
Experience with a Domain Speci�c Language for Form-based

Services

David Atkins, Thomas Ball*, Michael Benedikt,

Glenn Bruns, Kenneth Cox, Peter Mataga, Kenneth Rehor

Software Production Research Department

Bell Laboratories, Lucent Technologies

http://www.bell-labs.com/projects/MAWL/

Abstract

A form-based service is one in which the
ow of data
between service and user is described by a sequence
of query/response interactions, or forms. A form
provides a user interface that presents service data
to the user, collects information from a user and
returns it to the service.

Mawl is a domain-speci�c language for program-
ming form-based services in a device-independent
manner. We describe our experience with mawl's
form abstraction, which is the means for separating
application logic and user interface description, and
show how this simple abstraction addresses six is-
sues in service creation, analysis, and maintenance:
compile-time guarantees, implementation
exibility,
rapid prototyping, support for multiple devices, com-
position of services, and usage analysis.

1 Introduction

A form-based service is one in which the
ow of data
between service and user is described by a sequence
of query/response interactions, or forms. A form
provides a user interface that presents service data
to the user (such as the time of day), collects infor-
mation from a user (such as her name), and returns
it to the service.

Both traditional interactive voice response (IVR)
services and newer web services �t the form-based
service paradigm. An IVR service typically presents
a user with a menu of choices (\For Jazz Music,
press 1; for Classical Music, press 2; ..."), collects
a sequence of digits or performs automatic speech

*Correspondence contact: tball@research.bell-labs.com,
Room 1G-359, 1000 E. Warrenville Rd., Naperville, IL 60566.

recognition, and then presents information or an-
other menu. A web service sends an HTML page to
a user's (graphical) browser, providing information
and a set of input �elds to request information such
as account and password.

Many services and devices �t the form-based inter-
action paradigm. For example, a banking service
might be described by a set of forms, independent
of a particular device, such as an automated teller
machine, web browser, or telephone. Presentation
and collection of information will di�er radically, as
suited to the device. A presentation of account in-
formation to a web browser might show a table of
account information, including status, balance, and
interest. The corresponding presentation to a tele-
phone would provide this information, or perhaps a
subset thereof, in a conversational manner by \read-
ing" the account information to the user. Nonethe-
less, the basic interaction (present account informa-
tion to the user) can be speci�ed via a generic form.

Mawl is a domain-speci�c language (DSL) for
programming form-based services in a device-
independent manner [LR95, Aea97]. Mawl sepa-
rates the speci�cation of application control
ow
and state management from the speci�cation of a
user interface. As a result, one can code an ap-
plication that is accessible via a web browser and,
with minor modi�cations to only the user interface
speci�cation, make the application accessible via in-
teractive voice response (IVR) platforms.

This paper describes our experience with mawl's
form abstraction, which is the means for separat-
ing application logic and user interface descriptions.
The initial impetus for the form abstraction was to
simplify the creation and maintenance of dynamic
web services1 based on the Common Gateway Inter-

1In this paper, we will generally use the word \service"
to refer to an \application", and the word \logic" to refer to

face (CGI). In particular, mawl was constructed to
provide certain compile-time guarantees about the
behavior of web services, as well as platform in-
dependence and implementation
exibility by hid-
ing the details of the CGI and HTTP (HyperText
Transmission Protocol [BL95]) protocols from the
programmer via language abstractions.

Our continued experience with mawl's form abstrac-
tion illuminates how a simple language abstraction
can improve many parts of the software develop-
ment life cycle. In addition to addressing the above
two problems, the form abstraction has provided
straightforward solutions to four other problems:

� Prototyping services. Many programmers
equate \prototyping" languages with typeless,
interpreted languages such as perl [WS90],
tcl [Ous94] or ksh [Kor86]. In contrast, mawl
supports prototyping of web services via a
static type system, allowing services to be
tested from a web browser without the need
to write any HyperText Markup Language
(HTML) documents [BLC95].

� Supporting multiple devices. One measure of a
domain speci�c language is how well it supports
changes that were not directly planned for in its
initial design. Mawl �rst targeted the graphi-
cal web browser, but naturally accommodates
the integration of new devices into existing ser-
vices. We report on our experience in develop-
ing a number of services accessible via both the
graphical web browser and the telephone.

� Composing web services. Many web ser-
vices query, collect, and integrate infor-
mation from other web services (i.e., see
MetaCrawler [SE95]). In most cases, the only
programming interface to remote web services
is via an HTTP request, which returns HTML
that must be parsed to extract the desired in-
formation. The mawl form abstraction sub-
stantially simpli�es the programming of ser-
vices that must interact with remote web ser-
vices.

� Usage analysis. The creation of a service is just
a small part of the software life cycle. Analy-
sis and maintenance of a service are necessary
to keep the service up-to-date and functioning
properly. The form abstraction is a natural
place to monitor all user/service interactions
and record a log of interesting events. A java

the speci�cation of control
ow and state management of a
service.

applet allows programmers of mawl services to
analyze usage patterns.

