
Chapman & Hall/CRC
TEXTBOOKS IN COMPUTING

EXPLORATIONS
IN COMPUTING
An Introduction to Computer Science

John S. Conery

With Illustrations
by Phil Foglio

c� 2011 Taylor and Francis Group, LLC

Chapter 9

Now for Something Completely
Different
An algorithm for generating random numbers

Most popular games involve some element of chance. Players roll dice, shuffle a deck of
cards, spin a wheel, or use some other method for making a random selection in the game.
Computer-based versions of these games are played the same way, but instead of using real
dice or using a real deck of cards a computer program manages the game. Somewhere
inside the application is an algorithm that generates the next roll of the dice or shuffles the
deck of cards.

As you might imagine, a computer-based game would not be very popular if the algorithm
that generates moves is not realistic. If you’re playing a board game like backgammon, you
expect rolls of the dice to be similar to rolls of real dice, and you would start to become
suspicious if your opponent rolls doubles far more often than you do. Some people like to
practice playing poker against a computer to prepare for tournaments. If the program they
train with doesn’t deal the same kinds of hands that will be seen in the tournament, the
software is not going to be very useful.

The word that best describes our expectations for the computer-based games is random.
When we play a board game we want the computer to generate a pair of numbers that is
just as random as rolling a pair of real dice, and when we play cards we want the computer
to generate an ordering for a deck of cards that is as random as what we would get if we
carefully shuffle a real deck.

The natural question, of course, is how to define what we mean by “random.” Colloquially,
random often means “unusual” or “unexpected.” But in games, and in other situations where
random values are required, something is random if it is unpredictable. To be more precise,

221

222 Chapter 9 Now for Something Completely Different

what we are looking for is an algorithm that generates a sequence of values in which there is
no apparent pattern or relationship between one value and the next. If the algorithm is used
to simulate rolls of a six-sided die, each new number should be independent of the previous
number, and if it is used to deal cards, each new hand should be unrelated to the previous
hand. In other words, to use the phrase in the title of this chapter, each value produced by
the algorithm should be “completely different” from the previous value.1

The goal for this chapter is to explore techniques for using a computer to generate random
values. We will take a closer look at the idea that a sequence of values is random if successive
values are independent of one another, and explore various ways of trying to determine
whether the values are, in fact, random, or whether there are some unexpected connections
between them.

9.1 Pseudorandom Numbers

Before you read this section, here is a simple experiment to try. Start your text editor and
create a new file. Type 50 numbers between 1 and 6, putting one number on each line. Try
to write the numbers as if you were rolling a die; in other words, each number should be
unrelated to the one on the previous line.

As you were thinking of numbers to write, were you able to concentrate on each new
number, forgetting about what you had written before? Or did you find yourself thinking
something like “I haven’t written a 3 in a while, I’d better write one now” or “hmmm, that’s
two 6s in a row, I’d better write something else.” If you gave in to the temptation to think
about previous values you were starting to add a bias to your results. It is very hard for
people to generate a truly random sequence of values.

Engineers, statisticians, and other professionals have used random sequences for many
years. Before the algorithms described in this chapter were available, people who needed a
random sequence would look in a book of random numbers. A well-known reference book,
published in 1955 by the RAND Corporation, was A Million Random Digits, a 400-page book
with 2500 random digits between 0 and 9 on each page. The authors used what they called
an “electronic roulette wheel” to generate random electronic pulses. The electronic circuit
was connected to a computer, and a device that measured the pulses converted them to
digital form. Another way to generate random signals is to use a white noise generator, an
audio device that produces something that sounds like static.

To play a game with a computer we do not need to connect to a roulette wheel, white
noise generator, or other physical device that behaves randomly. Instead, applications use
an algorithm that produces a different value each time it is called. For example, there is a
method built into Ruby called rand. If we pass a number n to rand, it will return a value
between 0 and n − 1:

>> rand(100)
=> 54

>> rand(100)
=> 39

1The title is a catch-phrase from the BBC comedy series, Monte Python’s Flying Circus.

c� 2011 Taylor and Francis Group, LLC

9.1 Pseudorandom Numbers 223

There is an interesting paradox here. According to the definition given in Section 1.3,
an algorithm has a well-defined set of inputs, and a precise and unambiguous sequence of
steps that leads to the output. If that’s the case, how can an algorithm produce a different
result each time it is run? Or, in terms of Ruby programs, how is it possible for a method to
return a different value each time we call it?

The answer to these questions is the method appears to be random, but in fact it follows a
predefined set of rules, just like any method. The general idea is to produce a long sequence
of numbers, and if we look at a small set of numbers in the middle of the sequence, they
will appear random. Even though they are not truly random, many applications, such as
computer games, can use them in place of actual random values. Because the numbers
are created by an algorithm, and not an external source of random data like the RAND
corporation’s roulette wheel, we refer to them as pseudorandom, and the algorithm that
produces the sequence is a pseudorandom number generator, or PRNG.

As an introduction to how a PRNG might work, imagine a situation where an event needs
to be scheduled at regular intervals throughout a day. Perhaps a nurse in a hospital needs
to periodically administer medications to a patient, or a researcher needs to collect data
from an experiment, and it is our job to schedule these events. If the events occur every
eight hours the schedule is simple and easy to remember. One plan would be to schedule
the first three events at midnight, 8 A.M., and 4 P.M. The next event would be at midnight
again, and the schedule would repeat. Since the schedule is the same every day it is easy to
remember, and we can simply tell people what the schedule is (Figure 9.1).

However, if the events need to occur every seven hours the schedule is more complicated.
If the first event is at midnight, the next two events would be 7 A.M. and 2 P.M. But now
the fourth event will be at 9 P.M., and the second day would not be like the first.

1

2

3

4

5
6

7

8

9

10

11
0

1

2

3

4

5
6

7

8

9

10

11
0

1

2

3

4

5
6

7

8

9

10

11
0

1

2

3

4

5
6

7

8

9

10

11
0

!
"

#

$

1

2

3

4

5
6

7

8

9

10

11
0

1

2

3

4

5
6

7

8

9

10

11
0

1

2

3

4

5
6

7

8

9

10

11
0

1

2

3

4

5
6

7

8

9

10

11
0

1

2

3

4

5
6

7

8

9

10

11
0

%

!

"

$

Day 1 Day 2

Day 1 Day 2

Figure 9.1: If an event occurs every eight hours (top row), a schedule is very predictable, and events
occur at the same time every day. However, if events are seven hours apart (bottom row) each
day is different, and it is more difficult to keep track of when events are scheduled to occur.

c� 2011 Taylor and Francis Group, LLC

224 Chapter 9 Now for Something Completely Different

It’s very straightforward to use Ruby to figure out the schedule. Start by making a list
named t and initializing it so it has the time for the first event:

>> t = [0]
=> [0]

For now we will use a 12-hour clock. Let’s assume we can tell by context whether “0” is
midnight or noon, and whether a “4” means 4 A.M. or 4 P.M. (one of the exercises at the
end of the chapter will be to modify the schedule to use a 24-hour clock).

