a pair of statements [45] rather than the truth value of a statement.

Through logic, we can also determine if a statement is a contradiction. Contradiction in text is studied by

Contradiction detection [11], which is a special case of textual entailment. Contradiction detection tries to identify pairs

of sentences that are very unlikely to be true at the same time. It can use syntactic and lexical elements of the text [11],

or background statistical knowledge [12] to determine if a pair of sentences contradicts each other. However, with only

information from the text itself to support the validity of the pair of contradicting statements, contradiction detection

cannot determine with certainty which of the statements is false.

4. Methodology

In this paper, we present two extensions to the OBCIE architecture that lead to a hybrid approach to the extraction pro-

cess. The first extension increments the accuracy of the OBIE process by combining information extractors with different

implementation strategies. The second extension adds the functionality to identify domain-incorrect elements in the text.

We use a heuristic approach that generates domain inconsistent statements that we then use to create information extrac-

tors that can identify incorrect text.

In order to integrate these extensions into the OBCIE architecture, we offer a new characterization of information

extractors. Traditionally, an information extractor has been defined by the concept or property from the ontology [8, 16]

it extracts. We have extended the definition of information extractors by considering two new fundamental and

Gutierrez et al. 805

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



orthogonal aspects (i.e. dimensions): function performed by the information extractor [7] and implementation of the

information extractor [14]:

e
cf
i (xs) ð3Þ

Each information extractor (e) encodes an ontological concept or property (c), following a correct or incorrect function-

ality (f), under a rule-based or machine learning-based implementation (i). These new dimensions (functionality and

implementation) allow us to include information extractors of different concepts, using different implementations and

performing different functionalities, into the same extraction system, that is, a hybrid OBIE system.

The original definition of information extractor included requirements to be self-contained and to have platform inde-

pendence. This new characterization of an information extractor does not conflict with those requirements. In terms of

platform independence, the OBCIE architecture considers domain-independent elements, such as preprocessors, as per-

demand function. If, for example, an information extractor requires part-of-speech labels, the platform will add them to

(or with) the text. In terms of self-containment, this new characterization maintains the information extractors’ modular-

ity. As mentioned, information extractors in OBCIE had implementation elements already contained in the extractor, as

a mechanism to support the modular approach of the architecture. Our new definition simply makes this aspect visible

to the system at any time. In the case of functionality, the correctness of a statement is based on its logical relation (e.g.

logic contradiction) with the domain and is not affected by other statements. On the other hand, this new characterization

allows relations to be established between information extractors. For a concept and functionality, there is one informa-

tion extractor based on machine learning, and another based on extraction rules.

4.1. Combining implementations

In most IE systems, the selection of a type of implementation for the extraction process is made by considering the guar-

antees the implementation can offer in terms of accuracy [30], and the features and restrictions the extraction process as

whole might have [15, 17]. From the information extractor e
cf
i (xs), we expect to obtain the semantic content yc

s by follow-

ing implementation strategy i, which can be extraction rules or machine learning. Once the selection is made, it is applied

to the complete IE process. However, any real implementation of ec
i can only offer an approximation of the actual seman-

tic content of the sentence:

e
cf
i (xs)≈ ycf

s ð4Þ

Further, as can be seen from the experimental results of different IE systems, one implementation strategy cannot reach

the same level of accuracy across all extracted ontological elements [7, 8, 15–17, 47]. This behaviour might be originated

when some fundamental characteristic of an implementation strategy collides with the textual representation of some

ontological elements. Extraction rules are built on patterns observed from a set of examples. In some cases, the examples

lead to tight patterns that allow very little error in the extraction process. However, the high specificity of extraction

rules does not permit many variations in the instance to be extracted, and it can lead to an incomplete extraction. If an

unobserved instance diverges from the set used for the construction of the extraction rule, it is possible that it will not be

extracted. In other cases, if examples differ significantly from each other, it leads to error-prone patterns or multiple

highly specific patterns. On the other hand, machine learning-based information extractors learn a model that should fit

the training data in a fashion that can guarantee some flexibility to manage unseen instances. This flexibility produces an

almost complete extraction process, since the extractor can identify instances that have not been seen. However, in a sim-

ilar way as extraction rules, this flexibility can also be the weakness of the machine learning-based extraction. Because

the model is more general than the instances observed in the training set, it is possible that the method can extract unre-

lated elements.

Based on the OBCIE architecture, we have designed and included into an OBIE system information extractors with

different types of implementation, that is, a hybrid OBIE. We explore the impact that a hybrid OBIE can have when

extracting information as part of an evaluation system [7]. We found that improvements were observable even when

choosing an arbitrary configuration, for example, for extracting n+m concepts, we use n machine learning-based extrac-

tors and m extraction rules. Some of these configurations can produce more accurate extraction than when one imple-

mentation approach is used for all information extractors. However, not all configurations lead to improvement. Some

configurations can also perform worse than the single implementation approach, for example, selecting the worst imple-

mentation strategy for each concept [7].

Gutierrez et al. 806

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



To take full advantage of this hybrid implementation approach, we propose two types of strategies that can determine

which information extractors are used: selection and integration. The first strategy intends to determine the most accurate

implementation of each information extractor, while the second strategy combines the outputs of the implementations to

improve accuracy.

4.1.1. Selection strategy. The main goal behind the selection strategy is to determine the best subset of information extrac-

tors of the OBIE system that can achieve highest accuracy. In other words, we want to define a selection strategy that

permits us to identify the information extractor that possesses the most accurate implementation, for each concept and

functionality.

At the beginning of Section 4.1, we have defined the output of an information extractor as an approximation to the

semantic content ycf
s of sentence xs with respect to concept c and functionality f. An implementation e

cf
i (xs) will produce

an accurate extraction if its difference from the actual semantic content is minimal. In other words, the difference

between the approximation offered by the implementation i and the semantic content of the sentence xs is an indication

of the error level of the implementation. Because we are interested in estimating the overall error of an implementation

for each concept and functionality, we estimate the error across all sentences as:

E
cf
i Sð Þ=

X
s∈ S

e
cf
i xsð Þ � ycf

s

���
��� ð5Þ

where E is the accumulated error over the set of sentences S, of implementation i, and concept c of the domain ontology

O�. We will consider the output of the information extraction to be e
cf
i xsð Þ∈ 0, 1f g, and the semantic content of the sen-

tence to be ycf
s ∈ 0, 1f g. So, when there is no difference between the information extractor’s output and the semantic con-

tent of the sentences (i.e. when e
cf
i xsð Þ � ycf

s = 0), then they are equivalent. This extraction error can easily be extended

to the case where the semantic content of a sentence and the output of an information extractor is a relation of the type

ycf
s =Rcf a, bð Þ. The difference between the two relations can be determined by considering semantic similarity or using

some variation of string matching. To keep the description of the selection strategy simple, we have chosen ycf
s ∈ 0, 1f g.

