
Array Visualization
Animated sort algorithms in RubyLabs

John S. Conery

October, 2012





Array Visualizations
The lab modules for Chapter 4 (“Journey of 1000 Miles”) and Chapter 5 (“Divide and Con-
quer”) have been updated to include methods for drawing arrays on the RubyLabs Canvas.
When an array is on the canvas, the sort algorithms described in those chapters will update
the canvas to show how array elements are moved around by the algorithm.

Update Your RubyLabs Gem

To update your RubyLabs installation so you have these new visualization methods make
sure your computer is connected to the Internet and then start your terminal emulator.
Before you type irb to begin a session with Ruby, enter the following operating system
command and hit the return key:

gem update rubylabs

You should see a message that says “Updating installed gems” and eventually a message
showing which version of the RubyLabs was installed. Array visualizations are part of Ruby-
Labs 0.9.7 and above.

Note for Linux and Mac OS X Users: If you get an error message that says something like
“you do not have permission” it probably means you originally installed the lab software
without using the --user-install option. Retype the command, but this time put sudo
at the front of the line:

sudo gem update rubylabs

You will be prompted to enter your password (this should look familiar, since the same thing
happened when your first installed RubyLabs). Type in your password, hit return, and the
installation should succeed.

3



4

Figure 0.1: Visualization of an array of 16 numbers. There are 16 light blue bars, one for each
number in the array. The height of bar i is proportional to the value of a[i].

Drawing an Array on the Canvas

In the new version of the software a method named view_array is defined in the Itera-
tionLab and RecursionLab modules. If a is an array of integers you can draw the array on
the RubyLabs canvas by passing it as an argument to view_array:

>> include IterationLab
=> Object
>> a = TestArray.new(16)
=> [70, 22, 7, 23, 90, 79, 8, 64, 96, 93, 14, 40, 75, 95, 4, 83]
>> view_array(a)
=> true

The result will be a drawing that looks something like the one in Figure 0.1. An array is
drawn as a series of vertical bars, where the height of each bar is proportional to the value
in the array.

Immediately below the array is a horizontal dark blue bar. This bar can be used by an
algorithm to indicate which part of the array it is working on. For example, in isort, the
implementation of insertion sort, the horizontal bar is drawn below the unsorted region of
the array, and as the sort progresses the bar will become progressively shorter.

You can control the speed of an animation by specifying a delay in the call to view_array.
The delay value tells the animation routines how long to pause after each operation. This
call to view_array sets the delay to 0.2 seconds:

>> view_array(a, :delay => 0.2)
=> true

The default delay is fairly short, so if you want to slow down the visualization try setting
the delay to longer values.



5

Figure 0.2: Snapshot from the visualization of a call to isort(a) where a is the example array
from Figure 0.1.

Insertion Sort

If an array is on the canvas, a call to isort will cause the bars on the screen to be moved
around as the array is sorted.

Recall that on iteration i of the insertion sort algorithm the item in location i is removed
from the array and the computer starts scanning to the left (locations 0 to i − 1) to find
a place to insert the item back into the array. When the array is displayed on the canvas
you will see the bar for a[i] turn dark blue to show that it is the current item. Then you
will see it start moving to the left until the computer finds a smaller item, i.e. it reaches a
location where the bar is shorter than the bar that is moving (or until it reaches the front of
the array).

Figure 0.2 shows a snapshot from the visualization of isort working on the example
array. The horizontal “progress bar” below the array shows that the unsorted region has
shrunk to the last four locations in the array and the current item is being moved to the left.

Binary Search

The “divide and conquer” algorithms (binary search, merge sort, and Quicksort) are im-
plemented in the RecursionLab module. The version of view_array implemented in Re-
cursionLab also draws an array as a set of light blue bars, but the canvas window is taller
in order to make room for the extra space required by merge sort (described in the next
section).

If you want to view an animation of binary search you need to attach a probe to one of the
lines in the bsearch method. The exercises in the book show how to attach a probe so the
array is printed in the terminal window with square brackets around the region that needs



6

to be searched and an asterisk in front of the item in the middle of the region. Exactly the
same approach is used for visualization: you will attach a probe, but the method activated
by the probe will update the display on the canvas instead of printing the array on the
console.

The first step is to create the array (don’t forget to sort it) and display it. For this experi-
ment a long delay of one second or more is recommended:

>> include RecursionLab
=> Object
>> a = TestArray.new(15).sort
=> [0, 10, 14, 16, 25, 28, 38, 50, 53, 54, 55, 68, 78, 80, 85]
>> view_array(a, :delay => 1.0)
=> true

Now attach the probe and call bsearch using the trace method:

>> Source.probe("bsearch", 6, "show_bsearch_region(a, lower, upper+1, mid)")
=> true
>> trace { bsearch(a, a.random(:fail)) }
=> nil

As the algorithm runs you should see the item being compared, which is in the middle of
the current region, turn dark blue. Then the current region (indicated by the horizontal
progress bar displayed below the main array) will be set to the part of the array to the left
or right of the dark blue item and the next item compared will be in the middle of this new
region.

Merge Sort

At any point in the execution of merge sort the algorithm is merging two adjacent groups
of size n into a larger group of size 2n. On the screen you will see the horizontal “progress
bar” below the two groups that are currently being merged.

The key step in the algorithm is to compare the first item from each group and to move
the smaller one to the temporary area where the merged group is being built. What you will
see on the screen is the bar at the front of one of the two groups turn dark blue and then
see it moved to the temporary area.

The snapshot in Figure 0.3 was taken near the end of the call to msort, when the algo-
rithm was merging two groups of size 4 into a group of size 8. The progress bar is drawn
below the two groups in the main array. The three smallest items from these groups have
already been moved to the temporary area and then next smallest item (the vertical dark
blue bar) is about to join them.

When the algorithm is finished merging two groups, the result is moved from the tempo-
rary area back to the main array directly above.



7

Figure 0.3: Snapshot from the visualization of a call to msort(a) where a is the example array
from Figure 0.1.

© Quicksort

The main step in the Quicksort algorithm is the partitioning of the current region into items
larger and smaller than some “pivot” value. The qsort method in RubyLabs uses a common
strategy: the pivot is the first item in the region being sorted. When an array is on the
canvas, qsort will identify the pivot by coloring it dark green. Then you will see the
algorithm scan through the region moving items around. When the scan is complete, the
pivot is moved to the dividing line in the middle of the region: everything to the left will
be smaller than the pivot value, and everything to the right will be larger. At this point the
algorithm will make two recursive calls, one to sort the items in the region to the left of the
pivot and one to sort the items in the region to the right of the pivot.

The logic is more difficult to follow as a result of these recursive calls. To see how the
algorithm is progressing, try to keep track of the green bars. At any point you may see a set
of such bars. That means the algorithm is working on a small portion of the array, but when
it finishes what it is doing it needs to “pop back up” and sort the region to the right of the
closest green bar.