To add the time for the next event, the list needs to be extended with a time that is seven
hours later than the one currently at the end of the list. Since we’re using a 12-hour clock,
the expression is

>> t << (t.last + 7) % 12
=> [0, 7]

Recall from previous chapters that an expression of the form a << x means “attach x to the
end of array a,” and that the % symbol is Ruby’s mod operator, i.e., the expression x % 12

means “the remainder after dividing x by 12.”
If the above operation is repeated several more times, this is what the list would look like:

[0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0, 7, 2]

That’s a pretty difficult schedule to remember, but it matches the specification, and we could
either put it on a poster, or ask people to store it in the calendar on their cell phone.

To get back to the subject of generating random numbers, at first it looks like the list
above might be random. If we gave the list to a person who did not know the numbers were
times from a 12-hour clock, they would probably have a hard time guessing the list was
generated by a simple rule, or what that rule was. On closer inspection, however, we can
see some regularity in the list. For one thing, every hour appears exactly once in the first
12 places in the list (assuming we interpret 0 as 12 o’clock). When we are rolling a 6-sided
die, it would be very rare to see a sequence of rolls in which every number between 1 and 6
showed up before any number appeared again. In fact, it’s not at all uncommon to have the
same number appear twice in a row. The fact that we used a rule that forces every number
to occur once before the first number appears again means the list is not truly random.

If we add a few more items to the list, using the same rule, we will see conclusive evidence
that the list is not random. As soon as the first number is generated again, the pattern will
start to repeat itself. In other words, as soon as the rule attaches a 0 to the end of the list, all
the values that followed 0 the first time will occur again, and in exactly the same order. If
we want to know what follows 2 in the list shown above, we can either apply the rule again
and evaluate (2 + 7) mod 12, or we can find the 2 earlier in the list and look at the number
came after it.

The rule of adding 7 and taking the remainder mod 12 does not create a very useful list of
pseudorandom numbers, but it is a good starting point. A more general formula for adding
a new value xi+1 to the end of a list is

xi+1 = (a × xi + c) mod m

where a, c, and m are all constants and xi is the previous item in the list. The “add seven to
the current time” rule follows this general pattern, since it has a = 1, c = 7, and m = 12.

c� 2011 Taylor and Francis Group, LLC

9.1 Pseudorandom Numbers 225

0 m− 1

x0 x3x2 x1

Figure 9.2: A pseudorandom sequence defined by the rule xi+1 = (a × xi + c) mod m. If values of a,
c, and m are chosen carefully, every value between 0 and m − 1 will appear in the first m
numbers in the sequence and the number line will be completely filled in.

If a and c are defined properly, this rule will place every value from 0 to m − 1 in the list
before it repeats (Figure 9.2). As we saw previously, with a = 1 and c = 7, the rule makes a
list of all 12 values between 0 and 11. But if we use c = 8 (which is what we did originally,
when the schedule called for events every eight hours) the list is much shorter:

[0, 8, 4, 0, 8...]

The number of items in the list before it starts to repeat is called the period. The period
when c = 8 is 3, because the list only has 3 items before it starts repeating. The period
when c = 7 is 12 because all 12 numbers are in the list before it repeats.

If we use a large value of m, and values of a and c that work well for that m, we can
make a very long list of unique numbers. Furthermore, if we look at small portions of the
list, it will be very difficult to figure out what rule is used to generate the numbers. In
practical terms, we will have a list of random numbers. Even though they were produced
by a pseudorandom number generator, and will not be truly random, for many applications
they might be “random enough.”

The formula shown above was used in some of the earliest pseudorandom number gen-
erators, and is still widely used because it is very easy to implement and does a reasonable
job for games and other casual applications. In current implementations, m is typically 232,
or roughly 4 × 109, so this technique will generate a list of over four billion numbers before
it repeats. The PRNG built into Ruby is based on a newer and more sophisticated algorithm
that has a period of 219937.

In the next section, we will see how to put this formula to use in making random numbers
for games and other applications. Later in the chapter we will come back to the claim that
the sequence is “random enough” by looking at different ways to measure randomness and
using these techniques to assess the randomness in the sequence of values produced by a
PRNG.

c� 2011 Taylor and Francis Group, LLC

226 Chapter 9 Now for Something Completely Different

Tutorial Project
The first exercises will explore the formula for making pseudorandom numbers. Start an IRB session
and load the module that will be used in this chapter:

>> include RandomLab
=> Object

T1. Make the schedule for events that occur every eight hours. Initialize the schedule with the
time for the first event:
>> t = [0]
=> [0]

T2. Apply the rule that adds a new event that will occur eight hours after the previous event:
>> t << (t.last + 8) % 12
=> [0, 8]

T3. Apply the rule three more times. Enclose the previous expression in braces and call the
times method to make a schedule that repeats the basic pattern of 0, 8, 4:
>> 3.times { t << (t.last + 8) % 12 }
=> 3

>> t
=> [0, 8, 4, 0, 8]

See the sidebar below for an explanation of the times method.

T4. Start a new schedule by typing the first expression again:
>> t = [0]
=> [0]

T5. Repeat the expression that adds new events, but make 16 events scheduled 7 hours apart:
>> 16.times {t << (t.last + 7) % 12}
=> 16

>> t
=> [0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0, 7, 2, 9, 4]

Can you see how the period for this new schedule is 12, i.e., how all 12 numbers between 0
and 11 appear in this list before it starts to repeat?

The times Method

The projects in this chapter use a Ruby method
named times. This method is used to repeat
an operation a specified number of times. The
first example right tells IRB to print a string
three times.

We can also put a variable name to the left of
the method, as shown in the second example,
which appends 10 random numbers to an array.
The value returned by times is just the number
of times the operation was executed.

>> 3.times { puts "hello" }
hello
hello
hello
=> 3

>> n = 10
=> 10
>> n.times { a << rand(100) }
=> 10

c� 2011 Taylor and Francis Group, LLC

9.1 Pseudorandom Numbers 227

The RandomLab module defines a method named prng_sequence that implements the general form
of the equation that creates a list of pseudorandom numbers. The three parameters to the method
are the values of a, c, and m to plug into the equation. The list returned by this method will have m
numbers, and with the right combination of a and c all values from 0 to m − 1 will be in the list.

T6. As a first test, use the prng_sequence method to make the schedule of events that occur
every eight hours:
>> sched8 = prng_sequence(1, 8, 12)
=> [0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4]

As expected, this sequence is not very random.