Section 2 present a brief history of mawl and de-
scribes the basics of the mawl service architecture
and language. Section 3 shows how the mawl form
abstraction has helped address six problems in ser-
vice creation, analysis, and maintenance. Section 4
summarizes the paper and Section 5 tells how to
obtain mawl.

2 Mawl: History, Service Architec-

ture, and Language

This section describes the brief history of mawl, the
mawl service architecture and its implementation in
a domain-speci�c language, and, �nally, some de-
tails of the language.

2.1 A Brief History

Mawl was created in early 1995 because of two ma-
jor di�culties experienced in programming form-
based web services via Common Gateway Interface
(CGI) scripts.

First, when programming such scripts in a general
purpose language such as C, perl or ksh, one sacri-
�ces traditional compile-time guarantees about the
consistency of the service logic and user interface
code. For example, it is di�cult to automatically
determine if a service will generate correct HTML,
or if the service is prepared to deal with whatever
data may be submitted via a FORM mark in the gen-
erated HTML. Such basic questions may be very
di�cult, if not impossible, to answer in the context
of a general purpose language. Another contribut-
ing factor to this problem is that many web ser-
vices are programmed in an ad-hoc fashion, lacking
even a basic service architecture. As a result, service
logic and user interface description are often inter-
mingled, as shown in Figure 1(a). This makes it
nearly impossible to make any sort of compile-time
guarantees.2

Second, adherence to the HTTP/CGI protocols
places burdens of low-level implementation detail on
the programmer. With the HTTP request/response

2This problem is not con�ned to web services. Most pro-
gramming environments for IVR services also have a very
tight coupling of service logic and user interface description.

HTML Layout

Service Logic

(a) Shell/Awk Implementation (b) Mawl Implementation

Figure 1: A global overview of two implementations of a web service called the LunchBot. Each rectangle represents
a �le and each line in a rectangle represents a single line of code, with length and indentation re
ecting that of the
underlying source code. Lines are colored to show whether they are part of service logic (yellow/grey) or user
interface (blue/black). The �rst version of the Lunchbot (a) was programmed using shell and awk, in which service
logic and HTML speci�cation are intermixed. The second version (b) was programmed in mawl, which cleanly
separates the service logic and HTML.

paradigm, a CGI process is started to respond to
an HTTP request. Once the CGI process has sent
the requested data, it terminates. However, many
services require sequencing between pages, and the
maintenance of persistent state on the server. As a
result, programmers code by hand what is generated
automatically by compilers for traditional sequen-
tial languages. A CGI library may provide some
assistance, but the resulting program is nonetheless
intertwined with a speci�c implementation model.

To address these problems, mawl presents an archi-
tecture for form-based service creation that is in-
dependent of the HTTP and CGI protocols. Pro-
grammers are given the illusion of a traditional im-
perative language in which they may code a cen-
tralized service, rather than a set of scripts cou-
pled indirectly through HTML pages. The mawl
compiler translates the program into a HTTP/CGI
implementation, or into a stand-alone server imple-
mentation. As shown in Figure 1(b), mawl cleanly
separates service logic and user interface (HTML
layout).

2.2 The Mawl Service Architecture

Figure 2 illustrates three main abstractions in the
mawl service architecture: sessions, forms, and tem-
plates. A service contains one or more sessions. A
session speci�es the control
ow of a service and the
update of service state (persistent and per-session),
which may involve concurrency control. Typically,
each session controls a di�erent aspect of the service
(e.g., there may be a session for general users and
another session for the administrators of a service).

A session interacts with the user via the form ab-
straction. A form is an object that:

1) receives data from a session;

2) creates a document by dynamically parameter-
izing a template with the data;

3) presents the document to the user (via a
browser);

4) accepts a response from the user;

5) returns the extracted user data to the session.

A template de�nes the static portion of a user inter-
face as well as the dynamic portions that are param-

Session Template

user
data

service
data

Form

request
(HTML)

response
(HTTP.GET)

 Web
Browser

Service
 Logic

Interface Between
Service and User User

.mhtml
.mawl

1
2

3

4

5

Figure 2: The mawl service architecture. Integer labels
show
ow of data.

eterized by values passed to the form by a session.

Figure 3 contains a simple mawl service that will
be used to explain the three abstractions in more
detail.

2.2.1 Sessions

A service has one or more sessions, each of which
de�nes a sequence of interactions with a user. In our
example, there is one session, Greet, that interacts
twice with the user, �rst prompting for the user's
name and then greeting the user, displaying a count
of the number of visitors to the service, and the
elapsed time between the presentation of the �rst
and second pages to the user. The service logic,
written in mawl, is shown in Figure 3(a). 3

Mawl provides a persistence model that allows pro-
grammers to specify the type of storage required for
mawl variables. Variables may exist on a per-session
instance basis (as declared by the keyword auto)
or persist over all session instances (as declared by
the keyword static). In our example, the variables
GetName, ShowInfo, time now and i are per-session
variables, while access cnt is a persistent variable.

