
1Mawl: a Domain-speci�c Language

for Form-based Services

David Atkins, Thomas Ball, Glenn Bruns, Kenneth Cox

Software Production Research Department

Bell Laboratories, Lucent Technologies

Abstract

A form-based service is one in which the
ow of data between service and user is de-
scribed by a sequence of query/response interactions, or forms. Mawl is a domain-speci�c
language for programming form-based services in a device-independent manner. We focus on
Mawl's form abstraction, which is the means for separating service logic from user interface
description, and show how this simple abstraction addresses seven issues in service creation,
analysis, and maintenance: compile-time guarantees, implementation
exibility, rapid pro-
totyping, testing and validation, support for multiple devices, composition of services, and
usage analysis.

I. Introduction

Domain-speci�c languages (DSLs) o�er a more complete solution to software engineering
problems than general purpose programming languages can o�er. The bene�ts of DSLs de-
rive from two basic principles of language design: abstraction and restriction. The choice of
appropriate abstractions aids the phases of requirements, design, coding, and maintenance by
providing high-level entities and relationships that �t the domain closely. Restriction of lan-
guage expressiveness allows for greater automated analysis and hence supports veri�cation,
modi�cation, and maintenance.
We present a DSL called Mawl for creating form-based services for the web and telephone.

We focus on Mawl's form abstraction and show how it supports the software life cycle
through appropriate abstraction, restriction and compiler support. We discuss how the DSL
approach has helped solve several software engineering problems that arise with the creation
of web and telephone services. When applicable, we consider how these results generalize to
other domains. Finally, we consider the shortcomings and pitfalls of Mawl in particular and
of the DSL approach in general.

A. The Domain: Form-based Interactive Services

Our domain of interest is that of services in which a user interacts with a remote computer
for the purposes of completing some transaction, which may involve browsing an information
space, selecting items, providing responses to queries, etc. A service might be as simple as
entering a name to get a telephone number or as complex as ordering from a catalog.
A form-based service is one in which the
ow of data between service and user is described

by a sequence of query/response interactions, or forms. A form provides a user interface
that presents service data to the user (such as a list of accounts), collects information from
a user (such as the selected account), and returns it to the service.

Correspondence contact: tball@research.bell-labs.com, Room 2A-314, 263 Shuman Blvd., Naperville, IL 60566.

2 Both web services (such as FedEx's package tracking service and Amazon's bookstore)
and traditional interactive voice response (IVR) telephone services �t the form-based service
paradigm. A web service sends an HTML (HyperText Markup Language [BLC95]) page
to a user's graphical browser, providing information and a set of input �elds to request
information such as account and password. Upon receiving a response from the user, the
service sends another page (or form, in our parlance). An IVR service typically presents a
user with a menu of choices (\For Jazz Music, press 1; for Classical Music, press 2; ..."),
collects a sequence of digits or performs automatic speech recognition, and then presents
information or another menu.

B. Mawl: A DSL for form-based services

Mawl is a DSL for programming form-based services in a device-independent manner [LR95],
[Aea97], [ABea97]. Mawl de�nes a software architecture that separates the speci�cation of
service control
ow and state management, which we refer to as \service logic", from the
speci�cation of a user interface. Mawl's form abstraction is the means for enforcing this sep-
aration of concerns through a functional interface similar to an interface de�nition language
(IDL).
Mawl's form abstraction illuminates how DSLs can improve many parts of the software de-

velopment life cycle. The form abstraction has provided straightforward solutions to several
software engineering problems:
� Well-formedness of web services. The Mawl compiler can ensure that the service logic and
HTML input to it are both internally consistent and also that they are consistent with one
another.
� Implementation
exibility and platform independence. Because Mawl's language abstrac-
tions hide the details of the Common Gateway Interface (CGI) and HyperText Transmission
Protocol (HTTP) [BL95]) from the programmer, the compiler is free to choose di�erent
implementation strategies for the same service logic to address issues of scalability and
portability.
� Prototyping services. Many programmers equate \prototyping languages" with typeless,
interpreted languages such as perl [WS90], tcl [Ous94] or ksh [Kor86] that support a fast
edit-compile-debug cycle. In contrast, Mawl supports prototyping of web services via a static
type system, allowing services to be run from a web browser without the need to write any
HTML.
� Testing and validation. Automated testing of web services is di�cult and tedious if the
only way to interact with a service is through a web browser. Furthermore, web services are
inherently concurrent programs requiring coordination of access and updates to persistent
data, since di�erent users can simultaneously access a service. Mawl's separation of service
code from user interface description allows the service code to be run and tested in a batch
mode, independent of a particular browser.
� Supporting multiple devices. One measure of a DSL is how well it supports unplanned
changes. Mawl �rst targeted the graphical web browser, but naturally accommodates the
integration of new devices into existing services. We will describe how Mawl allowed us to
develop services accessible via both the graphical web browser and the telephone.
� Composing web services. Many web services query, collect, and integrate information from
other web services (i.e., see MetaCrawler [SE95]). The only programming interface available
to most web services is via an HTTP request, which returns HTML that must be parsed
to extract the desired information. The Mawl form abstraction substantially simpli�es the
programming of services that must interact with remote web services.

3� Usage analysis. The creation of a service is just a small part of the software life cycle.
Analysis and maintenance of a service are necessary to keep the service up-to-date and
functioning properly. The form abstraction is a natural place to monitor all user/service
interactions and record a log of interesting events. A Java applet allows programmers of
Mawl services to analyze usage patterns once a service has been deployed.

C. Overview

Section II presents a brief history of Mawl and describes the basics of the Mawl service
architecture and language. Section III shows how the Mawl form abstraction has helped
address seven problems in service creation, analysis, and maintenance. Section IV further
evaluates Mawl and the DSL approach in the context of a large Mawl application, the
LunchBot. Section V summarizes the paper.

II. Mawl: History, Software Architecture, and Language

This section describes a brief history of Mawl, the Mawl service architecture and its im-
plementation in a DSL, and some necessary details of the language.