T7. Ruby arrays have a method named uniq that will return a list of all the unique values in an
array, i.e., the method returns a copy of the array with all the duplicates removed. Apply this
method to the schedule you just made:
>> sched8.uniq
=> [0, 8, 4]

Do you see how the uniq method confirms the fact that only 0, 8, and 4 are used in this
array?

T8. Now make a second schedule for events that occur every seven hours:
>> sched7 = prng_sequence(1, 7, 12)
=> [0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5]

T9. Get a list of unique numbers in this list:
>> sched7.uniq
=> [0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5]

T10. One way to see whether every number between 0 and m − 1 is in the list is to count the
number of unique values. If an array has no duplicates, the length of the list returned by
uniq will be the same as the length of the original list:
>> sched8.uniq.length
=> 3

>> sched7.uniq.length
=> 12

T11. This combination of parameters will generate a list of numbers between 0 and 999:
>> seq = prng_sequence(3, 337, 1000)
=> [0, 337, 348, 381, 480, ... 97, 628, 221, 0]

Look at the list of 1000 numbers in your terminal emulator window. Does it look “random”
to you?

T12. Let’s see if this combination of a, c, and m made a list with a period of m:
>> seq.uniq.length
=> 100

So this combination of a, c, and m yields a list that has the same 100 numbers repeated 10
times—not very random at all.

T13. Here is a better combination. Change the first argument to 81 instead of 3:
>> seq = prng_sequence(81, 337, 1000)
=> [0, 337, 634, 691, ... 749, 6, 823]

T14. How many unique numbers are in this list?
>> seq.uniq.length
=> 1000

Just what we were looking for. Does this list look random?

c� 2011 Taylor and Francis Group, LLC

228 Chapter 9 Now for Something Completely Different

Figure 9.3: The first 100 values produced by a PRNG with a = 81, c = 337, and m = 1000.

The RandomLab module includes methods that will draw pictures based on the values produced by a
pseudorandom number generator. The next set of exercises will plot the values returned by a PRNG
on a number line, so you can get a sense of how the values are scattered over a specified range
(Figure 9.3).

T15. Create a window with a number line for values between 0 and 999:
>> view_numberline(1000)
=> true

You should see a canvas with a line running through the middle of it.

T16. A method named tick_mark will display a mark at a specified point on the line. Type this
expression to display a tick mark in the middle of the line:
>> tick_mark(500)
=> nil

T17. This command will draw 100 tick marks, at locations 0 through 99:
>> 100.times { |i| tick_mark(i) }
=> 100

T18. Reinitialize the display by calling view_numberline again (Exercise T15).

T19. Type this expression to plot the points from the pseudorandom sequence that contained only
100 different numbers:
>> prng_sequence(3, 337, 1000).each { |i| tick_mark(i) }
=> [0, 337, 348, 381, ... 97, 628, 221]

Can you see how only about 1/10 of all the points are filled in? So even though the call to
prng_sequence made a list of 1000 numbers, the list has 100 different values repeated 10
times.

T20. Reinitialize the drawing, and repeat the call to prng_sequence, but change the 3 to 81 so
you get the sequence with all 1000 numbers:
>> view_numberline(1000)
=> true

>> prng_sequence(81, 337, 1000).each { |i| tick_mark(i) }
=> [0, 337, 634, 691, 308, 285, ... 749, 6, 823]

Now your number line should be completely filled in. There are 1000 numbers in the list,
and each value from 0 to 999 will occur exactly once.

The expression in Exercise T20 filled in each point in the number line. But we could have done that by
repeating Exercise T17 and telling it to draw 1000 tick marks. When you were watching the display,
were the numbers created by prng_sequence added in a random order?

c� 2011 Taylor and Francis Group, LLC

9.2 Numbers on Demand 229

9.2 Numbers on Demand

Although the sequences produced in the exercises for the previous section may appear to be
random, appearances can be deceiving. Later in the chapter we’ll look at some techniques
for evaluating sequences to test randomness, but first we’ll see how the random number
generator can be implemented in a method intended for games and other applications that
need random numbers.

As a practical matter, applications do not generate a list of all numbers in a pseudoran-
dom sequence. A game may need only a few hundred rolls of the dice, and it would be a
big waste of time and space to generate the full list of billions of pseudorandom numbers
defined by the best random number generators. Instead, games and other applications use
a programming technique that creates random numbers “on demand.”

As an analogy for how this might work, imagine a scenario where a statistician has a lab
assistant who is in charge of random numbers. The situation where the full sequence is
generated ahead of time would correspond to the lab assistant carrying around the RAND
book of random digits. Each time the statistician needs a random value, the assistant would
look up the current digit in the book, and then move his bookmark one place to the right.
However, when the numbers are generated by an algorithm, the assistant just needs to
keep track of one number on a small piece of paper. When the statistician needs a random
number, the assistant plugs the number into the equation to compute the next value in the
sequence and then erases the old number and replaces it with the new value.

The RandomLab module has the definition of a new type of object called a PRNG that
uses the one-number-at-a-time strategy to implement a pseudorandom number generator.
To make a PRNG object, pass the a, c, and m parameters to the method that makes a new
object. For example, in the last section we made a pseudorandom sequence of m = 1000
numbers using a = 81 and c = 337:

>> seq = prng_sequence(81, 337, 1000)
=> [0, 337, 634, 691, ... 749, 6, 823]

To make a PRNG object based on this sequence, we pass these same values to PRNG.new:

>> p = PRNG.new(81, 337, 1000)
=> #<RandomLab::PRNG a: 81 c: 337 m: 1000>

A method named advance moves to the next pseudorandom number in the sequence. If
we call advance a couple of times, it should return the first two values in the sequence:

>> p.advance
=> 337

>> p.advance
=> 634

Each time advance is called it acts like the assistant with the piece of scrap paper. It sets
the value of x to the current value in the sequence. It then evaluates (a × x + c) mod m.
The value of this expression is saved as the new state of the sequence, and it’s also returned
as the value of the call to advance.

c� 2011 Taylor and Francis Group, LLC

230 Chapter 9 Now for Something Completely Different

Tutorial Project
T21. If you started a new IRB session since you worked on the project in the previous section, type

this expression again to make a pseudorandom sequence:
>> seq = prng_sequence(81, 337, 1000)
=> [0, 337, 634, 691, ... 749, 6, 823]

T22. Print the first 10 numbers in the sequence:
>> seq[0..9]
=> [0, 337, 634, 691, 308, 285, 422, 519, 376, 793]

T23. Make a PRNG object using the same values of a, c, and m:
>> p = PRNG.new(81, 337, 1000)
=> #<RandomLab::PRNG a: 81 c: 337 m: 1000>

T24. A method named state will show us the current number in the sequence (the number
written on the “scrap paper”):
>> p.state
=> 0

So the PRNG object starts out with the same value as the array made by prng_sequence.