The only way for a session to interact with the user
is through a simple input/output abstraction called
a form, as described next.

3Mawl has standard imperative constructs for looping,
conditional control
ow, procedure calls, exceptions, etc.
Mawl is a statically typed language.

2.2.2 Forms

The main role of a form is to take data (service
data) from a mawl session, present it to the user,
collect information from the user (user data), and
return it to the session. The �rst two lines of session
Greet in Figure 3(a) declare two forms, GetName
and ShowInfo. A form object is declared in a ses-
sion with a type signature specifying the structure
of the expected service data and user data records.
The form GetName has type fg -> fstring idg,
meaning that it expects no data from the service
(thus, the empty record fg) and returns a record
containing a string.

A form has a put method by which a service/user
interaction takes place. The session provides the
form's put method with a record containing the ser-
vice data, and in return receives a record contain-
ing the user data. This is shown in Figure 3(a),
where the service �rst provides GetName with its
required (empty) input record and receives back a
record containing the string �eld id. This string
is extracted into the variable i. The service then
supplies ShowInfo with a record containing three
values: the user's name, the updated access count,
and the elapsed time. The empty record returned
by this form is ignored by the session.

There is a close connection between a form and in-
terface de�nition languages (IDLs). An IDL is a
language for describing the interfaces of a software
component. An IDL speci�cation describes the in-
put/output signature of an operation, where a set of
operations comprises an interface. CORBA [Gro95]
(Common Object Request Broker Architecture) and
RPC [Sri95] (Remote Procedure Call) both have
IDL speci�cation languages. Just as with forms,
IDL programs only express the signatures of oper-
ations, but do not describe their computation. We
will return to this comparison later in Section 3.

A form is associated with a template. The linkage
in the example here is by common name.

2.2.3 Templates

The service data sent to a form is used to generate
an interface by parameterizing a template. Tem-
plates are speci�ed separately, in the user-interface
languages appropriate to the various devices. Fig-
ure 3(b) and (c) shows templates written in the lan-
guage MHTML. MHTML is an extension of HTML
that is used for creating templates. In MHTML, the

(a) Greet.mawl:

static int access_cnt = 0;

session Greet {

auto form {} -> { string id } GetName;

auto form { string id, int cnt, int time } -> {} ShowInfo;

auto int time_now = minutes();

auto string i = GetName.put({}).id;

ShowInfo.put({i, ++access_cnt, minutes()-time_now});

}

(b) GetName.mhtml:

<HTML><HEAD><TITLE>Get-Name Page</TITLE></HEAD>

<BODY>Enter your name: <INPUT NAME=id> </BODY></HTML>

(c) ShowInfo.mhtml:

<HTML><HEAD><TITLE>Show-Info Page</TITLE></HEAD>

<BODY>Hello <MVAR NAME=id>, you are visitor number <MVAR NAME=cnt>.

Time elapsed since first page is MVAR NAME=time> minutes.

</BODY></HTML>

Figure 3: A mawl service (a) that asks the user for a name through the form GetName and then uses the form
ShowInfo to display their name, how many visitors to the service there have been, and the time elapsed between the
presentation of the �rst and second forms. The HTML templates corresponding to the forms are (b) GetName.mhtml
and (c) ShowInfo.mhtml.

values of a form's service data may be accessed using
the MVAR mark, among others. This mark indicates
substitution of the value of the service data into
the generated HTML. User data are represented by
the standard HTML user-input marks such as INPUT
and SELECT; the NAME attribute of these marks is the
name of the user data variable.4

A template represents one possible \implementa-
tion" of a form (more precisely, an implementation
of a form's put method), for a particular browser
which will \execute" it. A form may have no
templates associated with it, which has interesting
implications for prototyping services (Section 3.3).
Furthermore, a form may have multiple templates
associated with it, which is useful for supporting
multiple devices or browsers (Section 3.4).

4Note that the MHTML in Figure 3 does not contain any
FORM mark which speci�es the CGI script to be executed upon
submission of the FORM; the mawl compiler and run-time sys-
tem takes care of inserting a FORM mark and ensuring that
control returns to the appropriate point in the session with
the correct state, as discussed in Section 3.2.

2.3 Mawl Types

Mawl has four fundamental types: integers,
oats,
booleans, and strings; and three complex types:
records, lists, and forms. Mawl records are similar
to C structures. The syntax for de�ning a record
type is to enclose a list of type speci�ers and iden-
ti�er pairs in braces. For example,

auto f string name, int age g customer;

de�nes a record named customer with a �eld name

that is a string and a �eld age that is an integer.
Record values can be constructed \on the
y", as
shown in Figure 3.

Lists in mawl behave much like arrays in C, although
there is no storage allocation required. A list type is
denoted by enclosing another type in brackets. For
example, a list of strings would be declared as:

auto [string] names;

The list elements are denoted using brackets and an
integer index: names[i+1] = names[i]. Lists grow

automatically to accommodate such references. List
values may be formed by enclosing a comma sepa-
rated list of values in brackets:

charlist = ["a", "b", "c"];

As illustrated earlier, the syntax of the form type
speci�er is the keyword form along with two type
speci�ers, the service type and the user type, where
the types are separated by the suggestive token ->.
The service and user type speci�ers must be record
types.