A. A Brief History

Mawl was created in early 1995 because of di�culties experienced in programming form-
based web services using CGI programs and the HTTP protocol.
With the HTTP request/response protocol and CGI, a program is executed to respond to

an HTTP request from a browser. Once the program has sent the requested data (usually an
HTML document), it terminates. However, many services require sequencing between pages,
and the maintenance of persistent state on the server. The HTML page created by one CGI
program may contain a URL (Uniform Resource Locator) pointing to the next program to
execute. Thus, the control
ow of the service becomes split across pages and the multiple
programs associated with these pages, and intermingled with the user interface description
(that is, the HTML).
A direct analogy is helpful: URLs, HTTP, CGI are the GOTOs[Dij68] of the 1990's; they

are low-level mechanisms that, when used directly by programmers, unnecessarily compli-
cate the creation of web services. The idea of structured control
ow common to modern
sequential languages is lost. CGI programmers encode control
ow as assembly language
programmers do, with direct jumps rather than structured control
ow constructs.
To address this problem, Mawl presents an architecture for form-based services that is

independent of the HTTP and CGI protocols. Programmers are given the illusion of a
traditional imperative sequential language in which they may code a centralized service,
rather than a set of programs coupled indirectly through HTML pages. This language is
independent of a particular markup language such as HTML.

B. The Mawl Software Architecture

Figure 1 illustrates the Mawl software architecture and the
ow of information (integer
labels). A Mawl service consists of one or more sessions. A session speci�es the control
ow
of a service and the update of service variables. Typically, each session controls a di�erent
aspect of the service (e.g., there may be a session for general users and another session for
the administrators of a service). A session communicates with the user via a form, which
de�nes the data to be presented to the user and the data to be accepted from the user. A

4 Session Template

user
data

service
data

Form

request
(HTML)

response
(HTTP.GET)

 Web
Browser

Service
 Logic

Interface Between
Service and User User

.mhtml
.mawl

1
2

3

4

5

Fig. 1. The Mawl software architecture. Integer labels show
ow of data.

template de�nes the static portion of a user interface as well as the dynamic portions that
are parameterized by values passed to the form by a session.
Figure 2 contains a simple Mawl service that will be used to explain the three abstractions

in more detail.

B.1 Sessions

A session is a sequential program that communicates with the user by making method calls
on forms. A session is speci�ed using standard imperative constructs for looping, conditional
control
ow, procedure calls, exceptions, etc.
In our example, there is one session, Greet, that communicates twice with the user, �rst

prompting for the user's name and then greeting the user, displaying a count of the visitors
to the service, and the elapsed time between the presentation of the �rst and second forms
to the user. The service logic, written in Mawl, is shown in Figure 2(a).
Mawl provides a persistence model that allows programmers to specify the type of storage

required for Mawl variables. Each session instance has its own environment for local variables
(declared by the keyword local). A global environment contains global variables (declared
by the keyword global) that are shared and persist across all session instances. As multiple
sessions may be active at the same time, concurrency control is required for updating global
variables. A block-structured region statement provides mutual exclusion of statement
execution for concurrency control.
In our example, the variables GetName, ShowInfo, time now and i are local variables,

while access cnt is a global variable. In this simple example, concurrency control is not
needed since the variable access cnt is updated atomically in the expression ++access cnt.

B.2 Forms

The only way for a session to interact with the user is through a simple input/output
abstraction called a form.
A form is an object with a parameterized method put, which takes a record of data as

input and returns a record of data as output. The input record represents service data to
be sent to the user and the output record represents user data collected from the user. The

5(a) Greet.mawl:

global int access_cnt = 0;
session Greet {
local form {} -> { string id } GetName;
local form { string id, int cnt, int time } -> {} ShowInfo;

local int time_now = minutes();
local string i = GetName.put({}).id;
ShowInfo.put({i, ++access_cnt, minutes()-time_now});

}

(b) GetName.mhtml:

<HTML><HEAD><TITLE>Get-Name Form</TITLE></HEAD>
<BODY>Enter your name: <INPUT NAME=id> </BODY></HTML>

(c) ShowInfo.mhtml:

<HTML><HEAD><TITLE>Show-Info Form</TITLE></HEAD>
<BODY>Hello <MVAR NAME=id>, you are visitor number <MVAR NAME=cnt>.

Time elapsed since first form is <MVAR NAME=time> minutes.
</BODY></HTML>

Fig. 2. A Mawl service (a) that asks the user for a name through the form GetName and then uses the
form ShowInfo to display their name, how many visitors to the service there have been, and the time
elapsed between the presentation of the �rst and second forms. The HTML templates corresponding to
the forms are (b) GetName.mhtml and (c) ShowInfo.mhtml.

Mawl form declaration speci�es the type of the service data and user data records.

The �rst two lines of session Greet in Figure 2(a) declare two forms, GetName and
ShowInfo. A form is declared with a type signature specifying the structure of the expected
service data and user data. The form GetName has type fg -> fstring idg, meaning that it
expects no data from the service (thus, the empty record fg) and returns a record containing
a string named id.

The session Greet �rst provides GetName with its required (empty) input record and
receives back a record containing the string �eld id. This string is extracted into the variable
i. The service then supplies ShowInfo with a record containing three values: the user's name,
the updated access count, and the elapsed time. The empty record returned by this form is
ignored by the session.

There is a close connection between the form notation and interface de�nition languages
(IDLs). An IDL is a language for describing the interfaces of a software component. An IDL
speci�cation describes the input/output signature of an operation, where a set of operations
comprises an interface. CORBA [Gro95] (Common Object Request Broker Architecture)
and RPC [Sri95] (Remote Procedure Call) both have IDL speci�cation languages. Just as
with forms, IDL programs only express the signatures of operations, but do not describe
their computation. We will return to this comparison later in Section III-B.

Another way to view a form is as a contract between the programmer creating the session
code and the graphic designer creating the HTML templates for the service. The form
enables both people to work independently, con�dent that if they respect the form's type
signature then the service logic and the HTML can be combined with no con
ict. The Mawl
compiler will check this \contract", as described later.

6 Support for the development of form-based database applications is discussed in [RS82],
[Row85]. In [RS82], a Form Application Development System (FADS) is described. Here
a form is a database tuple, relation, or sequence of tuples and relations. A form does not
capture, as Mawl's forms do, how data
ow from service to user and vice versa. Instead, forms
have associated operations that are de�ned in a database query language. Communication
between users in a FADS application is through a shared database. In [Row85], the form-
based approach is taken farther by making the development environment itself totally forms-
based, so that a developer de�nes the forms of an application interactively by �lling in forms.
The use of C-like syntax in Mawl forms exempli�es the DSL design tenet that familiar

notation should be used when they are suitable. Note however, that Mawl programs are not
simply translated by the Mawl compiler into C, with the C-like parts of a form una�ected.
Instead, C-like syntax is used in Mawl as a familiar notation for types and expressions.