T25. If you call the advance method you should get back the next value in the sequence:
>> p.advance
=> 337

T26. Call advance a few more times. Do you get the same numbers you see at the front of the
list named seq?

T27. Call p.state to see what the current number is, and then call p.advance again. Do
you see how each call to advance simply computes the next value in the pseudorandom
sequence?

9.3 Games with Random Numbers

The previous two sections showed how it is possible to create a list of numbers that appear
to be random. We looked at the equation that defines how each element in the list is derived
from the previous one, and then saw how we might implement this technique in a way that
lets us get new numbers “on demand” instead of creating the entire list at once. The goal for
this section is to show how a pseudorandom sequence can be put to work by an application
that uses random numbers.

If the three parameters (named a, c, and m) that define the relationship between succes-
sive numbers are chosen carefully, the pseudorandom sequence will have values from 0 up
to m − 1. However, if we are writing a program to play a game like backgammon, which is
based on rolling a pair of dice, we want a series of numbers between 1 and 6.

A simple approach to simulating random rolls of a six-sided die is to get a value from the
pseudorandom sequence, find its remainder after dividing by 6 (which will yield a number
between 0 and 5), and then add 1. Here is a Ruby expression that transforms a number
from a PRNG object named p into a number between 1 and 6:

>> (p.advance % 6) + 1
=> 2

c� 2011 Taylor and Francis Group, LLC

9.3 Games with Random Numbers 231

Figure 9.4: If pseudorandom numbers are used by a
program that plays a game with dice, the values
in the pseudorandom sequence are mapped to
numbers between 1 and 6.

If we evaluate this expression several more times and save the results in a list, we can see
something interesting:

>> rolls = []
=> []

>> 10.times { rolls << (p.advance % 6 + 1) }
=> 10

>> rolls
=> [2, 5, 2, 3, 4, 3, 4, 5, 2, 1]

As expected, all the numbers in the list are between 1 and 6. But notice the numbers that
follow the 2s in this list: the first 2 is followed by 5, the second by 3, and the third by 1.

The fact that a number can be followed by different values adds to the illusion that this
sequence is truly random, and not just pseudorandom. Because 1000 was passed as the
value of m when the PRNG was created, the pseudorandom sequence generated by p will
have every number between 0 and 999. But when we divide these numbers by 6, the
remainders will be between 0 and 5. Each remainder will show up hundreds of times, and
the value that follows a remainder can be any one of the 6 numbers between 0 and 5.

PRNG objects have a method named random that does this conversion for us. This
method takes two parameters, min and max. The method gets the next value from the
pseudorandom sequence, and then it uses the mod operator to turn that value into an inte-
ger between min and max. For example, a program that wants to use the PRNG object to
simulate rolls of a die would call p.random(1,6) to get numbers from 1 to 6:

>> p.random(1,6)
=> 1

>> p.random(1,6)
=> 2

There is one more issue that needs to be addressed if we want to use a PRNG in an
application, and that is how to initialize the sequence. Each time a new PRNG object is
created, the initial state is set to 0. Since the application alway uses the same values of a, c,
and m to create the PRNG, it will always get the same sequence of numbers at the start of
each game. Our backgammon program will always start off with the same rolls of the dice:
2, 5, 2, 3, 4, 3, 4, 5, 2, etc. Players will soon recognize that every game starts the same way,
and they will lose interest.

c� 2011 Taylor and Francis Group, LLC

232 Chapter 9 Now for Something Completely Different

One way to address this problem is to set the state of the PRNG to a particular value. We
can create the new object, letting the new method set the state to 0, but then we can change
the state to any value we choose. This process of changing the state of a PRNG is called
“seeding.” If we want to seed one of our PRNG objects we just have to call a method named
seed, e.g.,

>> p.seed(226)
=> 226

The next call to advance will get the number that follows 226 in the underlying pseudo-
random sequence.

But now the question becomes, which value do we use for a seed? If we’re using the
simple PRNG that has m = 1000 we can choose any number from 0 to 999. But if we just
choose our favorite number, and write that number into the program, we will have the same
problem. The game will start out with a different set of rolls than if the sequence started
with 0, but since the PRNG always starts in the same state players are again going to see the
same set of rolls at the start of each game.

A common solution is to use the system clock. Ruby has a module named Time that has
a collection of methods for dealing with dates and times. Calling Time.now will return the
current date:

>> Time.now
=> Mon Dec 28 09:30:34 -0800 2009

It’s also possible to turn a date into an integer by calling the to_i method:

>> Time.now.to_i
=> 1262021437

This value is the number of seconds since January 1, 1970 (the date of the “Big Bang” when
time started in the Unix world).

To initialize each new game, an application typically gets the current time, converts it
to an integer, and uses that value to seed the random number generator. Although the
time value is increasing in a predictable way, the values that follow in the pseudorandom
sequence will be very different, and the games will start out with a different sequence of
rolls each time.

Tutorial Project
T28. Make a PRNG object with the same values of a, c, and m used previously:

>> p1 = PRNG.new(81, 337, 1000)
=> #<RandomLab::PRNG a: 81 c: 337 m: 1000>

T29. Get 10 rolls of a die by calling the random method and asking it for values between 1 and 6:
>> 10.times { puts p1.random(1,6) }
2

5

2

3

...

c� 2011 Taylor and Francis Group, LLC

9.3 Games with Random Numbers 233

T30. Make a second pseudorandom number generator using the same parameter values:
>> p2 = PRNG.new(81, 337, 1000)
=> #<RandomLab::PRNG a: 81 c: 337 m: 1000>

T31. Now print the first 10 rolls of the die produced by this PRNG:
>> 10.times { puts p2.random(1,6) }
2

5

2

...

Do you see why they are the same rolls? Each new PRNG object is initialized to start at the
same place in the pseudorandom sequence, so each will create the same sequence of values.

T32. Call the method that gets the current date and time:
>> Time.now
=> Mon Dec 28 10:33:57 -0800 2009

Obviously the result you get will be different, but you should see a string that contains a date
formatted according to the conventions you set for your operating system (this string is in
the format seen by users in the United States).

T33. Type the expression again after adding to_i to convert the time into an integer:
>> Time.now.to_i
=> 1262025240

T34. If you want to use the current time to set the seed for the PRNG, convert the time to a number
between 0 and m − 1:
>> rs = Time.now.to_i % 1000
=> 574

T35. Create a third PRNG, and then set its seed using the current time:
>> p3 = PRNG.new(81, 337, 1000)
=> #<RandomLab::PRNG a: 81 c: 337 m: 1000>

>> p3.seed(rs)
=> 574

T36. Now get 10 rolls of the die from this new PRNG:
>> 10.times { puts p3.random(1,6) }
4

1

4

...