Because we need to select information extractors that produce the most accurate extraction, the selection strategy

minimizes the extraction error. This translates to identifying the implementation i that has the minimal error E
cf
i :

Ic(S)= argmin
i

(E
cf
i Sð Þ) ð6Þ

where Icf (S) is the implementation with minimum error when extracting concept c and functionality f over the set of sen-

tences S. We can consider that the selection of the most accurate implementation is a function of the concept and func-

tionality it extracts given the sentences observed. Therefore, we will restate Icf (S) as I(c, f , S).

To extend the selection of information extractors to all concepts, we pick the information extractors for each concept

and functionality with implementation I(c, f , S):

∪ 8c∈O�e
cf
I(c, f , S)(xs) ð7Þ

The implementation that has the minimum number of errors will be selected as part of the OBIE. This selection leads to

having a hybrid OBIE system because, for concepts c, c0 ∈O� , their information extractors can have the same or differ-

ent implementations.

In general, OBIE systems perform this same selection process, but implicitly, and at the system level. An OBIE

designer will select the implementation strategy that leads to a minimum set of errors by the system. Because our

approach does the selection at the concept (and functionality) level, the error of each information extractor is minimized,

which leads to a smaller total error.

4.1.2. Integration strategy. The integration strategy intends to combine outputs of different extractors to improve the OBIE

process. The integration strategy is inspired by Wimalasuriya and Dou’s approach of mapping information extractors

from concepts of different ontologies for OBIE (MOBIE) [6]. In MOBIE, if two concepts of different ontologies are

mapped as equivalent, the concepts’ information extractors’ outputs are combined into one set.

Our integration strategy comes as an answer to the case wherein it is difficult to select one type of implementation

because the performances are very similar. When the level of accuracy between two implementations of information

extractors is close, the difference in performance can be originated by how the documents were selected for evaluation.

This performance improvement can be obtained by considering the extraction process as an ensemble method. In machine

Gutierrez et al. 807

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



learning, ensemble methods use multiple learning algorithms to obtain a better performance than any of the individual

methods that confirm the ensemble [48]. There are different types of ensemble methods (e.g. boosting, bagging), which

follow different mechanisms (e.g. manipulating training set, voting of different classifiers) to produce the best output.

However, given the constraints of integrating information extractors, most ensemble methods are not suited for inte-

grating information extractors. Voting is an ensemble method that considers the output of each of the methods that are

part of the system as a vote. This approach requires an odd number of voting participants or votes with different impor-

tances (i.e. some votes have higher importance than others) to avoid drawing. In our case, voting does not seem to be a

good option because there are only two voters (i.e. two types of implementation for an information extractor), and there

is not a clear way to determine which of the methods is more important (i.e. a weighted voting system). A different

ensemble approach consists of altering the training of the underlying methods, such as in the case of bagging and boost-

ing. In the case of bagging, each one of the underlying methods uses a randomly selected subset of the training data set

to learn a model. Once the models are learned, their outputs are combined as an average or through voting. In the case

of boosting, the ensemble learns iteratively by training new models on instances that previous learners misclassified.

Because we cannot affect the design process of extraction rules by applying some strategies to the training set (in con-

trast to machine learning), neither bagging nor boosting is an option as an integration strategy.

For this work, we have selected stacking. Also known as stacked generalization, it consists of training a model (i.e.

top-level classifier) that uses as input the predictions of several other methods (i.e. bottom-level classifiers). In other

words, the set of outputs of the bottom level classifiers creates instances, which are passed to the top-level classifier.

The top-level classifier finally produces a single output. Stacking can be used as an integration strategy, since it can use

the output of both types of implementations as input for a top-level classifier. In most cases, stacking uses linear regres-

sion as a top-level classifier with a set of meta-features and first-level classifier outputs [49]. The input for the top-level

classifier will be:

e
cf
ML xsð Þ, e

cf
ER xsð Þ, ycf

s ð8Þ

where ML corresponds to the machine learning-based implementation, ER corresponds to the extraction rule implementa-

tion and yc
s is the semantic content of sentence xs given concept c and function f. In our case, because it is not clear what

elements of a sentence can be used as meta-features, linear regression does not perform as well as Naive Bayes or deci-

sion trees. For this current work, we have selected Naive Bayes as the top-level classifier.

4.2. Ontology-based error detection

The second proposed extension to OBCIE corresponds to the inclusion of error detection based on a domain ontology.

We propose that an information extractor cannot perform extractions based only on a specific concept c, but also on a

domain-related correctness functionality f. In traditional information extraction, the information extractors perform the

functionality of extracting statements that are correct with respect to the domain knowledge. In contrast, error detection

is the functionality of an information extractor to identify domain-incorrect statements. In other words, an information

extractor ecf xsð Þ= ycf
s is bound not only to a specific concept c, but also to the type of functionality f.

We have been the first group to propose the use of domain knowledge as a mechanism to determine the correctness

and incorrectness of text content, by applying OBIE for autonomous text evaluation [7, 50]. Considering that we have

defined incorrect text as a false or contradicting statement, it is reasonable to consider logic as a mechanism to identify it.

However, the information contained in the statement itself is not sufficient to conclude if it is incorrect. We need to know

facts from the domain to verify if the statement from the text is false or not. The domain knowledge, represented through

an ontology, can provide us with the frame of what is correct of the domain. Therefore, combining this correct knowl-

edge frame with logic, we resolve the correctness (or incorrectness) of the text’s content. For each concept and property

of the ontology, we define an information extractor to identify correct instances, and we define an information extractor

to detect incorrect instances.

We also have determined types of functions an information extractor could have: extraction of correct statements and

extraction of incorrect statements. Next, we provide a more detailed discussion of each function.