For example,

auto form f [float] temps g -> fg
show temps;

might be used to display a list of temperature values,
as shown below:

show temps.put(f [0,10.5,20,30] g);

2.4 MHTML

As explained previously, the MVAR mark in MHTML
is used to insert scalar data into a template. The
MITER mark is used to substitute mawl list values.
A natural use of a list might be to display a ta-
ble with a variable number of rows and/or columns.
The construct <MITER>...</MITER> is used to it-
erate over mawl lists and generate HTML that is
dependent on the list element values. The MITER

mark uses the NAME attribute to specify the name of
a list �eld in the form's service data. The additional
attribute MCURSOR names a new cursor variable over
the list. The MHTML enclosed between <MITER>

and </MITER> is repeated for each element in the
list, with the value of the cursor variable set to the
index for that iteration. Other MHTML marks may
then use mawl's list element notation to refer to list
elements.

The MHTML below shows how a list of tempera-
tures might be displayed in a single column table:

<HTML><BODY>

<TABLE>

<MITER NAME=temps MCURSOR=i>

<TR><TD><MVAR NAME=temps[i]></TD>/TR>

</MITER>

</TABLE>

<BODY><HTML>

The <MITER> mark iterates over the temps list and
i is the name chosen for the index used in the sub-
sequent MVAR mark.

3 Experience with the Form Ab-

straction

This section discusses how the form abstraction
helps to address six di�erent problems in form-based
services. In addition, we touch upon various lan-
guages issues that arose and discuss related work.

3.1 Compile-time Guarantees

In many web services and IVR services, service logic
and user interface code are inextricably interleaved,
as shown in the old version of the Lunchbot (Fig-
ure 1(a)). Consequently, reasoning about one in-
evitably requires reasoning about another. Often,
the service logic and user interface are coded in
the same general purpose language, which can pro-
vide compile-time checks about the consistent use of
module interfaces. However, the interface through
which the user interface is speci�ed may be too low-
level and dynamic to say anything meaningful about
the
ow of information between service and user at
compile-time (witness the Tk widget set).

Mawl's division of a service into service logic code
and user interface code allows a great deal of con-
sistency checking to be performed at compile time.
First, the service logic and the MHTML may be
independently analyzed to ensure that they are in-
ternally consistent. For the service code, this means
standard type checking and semantics checking. For
MHTML, this means verifying that a template is le-
gal MHTML.

Additionally, the service logic (i.e., Greet.mawl

in Figure 3) and the MHTML templates may be
checked against one another. The form abstraction
makes this possible by providing a type signature
expressing the structure of a service/user interac-
tion. The MHTML represents the body of a form's
put method and can be analyzed to ensure it is con-
sistent with respect to the form's type signature.

For example, Figure 3(b) shows the content of the
�le GetName.mhtml, which is the MHTML template
associated with GetName form. This template con-
tains no uses of the MVAR mark and contains one
INPUT mark named id, which is consistent with the

*.mhtml
*.mpml

foo.mawl run-time
library

CGI
executable

Mawl compilation
Input Output

Server

 Mawl
compiler

C++ or
SML
compiler

C++ or SML
 host code

Figure 4: The mawl compilation process.

type signature of the associated GetName form. Sim-
ilarly, the template in Figure 3(c) agrees with the
ShowInfo form, since the template has MVAR marks
referring to the service data id, cnt, and time and
has no INPUT marks.

Another example of a consistency check is to ensure
that only values of list type are used in MITERmarks.
It is not required that the MHTML refer to all the
service data passed to a form, which is useful for
multi-device services, as discussed in Section 3.4.

Our combination of a declarative languge
(MHTML) with a sequential imperative language
(mawl) can be thought of as a language embed-
ding, such as SQL in C. The form uses a functional
interface to moderate between the two languages.
The HTML language was extended (to MHTML)
so that values in the mawl type system can be sub-
stituted into MHTML and so that static checking
can be performed on MHTML and between mawl
and MHTML. This degree of compile-time checking
is much greater than traditionally found in embed-
ded languages. Of course, this comes at a price:
construction of a parser and semantics checker for
MHTML as well as for mawl. For a more compli-
cated embedded language, this may be too great a
luxury to a�ord.

3.2 Implementation Flexibility

A main advantage of the mawl architecture is im-
plementation
exibility, which is realized by having
service logic centrally speci�ed in a session and via
the form, which identi�es the point at which a ses-
sion relinquishes control to the user and at which
control returns to the service.