T37. Set the seed for p3 again, but this time use a value that is one greater than the previous seed,
and then get 10 rolls of the die:
>> p3.seed(rs+1)
=> 575

>> 10.times { puts p3.random(1,6) }
1

6

3

...

After doing these last two exercises, do you see how a slight change in the seed leads to a big change
in the pseudorandom sequence? Just a slight difference in the time used to set the seed will result in
a completely different sequence of random numbers at the start of each game.

c� 2011 Taylor and Francis Group, LLC

234 Chapter 9 Now for Something Completely Different

9.4 Random Shuffles

If we want to write a program to play bridge, poker, or some other card game we are going
to need a method that makes random collections of cards. Simulating the roll of six-sided
die just involved computing a number between 1 and 6, but here the problem is slightly
different. It would be easy enough to label each card in the deck with a number between
0 and 51, and then use a pseudorandom number generator to compute a number between
0 and 51 as a way of choosing a card at random. But if we want to deal a hand there is a
chance that we could end up with two copies of the same card. In bridge, each hand has
13 cards, and if we make a hand by just calling random(0,51) 13 times, odds are we will
have a collection where the same number appears twice.

One way to solve this problem is to use a method that “shuffles” a deck of cards. We will
start with a collection of all 52 cards, and then each time we play a game we can shuffle
the collection by rearranging the items in a random order. The goal for this section will be
to develop a method that rearranges objects in an array. The method will use values from a
pseudorandom number generator to produce a random ordering.

To make the project more realistic, the RandomLab module defines a type of object named
Card. A card object will have a rank (ace, king, queen, etc.) and a suit. We will represent a
deck of cards as an array of 52 objects that each represent a different card from a standard
deck. As with other kinds of objects, an expression with the name of the type followed by
the word new will create an object of that type. If you don’t pass an argument to new you
will get back a random card:

>> Card.new
=> 10♥

>> Card.new
=> 2♣

When we make a deck of cards, we don’t want 52 random cards, but instead we want one
of each possible card. You can pass an integer between 0 and 51 to the new method to tell
it which card to make:

>> Card.new(0)
=> A♠

>> Card.new(1)
=> K♠

>> Card.new(50)
=> 3♣

>> Card.new(51)
=> 2♣

As a convenience, we can get a complete deck by calling new_deck, which makes each of
the 52 card objects for us:

>> d = new_deck
=> [A♠, K♠, Q♠, ... 3♣, 2♣]

c� 2011 Taylor and Francis Group, LLC

9.4 Random Shuffles 235

Mathematicians refer to an ordering of items as a permutation. The goal for the project
in this section is to define a method named permute! that we can use to make a new
random ordering of the items in an array. For example, after making a full deck of cards as
shown above, we can call permute! to shuffle the deck. Each time we call permute! it
will make a new random permutation:

>> permute!(d)
=> [9♠, A♣, 4♣, Q♣, 7♠, J♣, 4♥, ...]

>> permute!(d)
=> [10♣, Q♣, 7♥, A♦, 6♣, 2♥, 8♣, ...]

Unlike the sorting methods we developed in Chapters 4 and 5, which returned sorted copies
of the input arrays, each call to permute! changes the order of items in the array it is
passed.

A program that plays poker would probably “deal” the cards the same way we would in a
real game. After calling permute! to shuffle the deck, it would then give d[0] to the first
player, d[1] to the next player, and so on. For our experiments with poker hands, however,
we’ll just need one hand, and we can make this hand by using the first five cards in the deck.
This Ruby expression shuffles the deck and makes an array containing the first five cards in
the new deck:

>> permute!(d).first(5)
=> [2♣, A♠, 5♦, 10♣, 7♣]

We’ve seen the method named first before: the expression a.first returns the item at
the front of the array a. This time we’re passing the number 5 as an argument so it returns
an array of the first 5 items.

One straightforward algorithm for permuting the items in an array is based on an iteration
that exchanges two items at each step. Begin by picking up the first item and exchanging it
with a random item somewhere to the right. Then exchange the second item with a random
item somewhere to its right, then exchange the third item with a random item somewhere
to its right, and so on until you reach the end of the array. This algorithm is reminiscent of
the insertion sort algorithm: on each iteration the array has two regions, where items in the
left part of the array have been exchanged and items to the right are waiting to be moved.

It’s easy to exchange the values of two items in Ruby by using a construct known as
parallel assignment. A normal assignment statement has a single variable on the left side
of the assignment operator, e.g.,

>> x = 7

A parallel assignment has two or more variable names on the left, as in

>> x, y = 3, 4

The variables on the left are assigned the corresponding values from the right, so in this
example x is set to 3 and y is set to 4. It’s called a “parallel” assignment because we can
think of the two assignments happening at the same time.

c� 2011 Taylor and Francis Group, LLC

236 Chapter 9 Now for Something Completely Different

i = 0 A 2 J 9 3 Q 7 r = random(0,6)

i = 1 J 2 A 9 3 Q 7 r = random(1,6)

J Q A 9 3 2 7i = 2 r = random(2,6)

Figure 9.5: On each iteration, the item at location i changes places with an item at a random
location to the right.

To use a parallel assignment to exchange the value of two variables, write the names of
the variables in different orders on the left and right sides of the assignment operator:

>> x, y = y, x

Ruby executes this statement by fetching the current values of y and x and then writing
them to the specified locations. It might help to think of a juggler picking up two balls and
tossing them to different hands in the same motion: while the value of y is being tossed to
x the value of x is being tossed to y.

Parallel assignment also works for locations in an array. For example, to exchange the
values in the first two locations of an array a we can just write

>> a[0], a[1] = a[1], a[0]

Now that we know how to exchange two items in an array, writing the method is straight-
forward. The algorithm is an iteration in which a variable named i takes on values from
0 to n − 2, where n is the length of the array. At each step, we just need to set a variable
r to a random value between i and n − 1, which is the last location in the array. We then
exchange the items at locations i and r using a parallel assignment. One small detail to
notice here: it’s possible that i and r will have the same value, in which case the exchange
operation has no effect.

An example showing the progress of the permute! method as it scrambles an array of
7 items is shown in Figure 9.5. On the first iteration, i is 0, and the program sets r to a
random value between 0 and 6. After assigning r the value 2, the program exchanges r[0]
and r[2]. In the second iteration, r is a random value between 1 and 6, and this time the
program exchanges r[1] and r[5]. Note that it is possible for an item to be moved several
times. The “A” that originally started out in location 0 is going be moved again on the third
iteration (unless the call to random(2,6) returns 2).

c� 2011 Taylor and Francis Group, LLC

9.4 Random Shuffles 237

Figure 9.6: A Ruby method that
makes a random permutation
of the items in x (which can
be a string or an array).