4.2.1. Extracting correct statements. Originally, when we proposed ontology-based error detection, we defined a statement

as correct if it was consistent with the domain ontology [7]. However, consistency is not a sufficient guarantee of cor-

rectness with respect to the domain ontology. A statement does not need to be part of the domain to be consistent with

it. Further, if a statement is completely unrelated to the domain, it is more likely that the statement will not violate any

Gutierrez et al. 808

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



constraint of the domain. We need a more precise definition of a correct statement that takes into account whether the

extraction is part of the ontology. In this work, we use a more strict definition of domain correctness: a statement is cor-

rect if it is a logical consequence of the domain (i.e. entailment) [50]. In other words, a correct statement from a text is

the logical consequence of the concepts and properties that define the domain. Therefore, to extract correct statements,

we use axioms that are explicitly stated in the ontology, or that can be inferred from the ontology. For example, we have

as part of our domain knowledge the following axioms:

K1 = f8xy Professor xð Þ ^ Teaches x, yð Þð Þ→ UnderGradStudent yð Þ _ GradStudent yð Þð Þ,
8x UnderGradStudent xð Þ _ GradStudent xð Þð Þ→ Student xð Þg ð9Þ

From K1, we know that if a Professor teaches a person, it must be an undergraduate or a graduate student and that both

undergraduate and graduate are Students. These axioms can be encoded into information extractors to identify correct

statements. The information extractors can be implemented as extraction rules in the form of regular expression patterns

(e.g. Perl regular expression):

$_= ∼ = Pjpð Þrof \:j\w+ð Þ \w+ð Þ teach jesð Þ=; \w+ð Þ= ð10Þ

$_= ∼ = Phd masterj jcollegeð Þ student \w+ð Þ= ð11Þ

In essence, this is the traditional definition of OBIE: extract elements of the domain ontology from the text. However,

this definition of correctness also considers the implicit elements of the ontology: entailed elements of the ontology.

From the original two axioms of K1, we can infer a third axiom:

8xy(Professor xð Þ ^ Teaches(x, y))→ (UnderGradStudent yð Þ _ GradStudent(y))

8x(UnderGradStudent xð Þ _ GradStudent(x))→ Student(x)

8xy(Professor xð Þ ^ Teaches(x, y))→ Student(y)
, ð12Þ

which tells us that, if a Professor teaches a person, it must be a Student. This new axiom can also be encoded as an infor-

mation extractor to identify correct statements:

$_= ∼ = Pjpð Þrof \:j\w+ð Þ \w+ð Þ teach jesð Þ Phd masterj jcollegeð Þ studentjð Þ \w+ð Þ= ð13Þ

4.2.2. Extracting incorrect statements. A natural consequence of the definition of correct statement is the definition of

incorrect statement. We consider a statement to be incorrect if it is a logical contradiction (i.e. inconsistency) of some

aspects of the domain ontology. However, an ontology only contains correct facts of the domain it represents. We need a

mechanism to determine axioms that are inconsistent with respect to the domain ontology. We have proposed a mechan-

ism to determine axioms that are inconsistent with respect to the domain based on the heuristic-based ontology debugging

approach seen in Wang et al. [51]. In ontology debugging, research is focused on identifying the origin of inconsistency

in an ontology. Wang et al.’s approach looks for specific types of inconsistencies. They have identified a set of common

errors that are committed in the process of constructing an ontology and they have encoded these common errors into a

set of pattern-based rules that can identify inconsistency. Following the approach of Wang et al., it is possible to deter-

mine a set of axioms that, if included in the domain ontology, would make the ontology inconsistent. We use Wang

et al.’s heuristic as a generating mechanism to define domain-inconsistent axioms. For example, let us consider the fol-

lowing two axioms from our domain knowledge K:

K2 = f8xy Professor xð Þ ^ Teaches x, yð Þð Þ→ Student yð Þ, 8xProfessor xð Þ $ :Student xð Þg ð14Þ

From the first axiom, we obtain that Professor cannot teach a non-Student (8xy(Professor xð Þ ^ Teaches(x, y)^
:Student(x))→?). From the second axiom, we know that a Professor is not a Student, and a Student cannot be a

Professor. By combining these two axioms, we can construct an axiom that is inconsistent with our domain knowledge:

8xy(Professor xð Þ ^ Teaches(x, y))→Professor(y) ð15Þ

The axiom by itself is not inconsistent. The contradiction occurs when adding this new axiom to our domain knowledge

(i.e. K2). In other words, the new axiom is domain-inconsistent. To identify incorrect statements, we use these domain-

Gutierrez et al. 809

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



inconsistent axioms, encoded into information extractors, such as pattern-based extraction rule (e.g. Perl regular

expression):

$_= ∼ = Pjpð Þrof \:j\w+ð Þ \w+ð Þ teach jesð Þ= Pjpð Þrof \:j\w+ð Þ \w+ð Þ= ð16Þ

It must be mentioned that domain-inconsistent axioms can also be implemented as machine learning-based information

extractors. However, there is no need to modify any machine learning technique for the purpose of error extraction.

Because machine learning-based information extractors learn a model based on training data, incorrect statements can

be labelled into the training data set.

5. Experiments

In the following section, we provide details regarding the evaluation of our proposed hybrid OBIE system. We describe

the construction of the domain ontology and the generation of the synthetic data set used in the evaluation. Then we

explain the process of creating the information extractors with different implementations and different functionalities.

Finally, we present the comparison methods and metrics used to evaluate our proposed hybrid OBIE system.

5.1. Original data set

The original data set corresponds to students’ answers to an exam from an undergraduate biology class. From the biol-

ogy exam, we have selected one question that requires the students to present a short, justified answer. Following is the

selected question:

If you generate a mutation that breaks down the electron transfer chain in mitochondria, will myosin proteins fall off microfilaments

or get stuck to it? Why?

Each answer is a short paragraph that consists of at most four sentences: the answer to the question followed by a short

justification. For the answer to be correct, the paragraph must mention specific relations between four concepts: myosin,

adenosine triphosphate (ATP), adenosine diphosphate (ADP) and electron transport chain (ETC). An example of a cor-

rect answer is:

They will tend to get stuck because the exchange of ATP for ADP causes the myosin head to release the microfilament. If the ETC

is halted, ATP will no longer be produced.

An answer is considered incorrect if the answer sentence is incorrect, or the justification is incorrect. An example of

an incorrect answer:

They will fall off. This is because a mutation in the ETC will cause an absence of ATP.

It can be argued that an incorrect answer can be formed by correct sentences if these sentences mention concepts and

relationships that are unrelated to the question. In the present work, we do not intend to determine the correctness of the

text as whole (complete answer). We will only focus on the correctness of each sentence independently. For this reason,

the answers have been labelled by domain experts (the instructor of the class and his teaching assistants) indicating

whether they are correct or incorrect and whether the answers provide enough justification.

The nature of the text (i.e. student answers to an exam) has led to the data set being less diverse, in terms of sentence

structure and vocabulary, than other data sets in IE. Because the documents of the data set are answers from an exam, it

is more likely that students will focus on content rather than the style of their answer. On the other hand, the answers are

focused on a very specific set of concepts and relationships of the domain. For the text to be an effective answer, the text

must refer to concepts and relationships relevant to the questions.