B.3 Templates

Each form may have one or more templates associated with it. The association in the
example here is by common name | the form name used in the Mawl code is that of the
template �le.
A template is a document in some markup language (such as HTML) that has been

extended with marks that refer to service variables. These marks allow documents to incor-
porate service data at run-time.
MHTML is an extension of HTML that is used for creating HTML templates. Figure 2(b)

and (c) show templates written in the language MHTML. The additional marks found in
MHTML allow for substitution of service data into a form.
MVAR is an MHTML mark for accessing form's service data. This mark indicates substi-

tution of scalar service data (integer, string, etc.) into the generated HTML. User data are
represented by the standard HTML user-input marks such as INPUT and SELECT; the NAME

attribute of these marks is the name of the user data variable.1

A template represents one possible \implementation" of a form's put method, for a par-
ticular browser that will \execute" it. A form may have no template associated with it,
which has interesting implications for prototyping services (Section III-C). Furthermore, a
form may have multiple templates associated with it, which is useful for supporting multiple
devices or browsers (Section III-E).

C. Mawl Types

Mawl has four basic types: integers,
oats, booleans, and strings; and three complex types:
records, lists, and forms. Mawl records are similar to C structures. The syntax for de�ning
a record type is to enclose a list of (type speci�er, identi�er) pairs in braces. The example
below declares a record variable named customer with a �eld name that is a string and a
�eld age that is an integer.

local f string name, int age g customer;

Record values can be constructed \on the
y", as shown in Figure 2(a) in the argument to
put.

1Note that the MHTML in Figure 2 does not contain any FORM mark which speci�es the CGI program to be executed
upon submission of the FORM; the Mawl compiler and run-time system takes care of inserting a FORM mark and ensuring
that control returns to the appropriate point in the session with the correct state, as discussed in Section III-B.

7Lists in Mawl behave much like arrays in C, although no storage allocation is required. A
list type is denoted by enclosing another type in brackets. For example, a variable to hold a
list of strings is declared as:

local [string] names;

List elements are denoted using brackets and an integer index: names[i+1] = names[i].
Lists grow automatically to accommodate such references. List values are formed by enclos-
ing a list of values in brackets:

charlist = ["a", "b", "c"];

As illustrated earlier, the syntax for form types is the keyword form along with a service
type and a user type, separated by the token ->. The service and user types must be record
types. For example,

form f [float] temps g -> fg show temps;

can be used to display a list of temperature values, as shown below:

show temps.put(f [0, 10.5, 20, 30] g);

D. MHTML

As explained previously, scalar data is inserted into a template with the MVAR mark. List
data is inserted with the MITER mark. The construct <MITER>...</MITER> iterates over
Mawl lists and generates HTML that is dependent on the list element values. A natural use
of MITER is to display a table with a variable number of rows. The NAME attribute of MITER
speci�es the name of a list in a form's service data. The additional MCURSOR attribute names
a new cursor variable over the list. The MHTML enclosed between <MITER> and </MITER>
is repeated for each element in the list, with the value of the cursor variable set to the index
for that iteration. Other MHTML marks may then use Mawl's list element notation to refer
to list elements.
The MHTML below shows how a list of temperatures might be displayed in a single column

table:

<HTML><BODY>
<TABLE>
<MITER NAME=temps MCURSOR=i>
<TR><TD><MVAR NAME=temps[i]></TD>/TR>
</MITER>
</TABLE>
<BODY><HTML>

The <MITER> mark iterates over the temps list and i is the name chosen for the index used
in the subsequent MVAR mark.
The extension of HTML to MHTML illustrates another basic DSL design tenet. Here the

need for a language with capabilities similar to HTML was designed by extending HTML
in a style consistent with HTML. This approach contrasts with the use of C-like syntax in
Mawl, because there a small fragment of C was adopted, rather than extending C.

III. Benefits of the Form Abstraction

This section focuses on several software engineering problems that the DSL approach
helped to address. We describe each problem, our solution, and how the domain-speci�c
approach helped provide a solution. We also discuss whether these problems and solutions
would apply in other domains.

8A. Compile-time Guarantees

For complicated web services, we would like to guarantee at compile time that a service
will generate only valid HTML. Furthermore, we would like to know that this HTML is
consistent with the service logic. That is, that the service is prepared to deal with the values
that may be entered by the user for a given page of HTML. Such consistency checking is
di�cult to achieve in general purposes languages, in which HTML is generated using print
statements.
Mawl's division of a service into sessions, forms, and templates allows consistency checking

to be performed at compile time. First, the sessions and the MHTML can be independently
analyzed to ensure that they are internally consistent. For the sessions, this means standard
type checking and semantics checking. For MHTML templates, this means verifying that a
template is legal MHTML.
Additionally, a session (i.e., Greet.mawl in Figure 2) and the MHTML templates can be

checked against one another. The form abstraction makes this possible by providing a type
signature expressing the structure of a service/user interaction. The MHTML represents the
body of a form's put method and can be analyzed to ensure it is consistent with the form's
type signature.
For example, Figure 2(b) shows the content of the �le GetName.mhtml, which is the

MHTML template associated with GetName form. This template contains no uses of the
MVAR mark and contains one INPUT mark named id, which is consistent with the type sig-
nature of the associated GetName form. Similarly, the template in Figure 2(c) agrees with
the ShowInfo form, since the template has MVAR marks referring to the service data id, cnt,
and time and has no INPUT marks.
Another example of a consistency check is to ensure that only values of type list are used

in MITER marks. It is not required that the MHTML refer to all the service data passed to
a form, which is useful for multi-device services, as discussed in Section III-E.
Consistency checking of two languages against one other is an interesting problem that

arises in the area of embedded languages, which is a common approach to constructing
DSLs. An example of such an embedding is that of the declarative database query language
SQL [SKS97] in the general purpose language C [KR88]. Generally an embedding of SQL
in C uses some escape character to pre�x a line containing SQL and the SQL can contain
references to C variables that are input to the SQL query. A preprocessor over the C code
extracts the lines needed to build the SQL query. The intermingling of the two languages
makes static type checking of the embedded language (SQL) di�cult.
Rather than embed MHTML directly in the Mawl language, we used the form, a functional

interface, to moderate between the two languages. The HTML language was extended (to
MHTML) so that values in the Mawl type system can be substituted into MHTML and so
that static checking can be performed on MHTML and between Mawl and MHTML. The
MHTML is the body of the form's put method and can be type checked against the form's
type signature. This degree of compile-time checking is much greater than traditionally
found in embedded languages.