 1: def permute!(x)
 2: for i in 0..x.length-2
 3: r = random(i, x.length-1)
 4: x[i], x[r] = x[r], x[i]
 5: end
 6: return x
 7: end

Rearrange the items in x in a random order

In the exercises below we will use the trace method to monitor the progress of a permu-
tation and see how successive items from an array are exchanged with random items. The
listing of the permute! method is shown in Figure 9.6. The parallel assignment is on line
4, so if we attach a probe here we will be able to see the state of the array just before the
current item is exchanged with another one to its right.

Tutorial Project
The Ruby code for the permute! method is shown in Figure 9.6. If you would like to print a version
in your IRB session you can call the listing method:

>> Source.listing("permute!")

You can also “check out” a copy if you want to view it in your text editor:

>> Source.checkout("permute!")

T38. Make a small array of strings:
>> a = TestArray.new(5, :colors)
=> ["plum", "thistle", "khaki", "chocolate", "hot pink"]

T39. Type a parallel assignment expression that exchanges the values in the first and third loca-
tions, and then print the array again:
>> a[0], a[2] = a[2], a[0]
=> ["khaki", "plum"]

>> a
=> ["khaki", "thistle", "plum", "chocolate", "hot pink"]

Can you see how Ruby exchanged the strings at a[0] and a[2]?

T40. Make an array of numbers to use when tracing the permute! method:
>> a = Array(0..9)
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

T41. A method named brackets (similar to the one used in the searching and sorting labs) will
print the contents of an array. Attach a probe to the permute! method so brackets is
called just before line 4 is executed:
>> Source.probe("permute!", 4, "puts brackets(x,i,r)")
=> true

c� 2011 Taylor and Francis Group, LLC

238 Chapter 9 Now for Something Completely Different

T42. Trace the execution of a call to permute! as it scrambles your test array:
>> trace { permute!(a) }
4: [0 1 2 3 4 5 6 7 8 9]

2: 4 [1 2 3 0 5 6 7 8 9]

6: 4 2 [1 3 0 5 6 7 8 9]

3: 4 2 6 [3 0 5 1 7 8 9]

...

=> [4, 2, 6, 3, 8, 9, 7, 1, 5, 0]

Each line above shows the current state of the array. The number at the front of the line, before the
colon, is the value of r, which is the location where an item will be moved. The left bracket is printed
just in front of a[i], which means the item to the right of the bracket is the one that will be moved.
The first line shows that the 0 in a[0] is going to be swapped with the item in a[4]. You can see the
effect of this change in the array printed on the second line.

The actual result you get will be different, since the location used for the exchange is chosen at
random. But you should be able to follow the steps of the algorithm by looking at the front of each
line to see which location was chosen, and then noticing on the following line how the item next to
the bracket was swapped with the item at the chosen location.

T43. Call Card.new a couple of times to make some random cards:
>> Card.new
=> 8♥

>> Card.new
=> 3♦

T44. Type this expression to make an array named a with 13 random cards, and then print the
array after sorting it:
>> a = []; 13.times { a << Card.new }; a.sort
=> [K♠, J♠, J♠, 4♠, ...]

There is a chance that by simply calling Card.new 13 times to deal a hand we will get a
duplicate card. Does your array have any duplicates? Repeat the expression a few times.
How often do you get duplicate cards?

T45. Make a full deck of cards containing each of the 52 cards:
>> d = new_deck
=> [A♠, K♠, Q♠, J♠, ... 3♣, 2♣]

T46. Call the permute! method to see if it shuffles the deck:
>> permute!(d)
=> [2♥, Q♠, 9♦, K♣, 4♥, 4♣, 2♠, ...]

Repeat the expression a few times. Does it look like a random shuffling after each call?

T47. Shuffle the deck, and save the first five cards in an array named h:
>> h = permute!(d).first(5)
=> [9♦, 3♦, A♣, 5♠, 7♠]

Repeat this expression a few times. Do you get a random poker hand each time?

T48. The following expression is like the one above, except it deals a bridge hand (13 cards) and
it sorts the hand before it is displayed:
>> h = permute!(d).first(13).sort
=> [J♠, 10♠, 9♠, 5♠, 3♠, 2♠, K♥, 10♥, 9♥, 6♥, 9♦, 10♣, 9♣]

Repeat the expression a few times. Since the hand is a random shuffle of a full deck you
should never see any duplicates.

c� 2011 Taylor and Francis Group, LLC

9.5 Tests of Randomness 239

9.5 Tests of Randomness

So far we’ve been relying on our intuition that the output from our pseudorandom number
generators looked random. In this section we’ll perform some tests on the sequence of
numbers produced by a PRNG to investigate the question of whether the sequences are
random or not.

The two techniques we will use are both informal tests that use graphical displays. Vi-
sualization is a very powerful method for seeing whether there are any biases or hidden
patterns in the data. These informal tests will not give us a definitive answer, of the form
“yes, this sequence is random” or “no, this sequence is not random,” but the tests are simple
to do. If a sequence of numbers is not random, the nonrandomness often shows up in the
form of patterns in the display.

The first type of display is a histogram (often called a “bar chart”). To test a sequence
of simulated rolls of a die, we can just count the number of times each number from 1 to
6 occurs in the sequence. The histogram will have one bar for 1s, another bar for 2s, and
so on, where the height of a bar indicates how often that number showed up in the random
sequence (Figure 9.7).

The algorithm we have been using for making pseudorandom sequences should create
what is known as a uniform distribution. In an experiment with 1000 rolls of the die,
we expect each number will occur roughly 1000 ÷ 6 = 167 times. But suppose there is a
problem with the PRNG, and it gives us 300 6s. If all the other rolls occur equally often,
the bar for 6s will be over twice as high as the others, and we can tell at a glance that the
sequence is biased. But if all six bars are roughly the same height we could then do some
further statistical tests if we wanted to know for certain whether the sequence is random.

The RAND corporation used a similar approach to test the numbers in their book of ran-
dom digits. One of their tests was called the “poker test.” If we want to apply this test to
our random number generator, we can use the PRNG to deal 1000 poker hands. According
to the laws of probability we should see 420 hands that have two cards with the same rank
(i.e., a pair), 21 hands with three cards of the same rank (three of a kind), and so on. If
we plot the results with a bar chart, and see a lot more straights and full houses than pairs,
then something is clearly wrong.

To draw a histogram on the RandomLab canvas, we first need to create a set of “bins,”
with one bin for each result in the experiment. For example, we need six bins for the

Figure 9.7: A histogram (bar chart) showing
the frequency of random rolls of a die
based on the first 100 numbers from the
pseudorandom sequence.