5.2. Domain ontology

Currently, there are a large number of biology-related ontologies that are available. As mentioned in Section 2.1, through

the National Center for Biomedical Ontology’s BioPortal website, it is possible to access more than 300 biomedical

ontologies. By searching in BioPortal, it is possible to identify eight ontologies (e.g. BioModels Ontology, CRISP 2006

Gutierrez et al. 810

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



Thesaurus) that contain the concepts (e.g. myosin and ATP) which are required to analyse the students’ answers.

However, these ontologies do not offer all of the necessary relationships that are required to analyse the students’

answers. This difference originates because many ontologies are created with the purpose of providing a hierarchical

classification of entities from the domain knowledge (i.e. taxonomy).

For this work, we have designed an application-driven ontology (Figure 3). Although we could have opted to extend

one of the available ontologies with the relationships needed to analyse the answers, the construction of an ontology was

significantly simpler when considering the logical consistency and complexity of the domain ontology. For the construc-

tion of the ontology, we have followed two main guidelines: it must contain all concepts and relationships that will allow

for answering the exam’s question, and it must not include any other concepts that are not required to answer the ques-

tion. The first requirement intends to provide sufficient domain knowledge to analyse the arguments of the answer, that

is, why the myosin is affected by mitochondrial defect. The second requirement tries to reduce the complexity of the

ontology by keeping its focus on the part of the domain that is relevant to the task. These criteria lead to an ontology that

is highly connected, although it has a small number of hierarchical relationships between concepts.

Based on the mentioned guidelines, we focus the ontology around the four main concepts that need to be stated in an

answer for it to be correct. These concepts mostly have cause–effect (i.e. process) type relationships. For example, ETC

presence affects the production of ATP, or ADP affects the binding process of Myosin. Because ontologies usually repre-

sent domain knowledge by classifying concepts (taxonomy) and properties, process or cause–effect relationships can be

difficult to define. We represented these process-type relations as intermediary concepts, for example, Myosin Binding

Process in Figure 3. These intermediary concepts have led the ontology having a rather sparse structure, with few con-

cepts in an ISA (i.e. subclass) relationship (Table 1).

5.3. Synthetic data set

In order to evaluate our proposed extensions, there are some requirements that the data set must meet. Although the orig-

inal set of students’ answers is sufficient to evaluate our functionality extension, the proposed combining strategies for

multiple implementations require a larger data set. For both combining strategies, the data set needs to be large enough

to allow three subsets: a first set for training and designing the information extractors; a second set that is used for initial

evaluation by the selection strategy and for top-level training by the integration strategy; and a third set for a final eva-

luation of the system (i.e. testing). To evaluate both extensions, we have constructed from the original data set a synthetic

data set.

As previously mentioned, the correct answer to the exam’s question can be constructed by combining sentences that

reference the relationships among four concepts. The statement that provides the answer to the question is a property of

Myosin. The justification of the answer comes from a combination of properties of ETC, ATP and ADP. Therefore, to

Figure 3. Graphical representation of a section of the ontology development for this work. In the figure, continuous lines
represent IS_A relationships between concepts (e.g. Myosin is a Motor Protein) while segmented lines represent property
relationships between concepts (e.g. Myosin has a Myosin Binding Process).

Table 1. Statistical information about the ontology

Element type Number of elements

Concepts 17
Relationships 10
Subclass relationships 3

Gutierrez et al. 811

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



produce an answer that meets content requirements, we need to create a paragraph that contains a statement from each

of the mentioned concepts. To provide diversity in synthetic answers, we created a template set of correct sentences for

each concept. We have also created a template set of incorrect sentences for each concept. In general, the sets of incor-

rect sentences are much larger than the sets of correct statements, because the incorrectness of a sentence can be caused

by multiple factors, such as an incorrect relation between a pair of concepts or a contradiction of a logical constraint.

Both correct and incorrect sets of sentences for each concept contain sentences from the original data set, plus sentences

created based on domain knowledge.

A synthetic data set is generated by creating a number of answers with a probability of having erroneous sentences.

An answer from the synthetic data set is created by first selecting a correct or incorrect sentence of a concept, based on

the probability of erroneous sentences in the data set (Table 2). The correctness of the sentence for each concept is deter-

mined independently. Once the correctness of the sentence has been determined, the actual sentence that will be included

in the answer is selected from the set of correct (or incorrect) sentences for the concept. For example, for the concept

ATP we can select one of seven correct sentences and one of 15 incorrect sentences.

From the original data set, we have observed that 22% of the students answered the question correctly and provided a

correct justification. From the rest, 60% answered the question incorrectly, and only 3.8% of all the students’ answers

were completely incorrect. With these numbers in mind, we have created data sets containing 1000 instances with error

levels of 20, 30, 40, 50, 60, 70, 80 and 90%.

5.4. Preparation of information extractors

In the following section, we provide details of the design of the information extractors for the study case. These details

should provide insight on how we created the information extractors under different implementation strategies, for dif-

ferent functionalities.

5.4.1. Functionality details. As mentioned in Section 4.2.1, the information extractors for the correct functionality are

obtained by selecting relevant axioms from the ontology. These axioms represent relationships between the four main

concepts of the ontology:

8xy ETC xð Þ ^ break xð Þ→ATP(y) ^ reduce(y)

8xy ATP xð Þ ^ reduce xð Þ→ADP(y) ^ increase(y)

8xy ATP xð Þ ^ reduce xð Þ ^ ADP yð Þ ^ increase yð Þ→ATP� ADP_exchange(x, y)

8xyz ATP� ADP_exchange x, yð Þ ^Myosin(z)→ stuck(z)

8xy ETC xð Þ ^ break xð Þ ^Myosin(y)→ stuck(y)
: ð17Þ

The last logic clause corresponds to the correct answer, which is a logical consequence of the relationships between the

concepts of the domain.

In the case of the information extractors for incorrect functionality, we generate domain-inconsistent axioms from the

ontology (Section 4.2.2). Based on our understanding of the types of errors that could appear in the text, we can follow a

broad range of strategies to the generation of inconsistent axioms [7, 14]. This approach for error detection has the advan-

tage that it can target a specific set of errors. In this work, inconsistent axioms were generated from ontological proper-

ties (e.g. A has B) rather than taxonomical relationships (e.g. A is a subclass of B). For example, if we state that Myosin

will fall instead of staying stuck (i.e. 8x fall xð Þ $ :stuck xð Þ), we obtain the an incorrect answer, which is also inconsis-

tent with the domain:

Table 2. Number of template sentences for each concept given its functionality

Concept Number of correct sentences Number of incorrect sentences

ATP 7 15
ADP 3 11
ETC 8 21
Myosin 12 28

Gutierrez et al. 812

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



8xy ETC xð Þ ^ break xð Þ ^Myosin(y)→ stuck(y)

8x fall xð Þ $ :stuck xð Þ
8xy ETC xð Þ ^ break xð Þ ^Myosin(y) ^ fall(y)→? ð18Þ

5.4.2. Implementation details. In general, the creation of individual information extractors mostly follows the same consid-

erations for single implementation (i.e. traditional OBIE), multiple implementations [14] and our proposed combination

strategies.