B. Implementation Flexibility

A common problem with web services is that of scaling to larger hit rates. While the CGI
protocol is conceptually simple, it has high overhead because of the large amount of process
creation and destruction that can take place, as detailed later. As a result, a web service
that commits to a particular implementation model may run into trouble later if the service

9

*.mhtml
*.mpml

foo.mawl run-time
library

CGI
executable

Mawl compilation
Input Output

Server

 Mawl
compiler

C++ or
SML
compiler

C++ or SML
 host code

Fig. 3. The Mawl compilation process.

becomes popular.
We consider how Mawl code is compiled to an CGI-based implementation and also show

how it can be compiled to a more e�cient server-based implementation. The Mawl service
architecture supports implementation
exibility via the centrally speci�ed control
ow of a
session and via the form, which identi�es where a session relinquishes control to the browser
and where control returns to the session.
A Mawl service can be compiled either to a CGI executable (which is run by an HTTP

server) or to an HTTP server. Figure 3 shows the Mawl compilation process, to which there
are three inputs: the Mawl code; document templates, written in MHTML or MPML (�nd
more on MPML in Section III-E); and support code, written in a host language. The Mawl
compiler takes the �rst two inputs and performs the traditional compiler steps of lexing,
parsing, semantic checking, and code generation. The Mawl compiler generates code in the
host language. This code is compiled by the host language compiler along with the input
support code. Currently supported host languages are C++ [Str86] and Standard ML of
New Jersey [MA91]. A compiled Mawl service is linked with a run-time library to form a
complete executable.
In the CGI implementation, the Mawl compiler ensures that session state is properly

stored between HTTP requests. A session is started by an initial HTTP request, creating
a CGI process. When a session provides service data to a form's put method (step 1 of
Figure 1), HTML is created using an appropriate template and sent back to the browser
(steps 2 and 3). At this point, the session execution is suspended and its local variables are
stored on disk or in a database. Finally, the CGI process exits. When the user submits the
HTML page (resulting in a new HTTP request|step 4 of Figure 1), a new CGI process is
started, resuming the session from the point of suspension (step 5), with its state restored.
Mawl inserts a session identi�er into the HTML so that the subsequent HTTP request will
be mapped to the correct session instance. This mapping could also be accomplished using
cookies. Sessions that have been dormant for longer than a parameterized time-out (typically,
2 days) are garbage collected.
The CGI model has high overhead because of the amount of process creation and destruc-

tion that takes place (one process for every form put executed by a session). Since the Mawl
language makes no commitment to a particular implementation model, the Mawl compiler
can generate other implementations to address issues of overhead, as was done with the
server implementation. In this implementation, a Mawl service compiles to an HTTP server,
in which each session instance is a lightweight thread. The compiled put method of a form
simply suspends the thread after sending the HTML to the browser, as compared to the CGI

10implementation which requires saving session state to disk. In the server implementation,
session state remains in memory and the thread is resumed upon receiving the next HTTP
request.
Returning to our comparison between the Mawl form and interface de�nition languages,

we see that the Mawl compiler acts like an IDL compiler. An IDL compiler takes an IDL
program and produces the code to manage the transfer of data between the sender of a
message (client) and the receiver (server). In the Mawl programming model, the sender of a
message is the web service, although this \send" operation compiles to code that responds
to an HTTP request. Stated another way, from the programmer's point of the view, the
service initiates a request to the user even though it is actually responding to a request from
the user. Thus, Mawl reverses the roles of client (browser) and server (web service). Mawl
provides a valuable service to programmers by shielding them from the low-level details of
the client/server interaction.

C. Prototyping Services

The initial implementation of Mawl required that a programmer provide a correctly-typed
MHTML template for every form declared in a session. We found that programmers often
complained about this requirement, stating that it con
icts with the need to prototype and
deploy services quickly. They refer to the advantages of type-free languages such as perl,
tcl, and ksh, which are traditionally used to create CGI programs. These languages support
prototyping by o�ering fast turnaround in the edit-compile-debug cycle, as they perform
little to no semantic analysis and are interpreted.
To address this problem, the Mawl compiler was modi�ed so that the sessions could be

compiled and executed without MHTML templates. This required no change to the Mawl
language. The Mawl compiler now generates a default MHTML template when none exists
for a form, using the form's type signature (more on this below). Thus, as a soon as a service
compiles, a programmer can interact with it via a web browser.
With the new implementation, we get the best of both worlds. Static type checking not

only prevents a large class of run-time errors in Mawl services, but also assists in prototyp-
ing since the programmer is not required to code MHTML to execute a service. Developer
experience with this feature has been positive. Mawl's static type system allows the execu-
tion of \incomplete" services that contain little or no MHTML. In languages such as perl,
programmers are forced to specify some behavior for the incomplete part of a service.
The problem of generating default MHTML from a form's type signature highlights aspects

of service speci�cation that the form abstraction does not address. The essence of a form
is that it expresses the
ow of information from service to user and back. However, it does
not capture any coupling between the outgoing and incoming data that is often expressed in
user interfaces. For example, given a form type signature

f [int] intlist g -> f int i g

what user interface should be generated? There are at least three possible interpretations:
� select an integer from a list of integers, returning the selected integer
� select an integer from a list of integers, returning the index of the selected integer
� present a list of integers, collect an integer from the user, and return it
In the �rst two interpretations the returned integer is coupled to the input list. In the third
it is not. Our current translation of a form type signature to MHTML does not assume a
coupling between the service data and user data. For the above example, the translation
presents the list of integers and a separate input �eld for collecting an integer from the user.