Figure 4 shows the mawl compilation process, to

which there are three inputs: the logic of the ser-
vice, written in mawl; document templates, written
in MHTML or MPML (more on this markup lan-
guage in Section 3.4); and support code written in
a host language. The mawl compiler takes the �rst
two inputs, which pass through the traditional com-
piler steps of lexing, parsing, semantic checking, and
code generation. The mawl compiler back end gen-
erates code in the host language. Then this code is
compiled by the host language compiler along with
the input support code. Currently supported host
languages are C++ [Str86] and Standard ML of New
Jersey [MA91]. Support for Java [GA96] is planned.
A compiled mawl service is linked with a run-time
library to form a complete executable.

A service can be compiled either into a CGI exe-
cutable or into a stand-alone server. In the CGI im-
plementation, when a session sends out HTML via a
form put, execution of the session is suspended and
the session-instance (auto) state is stored on disk or
in a database. This is necessary since the CGI pro-
cess terminates once the HTTP request that started
the process has been ful�lled. When a response
is received, execution of the session picks up from
the point of suspension, with the session-instance
state restored. Mawl encodes the session instance
in a unique identi�er that is stored in the ACTION

�eld of the FORM mark inserted into the HTML by
mawl. Execution of the session continues until an-
other form is encountered, sending another docu-
ment to the user. Once a session ends, the storage
for session-instance state is released. In the server
implementation, each session instance is a thread
and the compiled put method simply suspends af-
ter sending the HTML. Again, the identity of the
thread is embedded in the HTML so that the server
can determine which thread to awaken upon receiv-
ing another HTTP request, or if it needs to start a

new thread.

Returning to our comparison between the mawl
form and interface de�nition languages, we see that
the mawl compiler acts very much like an IDL com-
piler. An IDL compiler takes an IDL program and
produces the code to manage the transfer of data
between the sender of a message (client) and the re-
ceiver (server). In the mawl programming model,
the sender of a message is the web service, although
this \send" operation compiles into a code whose
function is to respond to an HTTP request. Thus,
mawl reverses the roles of client (browser) and server
(web service).

As with many IDL compilers, the mawl compiler
performs little transformation or optimization, as-
suming that the transport medium is slow. Mawl
has a further advantage because a form is presented
to a human to �ll out, which lengthens the delay
considerably. However, as we will see in Section 3.5,
one advantage of the form abstraction is that it al-
lows mawl services to interact with other web ser-
vices. Thus, recent work on optimization for IDL
compilers [EFF+97] might be applicable to mawl
for such settings.

3.3 Prototyping Services

Section 3.1 discussed the advantages of compile-time
checking of a service against MHTML, which is pos-
sible because of the separation of service logic and
user interface via the form abstraction. In our ex-
perience with mawl at Bell Labs, we have found
that programmers sometimes balk at using a stati-
cally typed language for web service programming,
complaining that type checking impedes rapid pro-
totyping. The requirement that a service and its
MHTML type check con
icts with the demands of
\Internet time", which requires that services be pro-
totyped and deployed quickly. Programmers often
refer to the advantages of type-free languages such
as perl, tcl, and ksh, which are traditionally used to
program CGI scripts. These languages support pro-
totyping by o�ering fast turnaround in the compile-
edit-debug cycle, as they perform no semantic anal-
ysis and are interpreted.

Compounding this problem was the fact that the
initial implementation of mawl was overly restric-
tive, requiring an MHTML template for every form
declared in the service logic. To address this, the
mawl compiler was modi�ed so that the service logic
language could be compiled, executed and tested

without any MHTML templates. This required no
change to the mawl language. The mawl compiler
now generates a default MHTML template when
none exists for a form, using the form's type sig-
nature (more on this below). Thus, as a soon as a
service compiles, a user can interact with it via a
web browser.

With the new implementation, we get the best of
both worlds. Static type checking not only prevents
a large class of run-time errors in mawl services, but
also assists in prototyping since the programmer is
not required to code MHTML. This points to an in-
teresting measure for a domain-speci�c abstraction:
does the abstraction capture some necessary part
of the domain? In the domain of form-based ser-
vices, a service programmer must decide, for each
service/user interaction, what information will be
exchanged between service and user. This decision
is totally independent of the implementation lan-
guage but is absolutely necessary in order to build
a service. In general purpose languages such as perl,
tcl, and ksh, the way in which this \signature" is en-
coded can vary widely and may be quite dynamic.
With mawl, the form abstraction (via its static type
signature) captures this information precisely in a
localized, analyzable construct.

Developer experience with this feature has been
quite positive. Mawl's static type system allows
the execution of \incomplete" programs that do not
contain some or any MHTML. In languages such as
perl, the lack of a type system means that incom-
plete programs are not possible, forcing the pro-
grammer to specify some behavior for the incom-
plete part. The form type signature enables the
automatic generation of MHTML, in addition to
providing compile-time guarantees when MHTML
is present. Using static types to specify \user inter-
face types" can be a boon to prototyping.