In the case of extraction rules, we have randomly selected a small subset of instances to be used as examples. The

examples are used to identify patterns that can perform the extraction of a specific concept. We have considered 20% of

the corpus to be used as examples for each concept. Since the complete data set consists of 1000 synthetic answers, the

number of examples for identifying patterns for each concept and functionality is approximately 200 instances. This

allows a good insight into instances that could be expected for each concept and functionality while still being manage-

able. The following extraction rule identifies the consequence of the breakdown of the electron transfer chain (ETC):

$_ ¼ ∼ = ItjMyosinð Þ:þ stayjgetð Þstuckð Þj bindð Þð Þ=: ð19Þ

Since the statement answers the question (if it breaks down the electron transfer chain, the myosin gets stuck), a good

portion of the answer references the concept Myosin implicitly. This co-reference (i.e. It) was the only one observed in

the data, which made it significantly simpler to define in a pattern. The following extraction rule identifies the effect of

reduction of ATP, if ETC is broken:

$_= ∼ = ETCjelectron transport chainð Þ:+ stops lossj jlessjrequiredð Þ:+ ATPð Þ=: ð20Þ

In the case of the machine learning-based information extractors, we randomly defined a training set (consisting of

65% of the data set), and a testing set (35% left from the data set). We incorporated the two-phase extraction approach

previously described (Section 3.1.2), which is also seen in Kylin [15, 16] and in the study case of OBCIE [8]. In the first

phase, we try to determine if a sentence contains the sought ontological element (e.g. relationships) through a binary clas-

sifier. One class corresponds to the sentences that carry the information while the other class corresponds to sentences

that do not have the information. In this phase, sentences are transformed into vectors. The features of the vectors corre-

spond to ontological metadata of the concepts or relationships to extract (as defined in OBCIE): keywords, part-of-speech

labels and WordNet synsets (i.e. sets of synonyms)[52]. For example, the metadata for Myosin has keywords such as

stuck, stay, get and binding, while it has as synset the words stick and releases. For this phase, we use a Naive Bayes clas-

sifier, which is a popular option for text classification because of its simplicity and good general performance [53]. In the

second phase, we determine the part of the sentence (i.e. words) that represents the information. A probabilistic model

(in our case Conditional Random Fields [54]) determines if the sequence of words corresponds to the sought information

or not. This phase uses the sentence’s original metadata information used in the first phase, plus the output of the previ-

ous phase classifier. It is possible to have a large number of information extractors based on different machine learning

methods, such as Support Vector Machine [33] or Maximum Entropy [15, 16]. We have selected Naive Bayes and CRF

as the methods for the machine learning implementation strategy because they have shown consistent and accurate results

in IE [8–10, 15, 16].

While all information extractors use the same implementation approach (as previously described), our proposed com-

bination strategies use the data in a slightly different way. We divide the data set into three groups: a training set, first

stage testing set and second stage testing set. We define the information extractors with the training set, using 50% of the

instances for the machine learning-based extractor and a 20% of instances for the extraction rules. The first stage testing

set is used to evaluate and select the best set of extractors in the selection strategy, while the integration strategy is for

training the second level classifier. The first stage testing set consists of 25% of the synthetic data set. Finally, the second

stage testing set is for evaluating the combined strategy.

5.5. Evaluation metrics

To evaluate and compare our proposed hybrid approach, we will use the metrics of precision, recall and F1 measure.

Precision indicates the correctness of the extraction, while recall indicates the completeness. The F1 measure provides

the harmonic mean between precision and recall.

Gutierrez et al. 813

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



Precision= Correctly extracted

All extractions
ð21Þ

Recall= Correctly extracted

All instances
ð22Þ

F1 measure= 2 * Precision * Recall

Precision+Recall
ð23Þ

These traditional evaluation metrics do not consider the semantic relation between domain elements when evaluating

the correctness and completeness of the extraction process [3]. An extraction (or label) is either correct or incorrect.

Metrics such as Balanced Distance Metric [55] and Learning Accuracy [56] take into account the similarity between the

correct extraction and the system’s output. Both metrics evaluate an extraction based on its semantic distance in the

ontology’s structure to the correct extraction. For example, if there is a subclass relationship between two concepts, they

are considered to be close.

However, the ontology used in the evaluation of our hybrid approach is mostly flat (very limited hierarchical relation-

ships). This situation leads to the extraction process to be hit-or-miss: the information extractor correctly identifies a

relationship or not. Since our study case does not need to consider possible semantic relatedness between extraction and

correct labelling, we will use as evaluation metrics precision, recall and F1 measure.

5.6. Comparison methods

In this work, we have proposed two extensions to the OBCIE architecture: the first improves the accuracy of the extrac-

tion process, while the second adds a new functionality to the extraction process. To evaluate the first extension, we will

consider other strategies for comparison. To determine the impact of our combination strategies, we need to compare

against currently used methods. We will compare with single implementation systems and multiple implementation sys-

tems. The single implementation approach is when the implementation strategy is considered as a guideline for the entire

IE system.

Multiple implementation systems have information extractors implemented as extraction rules and machine learning-

based extractors for each concept. For this experiment, there are four concepts and two types of implementations; we

have identified five straightforward configurations of information extractors that the OBIE system can use. Two of the

five configurations are equivalent to single implementation systems (i.e. pure configurations). There also are three hybrid

configurations: using three machine learning extractors and one extraction rule (3ML-1ER); using two machine learning

extractors and two extraction rules (2ML-2ER); and using one machine learning extractor with three extraction rule

extractors (1ML-3ER). When considering one mixed configuration, it is possible to define multiple types of settings. For

example, in the case of using three machine learning extractors and one extraction rule (3ML-1ER), we can choose an

extraction rule implementation for any one of the four concepts and use machine learning extractors for the rest. This has

led us to create 16 information extractors by combining all four possible concepts (Myosin, ETC, ATP and ADP), two

implementations (i.e. machine learning and extraction rules), and two functions (i.e. extracting correct and incorrect

statements).