11This points to a possibility for a third sub-language in Mawl, or the use of dependent
types [Mac86], which would express the constraints between the service data and user data
of a form. An example constraint might state a user �eld is \one-of" a list �eld in the service
record. Such constraints would be optional and could serve two purposes: to generate better
default user interfaces, and to ensure that MHTML, when provided by the programmer, is
consistent with the constraints.
The need for the integration of multiple languages is a key aspect of the domain-speci�c

language approach. A domain typically consists of multiple sub-domains, each of which may
require its own particular language. In case of Mawl, there are two core sub-languages: the
imperative C-like sub-language of sessions and the declarative sub-language of MHTML. A
constraint sub-language that would allow the programmer to express expected or required
properties of sessions and forms would be quite valuable.

D. Testing and Validating

Testing of interactive services is an onerous task. One di�culty is that the only way to test
a service may be through the graphical user interface it provides. While a GUI may aid the
end-user, it is an obstacle to the tester who is concerned with exercising some aspect of the
underlying service logic. Another di�culty is that a web service is inherently a concurrent
program, as it is accessed simultaneously by many users. This requires coordinating access
and updates to persistent data and ensuring such properties as the absence of deadlock,
livelock, etc.
Mawl's separation of a service into an executable set of sessions and a set of HTML

templates (joined through the form abstraction) makes it possible to execute a Mawl ser-
vice under the control of entities other than web browsers. In particular, a Mawl service
can be combined with a testing harness to allow batch testing and even state-space explo-
ration [God97] of Mawl sessions executing in parallel.
A testing harness simply provides an alternative implementation for each form's put

method. The harness can check that the input to a put method meets various require-
ments. If it does, the harness can supply the return value of the put method from a test
�le associated with the form. A tester can construct scenarios, develop the necessary test
�les and drive the service through the scenario, checking invariants along the way. A web
browser is not required. While it is possible to test a web service by writing test programs
that interact with the service via HTTP requests, these programs must parse the HTML
produced by service to determine if the HTML contains valid values. Since Mawl test har-
nesses receive values directly from the service (via the put method of a form, rather than in
HTML), they are much simpler to write and maintain.
Mawl enforces a classic separation of control and data, analogous to that found in some

�nite state machine formalisms (such as VFSM [FHS95]). Finite state machines formalisms
do not model data structures, thus enabling e�cient state space exploration. Although Mawl
is not �nite state, it does separate the speci�cation of control
ow and state management
from user interface, allowing Mawl sessions to be tested independently of a particular user
interface.

E. Multi-Device Services

Accessibility is a key problem for interactive services. One may access a banking service at
home from a graphical web browser. How can one access this service with a cell phone? If two
versions of the service are provided, the problem of maintaining consistency between them

12 Session Templates

user
data

service
data

Form

Service
 Logic

Interface Between
Service and User User

.mhtml
.mpml.mawl

 Web
Browser

Phone
Browser

PML

HTML

Fig. 4. Supporting multiple devices with the same service logic.

arises. Typically, programming of interactive voice response (IVR) and web services is done
by separate development teams using di�erent programming environments. Coordinating
the activities of the two teams to ensure that the two services present a consistent view of
the bank and its services to the customer can be di�cult in such a situation.
The Mawl architecture supports access from various devices by allowing multiple templates

to be associated with a form, as shown in Figure 4. Mawl uses the identity of the browser
to determine whether to use an HTML template (for the web browser) or a Phone Markup
Language (PML) template (for the telephone). PML is a superset of HTML, extended
to describe content for interpretation over a telephone. Telephone access to web content is
provided by a system called TelePortal, developed at Bell Labs. TelePortal fetches documents
from the web, and \reads" them over the telephone via IVR systems. It can also collect data
from a user, typically via touchtone or automatic speech recognition.
Clearly, a web browser has much greater capacity than a telephone to present and collect

data. While it is easy to turn an IVR service into a web service, creating an IVR service
from a web service presents some interesting di�culties. Telephone access to a web service
will typically o�er less functionality than a web browser.
We have built services that are accessible via both the web and telephone, including

the Any-Time teller, a prototype banking service. In these services, there is one service
speci�cation that drives all devices | only the templates change to accomodate new devices.
A self-service banking application (such as the Any-Time Teller) uses the same set of forms for
both web and telephone interfaces. However, the presentation of information and collection
of the information di�er radically. In general, a given interaction over the telephone will
present less information and collect less information than the corresponding interaction over
the web.
As a concrete example, consider the form used for authentication in the Any-Time Teller,

which has type signature

f g -> f string name, int acctid, int pin g

On a web browser, an HTML page with three input �elds corresponding to the three record
�elds above is presented: the user may enter either her name or account id, and a PIN
to login. Entering alphabetic characters over the telephone touchpad is tedious and error-

13

remote
service
data

local
service
data

Form

request
(HTTP.GET)

response
(HTML)

Local
Service

Remote
Service

.mhtml

Web
Server

1 2

3

4

5

Fig. 5. Using the Mawl architecture to interact with remote web services. Integer labels show
ow of data.
Compare the use of the template with Figure 1

prone. Thus, the login form should prompt the user only for an account id and PIN, which
are integers. Di�erent templates for the form are used to achieve this. The MPML template
does not contain an INPUT mark for name. As a result, TelePortal does not prompt the user
for a name, but returns a null value for the �eld name. The MHTML template does include
an INPUT mark for the �eld name.