1 2 3 4 5 6

14

23 24

14
12 13

c� 2011 Taylor and Francis Group, LLC

240 Chapter 9 Now for Something Completely Different

experiment with simulated dice, one for each of the numbers from 1 to 6, so the command
to initialize the histogram is

>> view_histogram([1,2,3,4,5,6])
=> true

To add one to the count in a bin, call a method named update_bin, passing it the ID of
the bin to increment. This expression adds one to the count for bin 6:

>> update_bin(6)
=> true

When Ruby evaluates the expression you should see the bar for bin 6 grow slightly.
Another approach to test whether the sequence of values generated by a PRNG is random

or not is to look for patterns or correlations between successive numbers in the sequence. It
turns out there is a pattern in the sequence produced by the PRNG we used earlier in this
chapter. Here is the expression we typed to make a list of 1000 numbers:

>> seq = prng_sequence(81, 337, 1000)

and these are the first 10 numbers in the sequence:

>> seq[0..9]
=> [0, 337, 634, 691, 308, 285, 422, 519, 376, 793]

From this short sample it’s not clear what the pattern is, but it starts to become more ap-
parent if we convert each of these numbers into a value between 1 and 6, which is what we
would do if we’re using the numbers in a game based on rolling dice. If you want to try to
figure out the pattern yourself, cover up the paragraph below the IRB output shown below.
Here are the first 20 numbers in the sequence, converted to values between 1 and 6. Do you
see the pattern?

>> seq[0..19].map { |x| (x % 6) + 1 }
=> [1, 2, 5, 2, 3, 4, 3, 4, 5, 2, 1, 4, 3, 2, 3, 4, 5, 2, 3, 2]

Based on this short list it looks like the numbers alternate between even and odd. If the
computer used this pseudorandom sequence to play a game, every time it rolled an even
number it would follow with an odd number, and vice versa. It wouldn’t take long for a
person playing a game based on this PRNG to suspect something was wrong. In a game
with two die, the computer would never roll “doubles.”

A visual display that makes this type of pattern easy to see is known as a dot-plot. As
the name implies, the drawing will be a set of dots on a canvas. To make a dot-plot on the
RubyLabs canvas, call a method named view_dotplot:

>> view_dotplot(500)
=> true

The argument is the number of pixels for the height and width of the plot.
To display a dot on the canvas call plot_point, passing it the x and y coordinates of

the dot. For example, this expression will draw a dot in the middle of the canvas:

>> plot_point(250,250)
=> nil

c� 2011 Taylor and Francis Group, LLC

9.5 Tests of Randomness 241

Figure 9.8: In these images the x and y coordinates of a dot are determined by two successive
numbers from a pseudorandom number generator (PRNG). The image on the left is from a
PRNG that alternates between even and odd numbers. The image on the right is based on Ruby’s
own rand method.

One way to look for patterns in values from a pseudorandom sequence is to plot a set of
points in which the x and y coordinates of a dot are determined by getting two successive
numbers from the PRNG. If we make a PRNG named p, this loop will paint 1000 points
using p to set the x and y coordinates:

>> 1000.times {
x = p.random(0,499);
y = p.random(0,499);
plot_point(x,y)

}

If there is no correlation between successive numbers, the points will be scattered at random
all over the canvas. But if there are any hidden patterns in the data, even if they are very
subtle, the dots will line up or form some other distinctive shapes.

The dot-plot for our pseudorandom number generator with a = 81, c = 337, and m =
1000 is shown on the left in Figure 9.8. It’s obvious from this plot that the sequence of num-
bers is not at all random. Even if we had not noticed that the sequence alternated between
even and odd numbers, this plot would have told us there was some sort of pattern, and we
would not use this set of parameters in an application that requires random numbers.

As was the case with histograms, the visualization is convenient for getting an initial
impression. When there are hidden patterns in the data they often jump out when the data
is displayed with a dot-plot. But to truly check to see whether the data is random it would
be necessary to perform a detailed statistical analysis of the x and y coordinates. For this
chapter, however, we will simply do informal tests using pictures.

c� 2011 Taylor and Francis Group, LLC

242 Chapter 9 Now for Something Completely Different

Tutorial Project
The first set of projects will plot a histogram for rolls of a die produced by the pseudorandom number
generator we used in previous projects.

T49. Type this expression to clear the canvas and draw an empty histogram to count the rolls of a
die:
>> view_histogram([1,2,3,4,5,6])
=> true

You should see six lines in the middle of the screen, each representing a bin with zero items.

T50. Type this command to increment bin number 5:
>> update_bin(5)
=> nil

Do you see how the rectangle for this bin got slightly taller?

T51. Repeat the previous command a few times, using different bin numbers, until you’re confi-
dent you know how this expression updates the histogram.

T52. Make a new pseudorandom number generator using the same parameters from earlier in the
chapter:
>> p = PRNG.new(81, 337, 1000)
=> #<RandomLab::PRNG a: 81 c: 337 m: 1000>

T53. This command will get a random number between 1 and 6 from the PRNG and then pass it
to update_bin to increment the count for that number:
>> x = p.random(1,6); update_bin(x)
=> nil

T54. Repeat the command several more times. Do you see how a different bin is updated each
time the expression is evaluated?

T55. Clear the histogram by entering the expression from problem T49 again:
>> view_histogram([1,2,3,4,5,6])
=> true

T56. Put the command that draws a random number and then plots it inside a call to times so it
is executed 100 times:
>> 100.times { x = p.random(1,6); update_bin(x) }
=> 100

What does your histogram look like? Are the numbers fairly evenly distributed?

If any of the bins reaches the top of the canvas the drawing methods will automatically rescale the
histogram to make it smaller. So if you see the histogram suddenly shrink, don’t worry. It just means
the drawing methods are “zooming out” and making room for more data.

T57. In an earlier exercise we saw how this PRNG generates every number between 0 and 999.
That means there should be the same number of 1s, 2s, 3s, etc., when those numbers are
converted to values between 1 and 6. To verify this claim, repeat the previous loop 900 more
times, so a total of 1000 numbers are in the histogram:
>> 900.times { x = p.random(1,6); update_bin(x) }
=> 900

What did you see? Are the results what you expected?

c� 2011 Taylor and Francis Group, LLC

9.5 Tests of Randomness 243

The next set of exercises make another histogram, this time using poker hands.

T58. The classification of a poker hand is often called its “ranking.” To get an array of names of
poker hands, call a method named poker_rankings:
>> poker_rankings
=> [:high_card, :pair, ... :four_of_a_kind, :straight_flush]

Note that the rankings are ordered, with the most common hands on the left.