Because error detection is a new functionality for IE, there is no other method for comparison. For this reason, we

will present evaluation metrics (precision, recall and F1 measure) separated by functionality, and the comparison will be

between functionalities. Although this is not an ideal approach for evaluating an extraction method, it still can provide

us with insight into what can be expected in terms of quality of extraction when performing error detection.

6. Results and discussion

In the following section, we present and discuss the results of the evaluation of our proposed combination methods. To

keep the analysis clear, we present the average performance of each configuration setting. We also include the perfor-

mance of the best and worst setting of each concept (and functionality). With these three values (best, average and worst),

it is possible to obtain a reasonable understanding of the performance behaviour of a configuration. The results are pre-

sented in detail with respect to the amount of errors in the data set, which provides an insight into how errors can affect

the extraction process. We also provide a general view of the experimental results, which allows a more accessible com-

parison between methods. For clarity, we have separated our results based on the extraction functionality (i.e. extracting

correct statements and error extraction). This separation allows visualizing the effect that an implementation can have

over functionality, and it also permits an easier comparison between functionalities.

Gutierrez et al. 814

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



6.1. Error level and extraction

First we compare our proposed combination methods by considering the quantity of incorrect statements there are in the

text. As previously mentioned, we have generated data sets with different levels of error: 90, 80, 70, 60, 50, 40, 30 and

20% of error. We have applied our proposed methods and those methods used for comparison to the eight data sets. The

results are presented in Figure 4 for correct statement extraction and in Figure 5 for error extraction.

In general, as the number of errors increases (higher probability of error in an answer), the precision of all the

methods is reduced. This trend can be explained by the similarity between correct and incorrect sentences of the

same concept, and by the amount of training data. As the amount of examples of correct statements of a concept is

reduced, it is more likely that the generalization of machine learning models and the extraction rule patterns will see

errors as correct. This trend applies inversely for extraction of errors: as the error level increases in the data set, the

extraction of errors becomes more precise. In contrast, the completeness of the extraction seems not to be affected

by the level of error.

We can observe that, in the case of functionality of extracting correct statements, the extraction rule implementation

(ER) can produce a more precise extraction, while the machine learning-based implementation (ML) can produce a more

complete extraction. Although StackNB and MinError have lower precision than ER, and lower recall than ML, they

can produce a more balanced extraction, which leads to the higher F1 measure. On the other hand, when considering the

functionality of extracting incorrect statements, we can observe that MinError produces the most precise extraction, with

StackNB and ER close in performance. In the case of recall, ML produces a complete extraction, with a significant dif-

ference from the rest of the implementation strategies. In term of F1 measure for error extraction, MinError is slightly

better than StackNB in most cases.

It must be mentioned that, although ML has a perfect recall, the actual extraction has a significant number of errors.

This situation occurs because ML produces an over-generalized extraction model.

Figure 4. Precision, recall and F1 measure for information extractors under different levels of error in text, with single
implementation (ER and ML), and multiple implementations with our proposed combination strategies (MinError and StackNB) with
the functionality of extracting correct statements.

Figure 5. Precision, recall and F1 measure for information extractors under different levels of error in text, with single
implementation (ER and ML), and multiple implementations with our proposed combination strategies (MinError and StackNB) with
the functionality of extracting incorrect statements.

Gutierrez et al. 815

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



6.2. Overall extraction accuracy

In order to provide better overview of the performance of the information extractor’s functions (i.e. extracting correct

statements and errors), we provide average precision, recall, and F1 measure of each implementation strategy separated

by functionality (Figures 6 and 7).

Both combined methods obtain, in general, better performance than the pure methods and the mixed methods that do

not have any combination strategy. However, both combined strategies depend on the quality of the extraction performed

by extraction rule and machine learning-based extractors. This dependency is more obvious in the case of integration

strategy (StackNB), where if one of the underlying extractors has a low accuracy, it can significantly affect the perfor-

mance of the whole process. This issue can be also seen in both Figures 6 and 7. In the case of the correct statement

extraction function, we see that, although the combined strategies outperform the other methods in the case of best per-

formance, their average performance is close to (precision in Figure 4) if not worse than (recall in Figure 4) single stage

approaches. Because machine learning-based extractors over-extract (i.e. extract more than the actual instance), they

have a low precision but a perfect recall. This behaviour affects the combined strategies in different ways when inte-

grated with extraction rule performance. In the case of the error extraction function, we can see more clearly that the

combined strategies perform better than the rest in terms of precision and F1 measure. In the case of recall, similarly as

for the correct statement extraction, machine learning dominates.

From Figures 6 and 7, it seems that our proposed combination strategies are sensitive to the performance of the

underlying implementations. The effect seems to differ from correct statement to error extraction functionality. In the

case of correct statement extraction, the performance of the worse implementation seems to dominate. On the other

hand, our proposed combination strategies for error extraction produce a more average performance between the under-

lying implementations.

Figure 6. Precision, recall and F1 measure for information extractors with single implementation (ER and ML), multiple
implementations without a combination strategy (1ML-3ER, 2ML-2ER and 3ML-1ER), and multiple implementations with our
proposed combination strategies (MinError and StackNB) with the functionality of extracting correct statements.

Figure 7. Precision, recall and F1 measure for information extractors with single implementation (ER and ML), multiple
implementations without a combination strategy (1ML-3ER, 2ML-2ER and 3ML-1ER), and multiple implementation with our
proposed combination strategies (MinError and StackNB) with the functionality of extracting incorrect statements.

Gutierrez et al. 816

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



Finally, Figure 8 compares the average performance of each configuration given its functionality. In general, informa-

tion extractors that extract correct statements have a higher precision, recall and F1 measure than their error extraction

part, for any given implementation. This difference in performance is a natural consequence of how facts and errors can

be represented in text. For example, we see in Table 2 that there are 12 types of correct sentences for Myosin, while there

28 types of incorrect sentences. The information extractor for incorrect sentences needs to consider more types of cases

than an information extractor for correct sentences, which leads to a higher possibility of inaccuracy. This situation is

accentuated in the case of machine learning implementation because not all errors are present in the same frequency in

the training set. This leads not only to the machine learning-based extractor having to consider a wider range of types,

but also to not all available types being available enough or frequent enough in the training set to be considered relevant.

Figure 8 also shows that the integration strategy StackNB performs better for correct statement extraction, while

MinError slightly outperforms the rest for the error extraction.