F. Composing Web Services

A simple but powerful attribute of the web is that new web pages can be easily linked
to existing web pages. However, sometimes one wants not merely to link to other web
pages, but to combine, collate, or present information from other pages. For example, the
MetaCrawler [SE95] collates results from several search engines. Another example is a web
service through which customers can order products. This service might query a courier
service (such as FedEx) to show the order's status to a customer.
Web services like these can be composed using existing programming tools such as CGI

programs. However, the programming work is tedious, as it involves sending low-level HTTP
messages and parsing the retrieved HTML documents to extract the information of interest.
With forms and templates Mawl services can extract data from other web services and

treat it as user data. Figure 5 illustrates the scheme. We use the term \local service" to
refer to the service the Mawl programmer is creating. Compare the data
ow and use of
templates in Figure 5 with that of Figure 1. In Figure 1, a form interacts with a web browser
by combining service data with a template to create HTML that is sent to the browser (as
a result of the current HTTP request), and receives user data in response (from the next
HTTP request). In Figure 5, a form interacts with a remote web service by sending an HTTP
request (parameterized with local service data) and extracts remote service data from the
HTML document returned by the remote service.
Templates play a special role in composing web services. Figure 1 shows that in the usual

case MHTML templates are used to generate HTML that is parametrized by service data.
Here the MVAR marks specify where service data should be inserted into the template. In
Figure 5, MHTML is used as a language for pattern matching against an HTML document.
Here, the MVAR mark of MHTML is used to bind values in the HTML document to �elds
in the form's output record. For example, the ShowInfo.mhtml template in Figure 2(c) can
be used to extract the name, count and time information from an HTML document of this

14structure.
The implementation of this feature requires only that a new query method for forms be

added to Mawl. To access the remote service, query is used instead of put. The method
query takes as input the URL of a remote service, and a record of local service data. Invoking
the method causes an HTTP request to be sent to the remote web server. The received
HTML is then matched against the MHTML template to extract the relevant data.
We have described the composition of web services in Mawl to show how the use of

separate sub-languages supports the composition of web services. Composition is provided
by templates, which were originally intended to de�ne a device-dependent mapping of data
to presentation, but can also be used to map a presentation to the data it contains.
There are other tools and approaches that are more sophisticated in their approach to

handling the problem of composition. WIDL, the Web Interface De�nition Language [All97]),
is an instance of the eXtensible Markup Language (XML, [BPe98]). Using WIDL one can
describe services, their locations, and their inputs and outputs. WIDL output descriptions
allow data to be extracted from speci�c points within a page of HTML. WIDL is more
specialized than Mawl, as it is used to describe existing web services, not to create new
ones. Also, WIDL combines the information that Mawl separates into forms and templates.
However, WIDL's features for extracting data from web pages are more sophisticated than
Mawl's. For example, with WIDL one can combine pattern matching with references to
the structure of a web page. Also, it has an exception-handling mechanism that allows an
alternative description of a page's outputs to be used if a �rst description does not match a
page.

G. Usage Analysis

While tools for the construction of web sites and services are numerous, most of these
tools lack support for the analysis and modi�cation of a service. Usage analysis can help
one restructure a service to meet the needs of users better, or improve its performance. For
example, analysis of a service might show that users routinely follow paths through a service
that are more complicated than necessary. By identifying the pattern and restructuring the
service, the service can be improved.
Mawl's form abstraction provides a centralized point to monitor the interactions between

service and user. Such monitoring may be di�cult to achieve if services are programmed in
an ad-hoc fashion.
When a session invokes a form's put method, instrumentation records the service data sent

to the form, the template used to create the user interface, other session-speci�c information
(such as the session identi�er and current source line), and timing information. When a
user responds to a form, instrumentation records the user data. With forms, we can record
not only the amount of time between a request and a response, but the amount of time
between the response to one form request and the next. This allows measurement of service
performance.
The Mawl system includes a data visualization component called PathView, which is a

Java applet that displays user interaction with a service as paths through a graph. As an
example, we use PathView to analyze the usage of the LunchBot, a web service for ordering
weekly group lunches, which will be described in more detail in Section IV.
Figure 6 is a bar chart showing LunchBot activity by hour and weekday. Friday usage is

highlighted, since all lunches in the period covered by the charts were held on Friday. The
weekday chart shows that the LunchBot was used mostly on Thursday and Friday. The
hour chart shows that most use occurred on Friday morning. Most people wait until the last

15

Fig. 6. A bar chart view of LunchBot usage.

(a) (b)

Fig. 7. A typical LunchBot scenario: ordering lunch (a). The \list orders" variant (b).

two hours before lunch on Friday to order (after an e-mail message is sent announcing the
imminent closing of the Lunchbot).
One goal of path analysis is to identify common sequences of user interactions and tune

the services to create \shortcuts" for these scenarios. Figure 7(a) shows a common scenario
in the LunchBot: one user ordering lunch. The x-axis represents the sequence of form puts.
The y-axis shows the name of the form presented to the user. The visual pattern is that of
a mountain peak.
Figure 7(b) shows several users ordering lunch. Here, we see the mountain peak pattern

as users order lunch. However, in these scenarios, users use the \list order" capability of the
LunchBot, which presents the items that have been ordered so far by all users. Some users
list orders before ordering lunch (black path). Other users list orders after ordering lunch
(grey path). The frequent occurrence of the (list orders, order lunch) sequence suggests that
users like to see what items are popular. Annotating the favorite items on the menu would

16

mainlogin

goodbye menu

acknowledge

list orders get payment

acknowledge

order
lunch

view
orders

record
payment

...
exit
bot

verify order

Fig. 8. High-level service logic of the LunchBot. Rectangles represent HTML pages.

provide a simple shortcut replacing the more complicated sequence of interactions.

IV. Evaluation of Mawl

In this section we describe our experiences with applying Mawl to web service program-
ming. The description will primarily focus on our experience developing the LunchBot, a
service for collecting orders from customers. As the name suggests, it was originally con-
ceived as a means to gather lunch orders, with the customers choosing items from menus.
However, we have since applied it to many related areas, including catalog orders, ticket
sales, and surveys.
The LunchBot uses password-protected accounts to control access to the system. A special

administrator account is used by the operator of the service. This account lets the admin-
istrator create menus, which represent lists of items. (The term menu is again historical;
a menu can be the luncheon dishes supplied by a restaurant, the items available through a
catalog, or the questions to be answered in a survey.)
The administrator can also open an event, selecting a menu from which orders are to be

taken. The service collects the necessary information about the event, such as the date of
the event and the date by which orders must be placed, and e-mails an announcement to the
potential customers. Customers use their accounts to log in to the service and place orders
by selecting items from the menu. The LunchBot computes the total charge for the order
and deducts it from the customer's balance.
Once the orders have been collected, the administrator closes the event so that no more

orders may be taken. The administrator then places the order (for example by faxing it to
a restaurant). When the order has arrived, the administrator uses the service to inform the
customers via e-mail. The administrator also enters the amount paid for the order. The
LunchBot does all the necessary bookkeeping to keep track of customer balances and the
amount that should be in the lunch kitty.