T59. Pass the array of names to the method that creates a new histogram:
>> view_histogram(poker_rankings)
=> nil

Since there are nine names in the list, you should see nine empty bins.

T60. Make a new deck of cards:
>> d = new_deck
=> [A♠, K♠, Q♠, ... 4♣, 3♣, 2♣]

T61. This expression will shuffle the deck and copy the first five cards to an array named h:
>> h = permute!(d).first(5)
=> [Q♥, K♦, 5♠, J♥, K♣]

It’s OK to cheat if you want to repeat that expression until you get an interesting hand.

T62. A method named poker_rank will figure out what sort of hand is in the array:
>> poker_rank(h)
=> :pair

T63. Since the result from poker_rank is one of the histogram labels, we can increment the
count for that type of hand by passing the label to update_bin:
>> update_bin(poker_rank(h))
=> true

T64. The next command combines all the operations into a single expression: it shuffles the deck,
makes a hand from the first five cards, figures out what sort of hand it is, and updates the
corresponding bin in the histogram:
>> h = permute!(d).first(5); update_bin(poker_rank(h))
=> nil

T65. Repeat that command several times. Are the bins updating? Are they mostly on the left, for
the most common hands?

T66. If you want to repeat the experiment for a larger number of hands, put the expression in the
body of a loop:
>> 1000.times {h = permute!(d).first(5); update_bin(poker_rank(h))}
=> 1000

♦ The histogram methods keep track of the number of each type of item. If you want to see the
final counts, call a method named get_counts:
>> get_counts
=> {:straight_flush=>0, :high_card=>524, :two_pair=>41,

:three_of_a_kind=>29, :full_house=>1, :straight=>5,

:four_of_a_kind=>1, :flush=>4, :pair=>395}

This output shows there were no straight flushes, 524 hands classified as “high card,” 41 with
two pair, and so on. Find a table of poker probabilities on the Internet, and compare your
results with the expected frequency for each type of hand. Do you think there is any bias in
these hands, or does it seem like permute! did a good job of shuffling the deck?

c� 2011 Taylor and Francis Group, LLC

244 Chapter 9 Now for Something Completely Different

9.6 Summary

Making lists of random values is a subtle problem. It’s hard for humans to do, and it turns
out it’s not quite so easy for machines, either.

In this chapter we saw how to make a long list of numbers where short stretches appear
to be random. Given the right combination of parameters, the equation that defines how to
add a new value to the list as a function of the previous value will make sure every number
between 0 and n − 1 eventually appears in a list of n numbers.

But even though the list has all n numbers, and they appear to be in a random order,
there can be some hidden patterns. For example, when we took a closer look at one of the
sequences we studied, we saw that it alternated between even and odd numbers. Even more
subtle patterns might be hidden in the data. We explored two methods for testing random-
ness by drawing pictures based on values produced by the random number generator. These
informal methods can help us tell, at a glance, whether there is a hidden bias or pattern.

Random number generators are among the most important and widely used algorithms in
computer science. They are used in games, of course, but there are many other application
areas where random values play a key role. We used random sequences in Chapters 4 and
5 to test searching and sorting algorithms. Many scientific algorithms also use random
numbers. For example, some algorithms that reconstruct the evolutionary history of a set
of genes use a method based on taking a random sample of all possible family trees to find
the one that is most likely given the similarities between the genes. Later in this book,
Chapter 12 describes a type of problem known as optimization, where the goal is to find
the optimal solution to a problem, and one common approach also uses random samples.
E-commerce, Internet banking, and other network traffic depends on encryption algorithms
to turn a piece of text into what appears to be a random sequence of letters; many of the
important concepts used to design effective random number generators are also used in
encryption algorithms.

Concepts and Terminology Introduced in This Chapter

random A sequence of items is random if the values are inde-
pendent of one another

pseudorandom A pseudorandom sequence is one produced by an algo-
rithm; pseudorandom sequences are not truly random,
but small subsequences may appear to be random

PRNG Pseudorandom number generator, an algorithm that
creates a sequence of pseudorandom values

permutation A reordering of the items in a list or array
uniform

distribution
The result of generating random values where each
value is equally likely

histogram Also known as a bar chart; a visual display that shows
the number of times various events occur

c� 2011 Taylor and Francis Group, LLC

9.6 Summary 245

Exercises
1. The schedule in Section 9.1 for events that occur every seven hours had a period of 12, i.e.,

every number between 0 and 11 appears once in the schedule before it repeats. Can you find
other intervals besides 7 hours that also lead to a period of 12?

2. Suppose the schedule for events that occur every seven hours starts on a Monday at 12 A.M.,
so the next events are Monday at 7 A.M., 2 P.M., and 9 P.M. Will this pattern ever repeat? That
is, will there ever be another Monday with this same schedule? If so, can you determine how
many days will pass before this same schedule is used?

3. Redo the schedule for events that occur every seven hours using a 24-hour clock. Is the period
still 12? Or is it now 24?

4. What are some intervals that lead to schedules with a period of less than 24 when a 24-hour
clock is used?

5. What are some intervals that lead to a full schedule with 24 times and every time between 0
and 23 occurring exactly once?

6. What do the answers to the last problem have in common? Is there a common attribute for
intervals that lead to schedules with a period of 24, vs. those the lead to a period of less than
24?

7. The first day of each month usually falls on a different day of the week. Is the pattern of
weekdays random? Pseudorandom?

8. Use the Ruby expressions starting on page 241 to create a dot-plot on the RubyLabs canvas.
Then make a plot of 3000 points drawn at random from Ruby’s own random number generator
(the built-in method named rand) instead of numbers from a pseudorandom sequence. Do the
points appear to be spread uniformly all over the canvas?

9. The Ruby expression given in Exercise T14 used a call to uniq to see if all of the numbers
between 0 and m-1 were in a pseudorandom sequence. Another way to check the sequence
would be to sort it so you can compare it to an array that has every number from 0 to m-1. Can
you write a Ruby expression that will do this test?

10. If you took the challenge at the beginning of Section 9.1 and entered a series of random digits
in a file, make a histogram from your numbers. One way to make a histogram is to load the
numbers into a spreadsheet application and use its “chart” command. Were you able to make a
uniform distribution? Or are some numbers a lot more frequent than others?

11. ♦ Here are some values of a, c, and m that should generate much better pseudorandom se-
quences than the ones we used in this chapter:2

a c m
1255 6173 29282
171 11213 53125
421 54773 259200

Repeat some of the experiments in this chapter to evaluate the quality of the pseudorandom
sequences. Make PRNG objects, and use values from the objects to make histograms (not just
of values from 1 to 6, but for other ranges, too) and dot plots.

2From Numerical Recipes in C, by W. H. Press, et al.

c� 2011 Taylor and Francis Group, LLC