7. Conclusions

In the present work, we propose a hybrid OBIE framework through two extensions to the OBCIE architecture, which

leads to a more accurate and complete extraction process. The first extension considers the use of combined information

extractors with different implementations. By using both implementations (extraction rules and machine learning-based

extractors), it is possible to obtain higher accuracy in the extraction process. We offer a selection strategy and an inte-

gration strategy to combine information extractors with different implementations. The selection strategy determines the

most accurate set of information extractors by determining which implementation commits fewer extraction errors. The

integration strategy uses the ensemble method of stacking to combine the outputs of both implementations. Stacking

trains a classifier from the outputs of the underlying methods (i.e. information extractors) to produce a more accurate

extraction. The second extension to OBCIE provides the system with the capability to detect errors in text. By identify-

ing what axioms could be inconsistent with the domain ontology, we create information extractors that identify logic

errors. The domain-inconsistent axioms are determined following the heuristic of violating ontological constraints.

We have applied our hybrid OBIE system to identify the correct and incorrect statements to a set of synthetic data sets

with different levels of errors. Our hybrid system can identify both correct statements and errors with high and balanced

precision and recall measures. Furthermore, we have found that the combination of information extractors that have dif-

ferent implementations can obtain a higher precision and recall than using only one type of implementation. We also

found that error extraction is more complex than the extraction of correct statements, which leads to high variability in

the performance of information extractors. The experimental results show that this variability can be reduced through the

use of a hybrid configuration.

As future work, we would like to refine our hybrid approach. In the case of functionality, we would like to determine

a more formal and efficient mechanism to define information extractors for errors. We believe that research in ontology

debugging can provide us with insight into a method that could guarantee a complete analysis of the consistency of each

sentence. In the case of combining strategies, we would like to see if there are alternative strategies that would allow a

more accurate combination of information extractors, such as the use of meta-features for stacking. We would also like

Figure 8. Comparison of correct statement extraction and error extraction functionality in terms of precision, recall and F1

measure for information extractors with single implementation (ER and ML), multiple implementations without a combination
strategy (1ML-3ER, 2ML-2ER, and 3ML-1ER), and multiple implementations with our proposed combination strategies (MinError and
StackNB).

Gutierrez et al. 817

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



to determine new extraction capabilities that can be obtained by combining information extractors that have different

functions and implementations. For example, we want to see whether combining information extractors of the same con-

cept but different functionality can lead to a more accurate extraction.

Acknowledgements

We thank Adam Martini for his input in this work.

Funding

This research is partially supported by the National Science Foundation grant IIS-1118050 and grant IIS-1013054. The views and con-

clusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official poli-

cies, either expressed or implied, of the NSF.

References

[1] Jurafsky D and Martin JH. Speech and language processing: An introduction to natural language processing, 2nd edn.

Englewood Cliffs, NJ: Prentice Hall, 2008, p. 725.

[2] Gruber TR. A translation approach to portable ontology specifications. Knowledge Acquisition 1993; 5(2): 199–220.

[3] Wimalasuriya DC and Dou D. Ontology-based information extraction: An introduction and a survey of current approaches.

Journal of Information Science 2010; 36: 306–323.

[4] Srinivasan P and Qiu XY. GO for gene documents. BMC Bioinformatics 2007; 8(9): S3.

[5] Gutierrez F, Wimalasuriya DC and Dou D. Using information extractors with the Neural ElectroMagnetic Ontologies. In: OTM

international conference on ontologies, databases and application of semantics, 2011, pp. 31–32.

[6] Wimalasuriya DC and Dou D. Using multiple ontologies in information extraction. In: ACM conference on information and

knowledge management, 2009, pp. 235–244.

[7] Gutierrez F, Dou D, Fickas S and Griffiths G. Providing grades and feedback for student summaries by ontology-based informa-

tion extraction. In: ACM conference on information and knowledge management, 2012, pp. 1722–1726.

[8] Wimalasuriya DC and Dou D. Components for information extraction: Ontology-based information extractors and generic plat-

forms. In: ACM conference on information and knowledge management, 2010, pp. 9–18.

[9] Banko M, Cafarella MJ, Soderland S, Broadhead M and Etzioni O. Open information extraction from the web. In: International

joint conference on artificial intelligence, 2007, pp. 2670–2676.

[10] Banko M and Etzioni O. The tradeoffs between open and traditional relation extraction. In: Annual meeting of the association

for computational linguistics with the human language technology, 2008, pp. 28–36.

[11] de Marneffe MC, Rafferty AN and Manning CD. Finding contradictions in text. In: Annual meeting of the Association for

Computational Linguistics with the human language technology, 2008, pp. 1039–1047.

[12] Ritter A, Downey D, Soderland S and Etzioni O. It’s a contradiction – no, it’s not: A case study using functional relations. In:

ACL conference on empirical methods in natural language processing, 2008, pp. 11–20.

[13] Flouris G, Manakanatas D, Kondylakis H, Plexousakis D and Antoniou G. Ontology change: Classification and survey. The

Knowledge Engineering Review 2008; 23(2): 117–152.

[14] Gutierrez F, Dou D, Fickas S, Martini A and Zong H. Hybrid ontology-based information extraction for automated text grading.

In: IEEE conference on machine learning and applications, 2013, pp. 359–364.

[15] Wu F and Weld DS. Autonomously semantifying Wikipedia. In: ACM conference on information and knowledge management,

2007, pp. 41–50.

[16] Wu F and Weld DS. Automatically refining the Wikipedia infobox ontology. In: International conference on World Wide Web,

2008, pp. 635–644.

[17] Agichtein E and Gravano L. Snowball: Extracting relations from large plain-text collections. In: ACM international conference

on digital libraries, 2000, pp. 85–94.

[18] Riedel S, Yao L and McCallum A. Modeling relations and their mentions without labeled text. In: European conference on

machine learning and knowledge discovery in databases, 2010, pp. 148–163.

[19] Nebhi K. Ontology-based information extraction for french newspaper articles. In: Annual german conference on artificial intel-

ligence, 2012, pp. 237–240.

[20] Nebhi K. Ontology-based information extraction from twitter. In: Workshop on information extraction and entity analytics on

social media, 2012, pp. 17–22.

[21] Whetzel PL, Noy NF, Shah NH, Alexander PR, Nyulas C, Tudorache T and Musen MA. BioPortal: Enhanced functionality via

new web services from the National Center for Biomedical Ontology to access and use ontologies in software applications.

Nucleic Acids Research 2011; 39(suppl. 2): W541–W545.

[22] Muller H, Kenny E and Sternberg P. Textpresso: An ontology-based information retrieval and extraction system for biological

literature. PLoS Biology 2004; 2(11): 1984–1998.