17

HTML Layout

Service Logic

(a) Shell/Awk Implementation (b) Mawl Implementation

Fig. 9. A global overview of two implementations of the LunchBot.

The LunchBot consists of several smaller sub-services, such as ordering lunch, examining
orders, creating menus, opening events, and so forth. This led to a simple top-level code
architecture, as shown in Figure 8. After logging into the system through an initial series of
forms, the user is presented with a primary form that lists the various sub-services as links.
The set of links displayed depends on whether the user logs in as the administrator or as
an ordinary customer. Each link leads to a short series of forms that gather the necessary
information for that sub-service and update the service data as appropriate. A typical use
of the service consists, as shown in Figure 7, of a sequence of these sub-services, possibly
with repetitions of individual sub-services.
The service data is held in several tables. For example, one table holds account infor-

mation, with each row corresponding to a single user and the columns holding the various
information �elds (account name, encrypted password, user name, e-mail address, balance,
and so forth). Other tables hold the menus, events, and orders. These tables are represented
in Mawl as arrays of structures, with each array element being a table row.
The complete LunchBot consists of about 2800 lines of Mawl code and 1800 lines of host

(C++) code. Much of the host code performs operations on the lists that represent the
service data tables, for example selecting those rows associated with a particular user.

A. Mawl Compared with CGI Programming

The utility of Mawl as a service programming language may be evaluated by either of
two criteria. The �rst is to compare the programming e�ort for a Mawl program with that
for an equivalent CGI-based program (e.g., using a combination of shell scripts and Perl or
awk programs). When considered in this way, we have found Mawl to be clearly superior to
CGI-based programming.
Figure 9 presents a graphical comparison of a previous implementation of the LunchBot

(in shell script and awk) with the Mawl implementation. Each rectangle represents a �le
and each line in a rectangle represents a single line of code, with length and indentation
re
ecting that of the underlying source code. Lines are colored to show whether they are

18part of service logic (grey) or user interface (black). The shell/awk version of the Lunchbot
(a) shows how service logic and HTML typically are intermixed in services created this way.
The Mawl version (b) cleanly separates the service logic and HTML.
Mawl's imperative programming model was successful. Programmers could develop ser-

vices using familiar
ow-of-control constructs, rather than having to chain together many
separate programs. This was, of course, greatly facilitated by the invisible way in which
Mawl handles state saving and restoration across CGI process boundaries.
The Mawl form-based I/O model, in which the service programmer can treat a form as a

function from one type of data structure to another, also was e�ective. Again, the way in
which Mawl completely hides the complexities of the HTTP transport protocol and the CGI
interface are a signi�cant improvement over CGI-based programming.
The data-sharing model of Mawl, in which program variables may be either local (local)

or shared (global), was adequate for the data-sharing requirements of the LunchBot. The
LunchBot data tables are stored as global shared variables, and are thus accessible by all
instances of the service. Mawl's region construct, which allows control over mutual exclusion
of code execution, was su�cient to manage access to the data and prevent corruption due
to concurrent modi�cations by di�erent users.
Finally, the compilation cycle of Mawl was su�ciently fast to allow an incremental proto-

typing of the service. This had been a concern, especially as the cycle requires two compi-
lation steps (translation of Mawl to C++, followed by compilation of the C++). However,
even for the relatively large LunchBot service, the whole compile time is under one minute
on our SGI web server. The testing portion of the cycle was much easier in Mawl than in
CGI-based systems, where it is often di�cult to test the individual programs without �rst
creating a major portion of the service.

B. Mawl as a Service Programming Language

The second means to evaluate Mawl is to consider it as a DSL for programming web
services, and to ask whether it performs this role adequately. Using this criterion, we do
identify certain shortcomings of Mawl. However, these shortcomings are largely because
Mawl did not go far enough as a DSL { it does not provide suitable abstractions and language
constructs for some aspects of web programming.

B.1 Data Transformation

One major shortcoming of Mawl is in the area of data representation and data transforma-
tion. In retrospect, it has become obvious that many web services are actually interactions
with a database system, typically a relational database. A complete DSL for web service
programming should therefore provide language constructs for declaring, accessing, and ma-
nipulating such databases. In this respect Mawl is de�cient; while it provides structured
types, all data transformations must be accomplished using imperative programming con-
structs rather than a declarative query language.
We illustrate this with the LunchBot. Recall that the system data is held in tables,

exactly as used in a relational model. However, because of the limitations of Mawl data
types, each of these tables had to be represented as a global Mawl variable containing a list
of structures. Searching these lists is slow in Mawl, so a large portion of the host code is
devoted to such searches; this means, for example, that simply looking up a user account
requires reading the entire accounts list so it can be passed to a host function. Similarly,
changing a row of the table is an assignment to a list element, requiring the list to be saved

19to disk. (During development of the LunchBot, we actually modi�ed the system runtime
to permit e�cient saving and restoring of single elements of lists, precisely to address this
problem.) These operations could be performed more e�ciently if the appropriate database
concepts were built into the Mawl language as data types and operations, and were compiled
into appropriate calls on the runtime library API.
One might argue that a Mawl program could make use of an external database by placing

the necessary access functions in host code. To a great extent, this is precisely what is
done in the LunchBot. However, this is likely to result in needless programming e�ort,
particularly given our observation of the centrality of database manipulations inWeb services.
In particular, it seems almost perverse to require the programmer to write a host-language
function as a wrapper for each database access (as is currently required), when a relatively
simple SQL-like extension to the language would allow the access to be written in the Mawl
program itself.