3.3.1 Deriving MHTML from Type Signa-

tures

We now discuss some of the issues in generating de-
fault MHTML from form types. The essence of a
form is that it expresses the
ow of information from
service to user and back. However, it does not ex-
press any coupling between the outgoing and incom-
ing data that is often expressed in user interfaces.
For example, given a form type signature

f [int] intlist g -> f int i g

Session Templates

user
data

service
data

Form

Service
 Logic

Interface Between
Service and User User

.mhtml
.mpml.mawl

 Web
Browser

Phone
Browser

PML

HTML

Figure 5: Supporting multiple devices with the same
service logic.

what user interface should be generated? There are
at least three possible interpretations:

� select an integer from a list of integers, return-
ing the selected integer

� select an integer from a list of integers, return-
ing the index of the selected integer

� present a list of integers, collect an integer from
the user, and return it

The �rst two interpretations are equivalent in the
sense that the returned integer is tightly coupled to
the input list, but are clearly distinct from the third.
Our current transformation of a form type signature
to MHTML does not infer a coupling between the
service data and user data. The service data is dis-
played via HTML tables and appropriate marks are
included to get data from the user.

This points to a possibility for a third sublanguage
in mawl, which would express the constraints be-
tween the service data and user data of a form. An
example constraint might state a user �eld is \one-
of" a list �eld in the service record. Such constraints
would be optional and could serve two purposes:
to generate better default user interfaces; to ensure
that MHTML, when provided by the programmer,
is consistent with the constraints.

3.4 Multi-Device Services

This section shows how the form abstraction allows
a service to interact with multiple browsers. In par-
ticular, we focus on supporting both the graphical
web browser and the telephone. The issues arising
in telephone access to services include many of those
that will arise when making services available to a
large and diverse collection of devices; indeed, it is
hard to imagine two user interfaces more dissimilar
than the telephone and the graphical web browser.

The mawl architecture supports multiple devices by
allowing multiple templates to be associated with
a form, as shown in Figure 5. Mawl uses the
USER AGENT of the requester to determine whether
to use an HTML template (for the web browser) or
a PML template (for the telephone browser). The
Phone Markup Language (PML) is a superset of
HTML, extended to describe content for interpre-
tation over a telephone. The telephone browser is
provided by a system called TelePortal, developed
at Bell Labs. TelePortal fetches documents from the
web, and \reads" them over the telephone via inter-
active voice response (IVR) systems. It can also
collect data from a user (typically via touchtone or
automatic speech recognition).

It is clear that the graphical web browser has a
much greater capacity than the telephone browser
interface to present and collect data. It is an easy
translation to take an IVR service and turn it into
a (rather dull) web service. The other direction
presents some interesting di�culties, as discussed
below. In general, telephone access to a web service
will typically o�er a limited subset of the function-
ality available from a graphical web browser.

We have built a number of services that are ac-
cessible via both the web and telephone.5 In all
cases, there is one service speci�cation that drives
all devices{only the templates change. A self-service
banking application (such as the Any-Time Teller)
requires essentially the same set of forms for both
web and telephone interfaces. However, the presen-
tation of information and collection of the informa-
tion di�ers radically, as suited to the device. In
general, a given interaction over the telephone will
present less information and collect less information
than the corresponding interaction over the web.

5For a demonstration of a prototype banking service (the
Any-Time Teller) with both web and telephone interfaces,
visit
http://www.bell-labs.com/projects/MAWL/anytime.html

As a concrete example, consider the \login" form of
the Any-Time Teller, which has type signature

fg -> f string name, int acctid, int pin g

On a web browser, an HTML page with three input
�elds corresponding to the three record �elds above
is presented: the user may enter either her name
or account id, and a PIN to login. Entering alpha-
betic characters over the telephone touchpad is te-
dious and error-prone. Thus, the login form should
prompt the user only for an account id and PIN,
which are integers. This is accomplished by having
two di�erent templates. The MPML template uses
the \hidden" attribute for the INPUTmark for name.
As a result, TelePortal (the telephone browser) does
not prompt the user for a name, but does return a
null value for the �eld. The MHTML template does
not use the hidden attribute, so that an input �eld
appears for the name attribute.

There are many other ways to support multiple de-
vices when programming services. For example, a
general purpose language such as Java, supported
by the Java Virtual Machine, allows a multitude
of devices to be programmed in a single language.
The Inferno operating system [SMD97] represents
a similar approach, but starts with the operating
system as the common denominator rather than a
language. While such work de�nitely improves the
state of programming for heterogeneous collections
of devices, the question of a software architecture
for service creation is left open. Form-based ser-
vices will continue to be prominent even as the ends
of the network become smarter. We have started
to explore mawl services in which a form (or set of
forms) is represented by a Java applet, which would
allow mawl program to interact with Java-enabled
devices.

3.5 Composing Web Services

A simple but powerful attribute of the web is that
new web pages can be easily linked to existing web
pages. It is similarly desirable to build new web
services by combining, collating, or re-presenting in-
formation from other web services. An example of
such a service is the MetaCrawler [SE95], which col-
lates results from several search engines. Another
example is a web service through which customers
can order products. This web service might query a
courier service (such as FedEx) to present the status
of an order to the user.

remote
service
data

local
service
data

Form

request
(HTTP.GET)

response
(HTML)

Local
Service

Remote
Service

.mhtml

Web
Server

1 2

3

4

5

Figure 6: Using the mawl architecture to interact with
remote web services. Integer labels show
ow of data.
Compare the use of the template with Figure 2

It is possible to compose web services like these us-
ing existing programming tools such as CGI scripts.
However, the programming work is tedious, as it in-
volves the sending of low-level HTTP messages and
the parsing of HTML documents to obtain the in-
formation of interest.