Gutierrez et al. 818

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989



[23] Yildiz B and Miksch S. Motivating ontology-driven information extraction. In: International conference on Semantic Web and

digital libraries, 2007, pp. 45–53.

[24] Krishnamurthy R, Li Y, Raghavan S, Reiss F, Vaithyanathan S and Zhu H. SystemT: A system for declarative information

extraction. SIGMOD Record 2008; 37(4): 7–13.

[25] Cunningham H, Maynard D, Bontcheva K and Tablan V. GATE: A framework and graphical development environment

for robust NLP tools and applications. In: Anniversary meeting of the Association for Computational Linguistics, 2002,

pp. 168–175.

[26] Hearst MA. Automatic acquisition of hyponyms from large text corpora. In: Conference on computational linguistics, 1992.

pp. 539–545.

[27] Etzioni O, Cafarella M, Downey D, Kok S, Popescu AM, Shaked T et al. Web-scale information extraction in KnowItAll (pre-

liminary results). In: International conference on World Wide Web, 2004, pp. 100–110.

[28] Etzioni O, Cafarella M, Downey D, Popescu AM, Shaked T, Soderland S et al. Unsupervised named-entity extraction from the

web: an experimental study. Artificial Intelligence 2005; 165(1): 91–134.

[29] Fader A, Soderland S and Etzioni O. Identifying relations for open information extraction. In: ACL conference on empirical

methods in natural language processing, 2011, pp. 1535–1545.

[30] Mausam, Schmitz M, Soderland S, Bart R and Etzioni O. Open language learning for information extraction. In: ACL confer-

ence on empirical methods in natural language processing and computational natural language learning, 2012. pp. 523–534.

[31] Mintz M, Bills S, Snow R and Jurafsky D. Distant supervision for relation extraction without labeled data. In: ACL conference

on empirical methods in natural language processing, 2009, pp. 1003–1011.

[32] Snow R, Jurafsky D and Ng AY. Learning syntactic patterns for automatic hypernym discovery. In: Advances in neural infor-

mation processing systems, Vol. 17. Cambridge, MA: MIT Press, 2005, pp. 1297–1304.

[33] Yakushiji A, Miyao Y, Ohta T, Tateisi Y and Tsujii J. Automatic construction of predicate-argument structure patterns for bio-

medical information extraction. In: ACL conference on empirical methods in natural language processing, Association for

Computational Linguistics, 2006, pp. 284–292.

[34] Swanson DR. Fish oil, Raynaud’s syndrome, and undiscovered public knowledge. Perspectives in Biology and Medicine 1986;

30: 7–18.

[35] Lyons R. The spread of evidence-poor medicine via flawed social-network analysis. Statistics, Politics, and Policy 2011, 2(1):

article 2.

[36] Ioannidis JPA. Why most published research findings are false. PLoS Medicine 2005, 2(8): e124.

[37] Etzioni O, Banko M, Soderland S and Weld DS. Open information extraction from the web. Communications of the ACM 2008,

51(12): 68–74.

[38] Karpicke JD and Roediger HL. The critical importance of retrieval for learning. Science 2008, 319(5865): 966–968.

[39] Whittington D and Hunt H. Approaches to the computerized assessment of free text responses. In: Computer-assisted assess-

ment conference, 1999, pp. 207–219.

[40] Lin CY. Rouge: A package for automatic evaluation of summaries. In: ACL workshop on text summarization branches out,

2004, pp. 25–26.

[41] Foltz PW, Laham D and Landauer TK. Automated essay scoring: Applications to educational technology. In: Conference on

educational multimedia, hypermedia and telecommunications, 1999, pp. 939–944.

[42] Franzke M and Streeter L. Building student summarization, writing and reading comprehension skills with guided practice and

automated feedback. White paper from Pearson Knowledge Technologies, 2006.

[43] Brent E, Atkisson C and Green N. Time-shifted online collaboration: Creating teachable moments through automated grading.

In: Juan AA (ed.) Monitoring and assessment in online collaborative environments: Emergent computational technologies for

e-learning support. IGI Global, 2010, pp. 55–73.

[44] Mitchell T, Russell T, Broomhead P and Aldridge N. Towards robust computerized marking of free-text responses.

In: Computer-assisted assessment conference, 2002, pp. 233–249 .

[45] Tatar D, Serban G, Mihis A and Mihalcea R. Textual entailment as a directional relation. Journal of Research and Practice in

Information Technology 2009; 41(1): 53–64.

[46] Dagan I and Glickman O. Probabilistic textual entailment: Generic applied modeling of language variability. In: PASCAL work-

shop on learning methods for text understanding and mining, 2004.

[47] Carlson A, Betteridge J, Hruschka ER and Mitchell TM. Coupling semi-supervised learning of categories and relations.

In: NAACL HLT workshop on semi-supervised learning for natural language processing, 2009, pp. 1–9.

[48] Dietterich TG. Ensemble methods in machine learning. In: International workshop on multiple classifier systems, 2000, pp.

1–15.

[49] Sill J, Takacs G, Mackey L and Lin D. Feature-weighted linear stacking, http://arxiv.org/abs/0911.0460 (2009, accessed

10 July 2014).

[50] Gutierrez F, Dou D, Fickas S and Griffiths G. Online Reasoning for Ontology-based Error Detection in Text. In: OTM interna-

tional conference on ontologies, databases and application of semantics, 2014, pp. 562–579.

[51] Wang H, Horridge M, Rector A, Drummond N and Seidenberg J. Debugging OWL-DL ontologies: A heuristic approach. In:

International conference on the Semantic Web, 2005, pp. 745–757.

Gutierrez et al. 819

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989

http://arxiv.org/abs/0911.0460


[52] Miller G. Wordnet: A lexical database for English. Communications of the ACM, 1995, 38: 39–41.

[53] McCallum A and Nigam K. A comparison of event models for Naive Bayes text classification. In: AAAI workshop on learning

for text categorization, 1998, pp. 41–48.

[54] Lafferty J, McCallum A and Pereira F. Conditional random fields: Probabilistic models for segmenting and labeling sequence

data. In: International conference on machine learning, 2001, pp. 282–289.

[55] Maynard D, Peters W and Li Y. Metrics for Evaluation of Ontology-based Information Extraction. In: WWW workshop on eva-

luation of ontologies for the Web, 2006.

[56] Cimiano P, Ladwig G and Staab S. Gimme’ the context: Context-driven automatic semantic annotation with C-PANKOW. In:

ACM international conference on World Wide Web, 2005, pp. 332–341.

Gutierrez et al. 820

Journal of Information Science, 42(6) 2016, pp. 798–820 � The Author(s), DOI: 10.1177/0165551515610989