B.2 The Back Button Problem

The other main shortcoming of Mawl was not encountered in the programming of services,
but in their subsequent use. A major complaint of LunchBot users in the �rst few weeks
after the service was available was that they cannot use the browser BACK button in Mawl.
Users of Mawl services must adapt to pressing a Mawl-supplied \Continue" button on a page
to get to the next page of the service. Previous pages represent old program states that are
no longer accessible.
This is a serious problem, in that users like to use the BACK button { for example, it is

the natural way to correct an error in form entry, rather than cancelling the entire operation
and re-starting the entry process. The main reason the BACK button cannot be used is
that certain transitions from page to page are accompanied by data manipulations that are
irreversible. For example in the Lunchbot it does not make sense to allow the user to back
up after having con�rmed an order, as that operation causes several changes which cannot
easily be undone. However, it would be perfectly reasonable to permit the user to back up
from the page where she must con�rm her order to the previous page with the menu so she
can change the order.
Restated, while the sequential paradigm of Mawl services aids programmers, it places a

burden on the users of a Mawl service. When interacting with a service from a web browser,
users expect to be able to use the browser commands to skip around from page to page.
However, in Mawl services the only valid page is the current page. The end result is that
the service controls the browsing, rather than the user.
We must also distinguish between the BACK operation, whereby the user views a previous

state, with an \undo" operation, whereby the user returns to a previous state. As browsers
have no UNDO button, and indeed most browsers do not even notify the service when the
BACK button is used, the only practical way to recognize an undo operation is when the
user attempts to resume execution from a previous page. The overall problem is additionally
complicated because most browsers provide a history list, so the case where the user tries to
undo more than one step of execution must be handled.
A possible solution, working within the sequential programming model of Mawl, is to

augment the transitions with syntactic marks that indicate whether it is possible to back
the state into or across them. These marks might also form part of an improved database
interface, as they bear obvious resemblances to database checkpointing and rollback opera-
tions. These marks would determine whether the user could re-submit a previous form, that
is, roll back the state. If the operation is allowed, the state is rolled back and execution

20resumed from the new point. Otherwise, the user is noti�ed and execution resumes at the
last-reached state.
A di�erent approach to the BACK button problem would be to re-consider the imperative

model used by Mawl. For example, the model might be replaced with a declarative language
model and reactive execution model, e.g., in the style of rule-based systems. The use of the
BACK button could then be handled by writing speci�c rules. Such a model might also
simplify other services, for example survey services in which a user must �ll out a number
of forms but the sequence in which the forms are completed is not important.

V. Summary

Mawl was created to address two speci�c problems in the creation of dynamic web services:
the lack of compile-time guarantees about services, and the low level of programming involved
in coding CGI programs. The form is the basic abstraction that helped to solve these
problems by enforcing a separation of concerns between service logic and user interface. The
Mawl service architecture and form abstraction have been quite stable since the language's
inception and have been used to solve several new problems quite di�erent in nature from the
initial two: prototyping, testing, and composing services, accommodating multiple devices,
and enabling usage analysis. The only solution that required a change to the language (and
a minor change, at that) was the composition problem. All the other solutions only changed
the compiler analysis or run-time infrastructure.

VI. Acknowledgments

Christopher Ramming and David Ladd invented the Mawl language. Thanks to other
members of the Mawl team for their input, including Michael Benedikt, Peter Danielsen,
Peter Mataga, Ken Rehor, and Curt Tuckey. Thanks to Natasha Tatarchuk for her work
on the visualization applets. Thanks also to Mooly Sagiv and Mike Si� for their perceptive
comments and recommendations.

References

[ABea97] D. Atkins, T. Ball, and et al. Experience with a domain speci�c language for form-based services. In 1997
Usenix Conference on Domain Speci�c Languages, pages 37{49, October 1997.

[Aea97] D. Atkins and T. Ball et al. Integrated web and telephone service creation. Bell Labs Technical Journal,
2(1), Winter 1997.

[All97] Charles Allen. WIDL: Application Integration with XML. O'Reilly, 1997.
[BL95] T. Berners-Lee. Hypertext transfer protocol (HTTP/1.0). Working Group of the Internet Engineering

Task Force, October 1995.
[BLC95] T. Berners-Lee and D. Connolly. Hypertext markup language (HTML 2.0). Working Group of the Internet

Engineering Task Force, August 1995.
[BPe98] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen (eds.). Extensible markup language (XML) 1.0, 1998.

http://www.w3.org/TR/1998/REC-xml-19980210.
[Dij68] E.W. Dijkstra. Go to statement considered harmful. Communications of the ACM, 11(3):147{148, March

1968.
[FHS95] A. R. Flora-Holmquist and M. G. Staskauskas. Formal validation of virtual �nite state machines. In

Proceedings of th Workshop on Industrial-Strength Formal Speci�cation Techniques (WIFT95), pages 122{
129, Boca Raton, FL, April 1995.

[God97] Patrice Godefroid. Model checking for programming languages using verisoft. In Proceedings of the 24th
ACM Symposium on Principles of Programming Languages, pages 174{186, Paris, January 1997.

[Gro95] Object Management Group. The common object request broker: Architecture and speci�cation. Technical
Report Edition 2.0, July 1995.

[Kor86] D.G. Korn. ksh|a shell programming language. Technical report, AT&T Bell Laboratories, 1986.
[KR88] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-Hall Software Series,

Englewood Cli�, NJ, Second edition, 1988.
[LR95] D. A. Ladd and J. C. Ramming. Programming the web: An application-oriented language for hypermedia

service programming. In Proceedings of the 4th International World Wide Web Conference, pages 567{586.
World Wide Web Consortium, December 1995.

21
[MA91] D. B. McQueen and A. Appel. Standard ML of New Jersey. In Proceedings of the 3rd International Sym-

posium on Programming Language Implementation and Logic Programming, pages 1{2. Springer-Verlag,
1991.

[Mac86] D. B. MacQueen. Using dependent types to express modular structure. 13th annual ACM Symposium on
Principles Of Programming Languages, pages 277{286, January 1986.

[Ous94] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.
[Row85] Lawrence A. Rowe. \Fill-in-the-form" programming. In Proceedings of the Conference on Very Large Data

Bases, pages 394{404, 1985.
[RS82] Lawrence A. Rowe and Kurt A. Shoens. A form application development system. In Proceedings of the

1982 ACM SIGMOD Conference on Management of Data, pages 28{38, 1982.
[SE95] E. Selberg and O. Etzioni. Multi-engine search and comparison using the Metacrawler. In Proceedings of the

4th International World Wide Web Conference, pages 195{208. World Wide Web Consortium, December
1995.

[SKS97] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Concepts. McGraw-Hill, 1997.
[Sri95] R. Srinivasan. Remote procedure call protocol speci�cation version 2. Technical Report Technical Report

RFC 1831, Sun Microsystems, August 1995.
[Str86] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.
[WS90] L. Wall and R. L. Schwartz. Programming PERL. O'Reilly & Associates, 1990.