The form abstraction (along with templates) allow
mawl services to interact with other web services,
as illustrated in Figure 6. We contrast the data

ow and use of templates in this �gure with that
of Figure 2, where the service is interacting with a
web browser. We will use the term \local service"
to refer to the service the programmer is creating.
As shown in Figure 2, a form interacts with a web
browser by combining service data with a template
to create HTML that is sent to the web browser
(as a result of the current HTTP request), and re-
ceives user data in response (in the form of the next
HTTP request). However, as shown in Figure 6, a
form interacts with a remote web service by sending
an HTTP request to the remote service, parameter-
ized with local service data, and extracting remote
service data from the HTML document returned by
the remote service.

A template is used to extract the remote service
data from �elds in the HTML document. That is,
MHTML is used as a language for pattern match-
ing against an HTML document. When MHTML is
used to generate HTML to send to a web browser
(Figure 2), the MVARmarks speci�ed where to substi-
tute service data into the template. Now, MHTML
is used to parse the HTML sent back from the re-
mote web service. In this case, the MVAR mark of
MHTML is used to bind values in the HTML doc-

ument to �elds in the form's return record. Thus,
the ShowInfo.mhtml template in Figure 3(c) can be
used to extract the name, count and time informa-
tion from an HTML document of this structure.

The implementation of this feature requires only
that a new query method for forms be added to
mawl. To access the remote service, query is used
instead of put. The method query takes as input
the URL of a remote service, and a record of local
service data. Invoking the method causes an HTTP
request to be sent to the remote web server. The
received HTML is then matched against with the
MHTML template in order to extract the relevant
data.

3.6 Usage Analysis

While tools for the construction of web sites and
services are numerous, most of these tools lack sup-
port for the later parts of the software life cycle: the
analysis of a service, and the subsequent modi�ca-
tion of the service. By analyzing usage, a service
provider can restructure a service to meet the needs
of users better, or improve its performance. For ex-
ample, analysis of a service might show that users
routinely follow paths through a service that are
more complicated than necessary. By identifying
the pattern and restructuring the service, providers
can improve their services.

Ideally, the analyses of service/user interactions
should come for free as a side-e�ect of a service.
Such logging may be di�cult to achieve if services
are programmed in an ad-hoc fashion, where the

ow of information between service and user is not
clear. Mawl's form abstraction provides a central-
ized point at which to monitor the interactions be-
tween service and user. A
ag to the compiler or
run-time system enables logging of each interaction.

3.6.1 Logging

When a session invokes a form, instrumentation
records the service data sent to the form, the tem-
plate used to create the user interface, other session-
speci�c information (such as the session identi�er
and current source line), as well as timing infor-
mation. When a user response to a form arrives,
instrumentation records the user data returned to
the session. With forms, we can record not only the
amount of time between a request and a response,
but the amount of time between the response to

Figure 7: A bar chart view of LunchBot usage.

one form request and the next. This allows mea-
surement of service performance.

The template abstraction allows the data passed to
and from the form to be related to the user inter-
face that the user views. This is due to the precise
mapping between service logic variables and the dy-
namic portions of the templates (as speci�ed via the
MVAR marks). This is especially useful for restruc-
turing the templates based on data pro�les. For
example, pro�ling the user data returned by a form
might show that a particular item in a SELECTmenu
was very popular. Such pro�le information could be
used to reorder the items in a SELECT accordingly.

3.6.2 Visualizing the LunchBot

The Mawl system includes a data visualization com-
ponent called PathView, which is a Java applet that
displays user interactions with a service as paths
through a graph. PathView enables analysis of the
user paths in conjunction with other service statis-
tics, using multiple views to allow exploration of
various facets of user behavior. An extensible rela-
tional data interface allows new sources of data to
be incorporated easily into an analysis. As an ex-
ample, we use PathView to analyze the usage of the
LunchBot, a web service for ordering weekly group
lunches. The LunchBot was implemented in mawl
shortly after the language was developed.

(a) (b)

Figure 8: A typical LunchBot scenario: ordering lunch (a). The \list orders" variant (b).

When do users access the LunchBot? The bar chart
in Figure 7 shows the amount of activity by hour
and weekday. The Lunchbot gets most of its use on
Thursday and Fridays (days 4 and 5) every week;
this is as expected, since all lunch events in this
period were on Fridays. Usage on Friday is high-
lighted. From the hour bar chart, we can see that
the major use of the Lunchbot occurs Friday morn-
ing. Most people wait until the last two hours be-
fore lunch on Friday to order, after the �nal warning
message is sent (usually around 9 AM) announcing
the imminent close of the Lunchbot.

One goal of path analysis is to identify common se-
quences of user interactions and tune the services to
create \shortcuts" for these scenarios. Figure 8(a)
shows a common pattern in the LunchBot: the \or-
der lunch" mountain peak. With further analysis,
we �nd a large set of paths that contain both the
\order lunch" peak and a \list orders" hill, as shown
in Figure 8(b). It turns out that users often list or-
ders before ordering lunch (blue/black path). Other
users list orders after ordering lunch (yellow/grey
path). The frequent occurrence of the (list orders,
order lunch) sequence suggests that users like to
see what items are popular (a complicating factor
is that the list orders page also lists the user asso-
ciated with each order; a pessimist might infer that
people examine the orders to see if they want to
attend lunch at all; we prefer the optimistic anal-
ysis). Annotating the favorite items on the menu
would provide a simple shortcut replacing the more
complicated sequence of interactions.

4 Summary

Mawl was created to address two speci�c problems
in the creation of dynamic web services: the lack
of compile-time guarantees about of services, and
the low-level of programming involved in coding to
the CGI model. A language was necessary in order
to provide these guarantees and give implementa-
tion
exibility. Neither libraries nor macros provide
solutions to these two problems.

The form is the basic abstraction that helped to
solve these two problems, by enforcing a separation
of concerns between service logic and user interface
descriptions. The mawl service architecture and
form abstraction have been quite stable since the
language's inception and have been used to solve
several new problems quite di�erent in nature from
the initial two: prototyping and composing services,
accommodating multiple devices, and enabling us-
age analysis. The only solution that required a
change to the language (and a minor change, at
that) was the composition problem. All the other
solutions only changed the compiler analysis or run-
time infrastructure.

5 Availability

The mawl language (version 2.0, with C++ as a
host language) is available at

http://www.bell-labs.com/projects/MAWL/

for SGI and Solaris platforms. Mawl is part of a
larger project called Tardis, which includes TelePor-
tal, the platform by which interactive voice response
systems may be programmed using HTML. TelePor-
tal is not currently available.

6 Acknowledgments

Christopher Ramming and David Ladd are the orig-
inators of the mawl language. Thanks to Natasha
Tatarchuk for her work on the visualization applets.
Thanks also to Mooly Sagiv and Mike Si� for their
perceptive comments and recommendations.

References

[Aea97] D. Atkins and T. Ball et al. Inte-
grated web and telephone service cre-
ation. Bell Labs Technical Journal, 2(1),
Winter 1997.

[BL95] T. Berners-Lee. Hypertext transfer pro-
tocol (HTTP/1.0).Working Group of the
Internet Engineering Task Force, Octo-
ber 1995.

[BLC95] T. Berners-Lee and D. Connolly. Hy-
pertext markup language (HTML 2.0).
Working Group of the Internet Engineer-
ing Task Force, August 1995.

[EFF+97] Eric Eide, Kevin Frei, Bryan Ford, Jay
Lepreau, and Gary Lindstrom. Flick: A

exible, optimizing idl compiler. In Pro-
ceedings of the 1997 Conference on Pro-
gramming Language Design and Imple-
mentation (to appear), June 1997.

[GA96] J. Gosling and K. Arnold. The Java Pro-
gramming Language. Addison-Wesley,
1996.

[Gro95] Object Management Group. The com-
mon object request broker: Architecture
and speci�cation. Technical Report Edi-
tion 2.0, July 1995.

[Kor86] D.G. Korn. Ksh|a shell programming
language. Technical report, AT&T Bell
Laboratories, 1986.

[LR95] D. A. Ladd and J. C. Ramming. Pro-
gramming the web: An application-
oriented language for hypermedia service
programming. In Proceedings of the 4th
International World Wide Web Confer-
ence, pages 567{586. World Wide Web
Consortium, December 1995.

[MA91] D. B. McQueen and A. Appel. Stan-
dard ML of New Jersey. In Proceedings of
the 3rd International Symposium on Pro-
gramming Language Implementation and
Logic Programming, pages 1{2. Springer-
Verlag, 1991.

[Ous94] J. K. Ousterhout. Tcl and the Tk Toolkit.
Addison-Wesley, 1994.

[SE95] E. Selberg and O. Etzioni. Multi-
engine search and comparison using the
Metacrawler. In Proceedings of the 4th
International World Wide Web Confer-
ence, pages 195{208. World Wide Web
Consortium, December 1995.

[SMD97] R. Pike et al. S. M. Doward. The in-
ferno operating system. Bell Labs Tech-
nical Journal, 2(1), Winter 1997.

[Sri95] R. Srinivasan. Remote procedure call
protocol speci�cation version 2. Techni-
cal Report Technical Report RFC 1831,
Sun Microsystems, August 1995.

[Str86] B. Stroustrup. The C++ Programming
Language. Addison-Wesley, 1986.

[WS90] L. Wall and R. L. Schwartz. Program-
ming PERL. O'Reilly & Associates,
1990.

