
Preface
This book is an introduction to computer science. It is intended for beginning CS majors
or students from other fields who want a general introduction to computer science and
computer programming.

The main focus is on the “big ideas” in computing. Contrary to what most people expect,
computer science is much more than just programming. Computer science students learn to
write programs, but the goal is to use programming skills to explore fundamental concepts
and computational approaches to solving problems.

The distinguishing feature of this book is a set of tutorial exercises included in each chap-
ter. The idea is to use an interactive programming language to provide an environment
where students can type expressions, view the results (both in the terminal window and
through algorithm animation), and run experiments that help them learn the concepts.

The analogy I like to make when I use this material in my own classes is to compare
the tutorials to lab projects in an introductory chemistry class. There the instructor gives
detailed instructions on the materials and methods, and students are expected to follow the
instructions as precisely as possible. Students learn by observing as the experiment unfolds
and writing lab reports that explain what happened.

For the “computational experiments” in Explorations in Computing students are shown
the statements that create pieces of data and call functions that implement algorithms.
An example of this sort of experiment is the section on the insertion sort algorithm. In
an interactive Python session, students type statements to create lists of random numbers,
display the lists as a series of bars on a canvas, and call the function that implements the
sort algorithm. As the algorithm runs the bars are shuffled on the canvas. Later students
are given a chance to write their own implementations of the algorithm, and the end of the
chapter has several programming exercises based on simple iterative algorithms similar to
insertion sort.

This book is a revised and updated version of Explorations in Computing: An Introduc-
tion to Computer Science, an introductory textbook I wrote in 2011 (and also published by
Chapman & Hall/CRC Press). The new book has two major differences from the previous
one. The first, most obvious, difference is the switch from Ruby to Python. Python has been
widely adopted as the language of choice for first-year (CS1) computer science courses. By
revising the lab software to use Python the hope is that students and instructors will find
it easier to make a seamless transition from the introductory projects in this book to the
deeper studies in later courses.

The second difference is that this new edition is also an introduction to Python program-
ming. The primary emphasis is still on “computational thinking” and important concepts in
computing, but along the way readers are presented with sufficient Python programming
skills that they can implement their own programs to explore the ideas.

ix

x Preface

A Note for Students: How to Use This Book
You have no doubt heard the adage, “What you get out of a course depends on what you
put into it.” That saying is especially true for learning about computation with this book.
You could simply read the book and hope to absorb the material, but to truly learn about
computing you need to experience first-hand how the computer solves problems.

Each chapter features a tutorial project that helps you explore a particular problem and
ways of solving it computationally. You are strongly encouraged to have your computer
open as you read a chapter, and at the end of each section type in the Python statements
exactly as they are shown in the tutorial exercise.

The “computational experiments” described in this book typically start by having you run
complete programs that have already been implemented in PythonLabs, a set of modules
written specifically for this book. These initial experiments include animations that illustrate
the basic steps of the computation featured in that chapter. The remaining sections go into
details that show how the key parts of the Python programs were implemented. As you
work on the tutorials for these sections you will be writing your own programs, using the
code in the book as the starting point.

The tutorials are designed so that you should be able to complete them in about the
same amount of time you would spend on a lab project in a chemistry class. You could run
through the tutorials in less time—about as fast as you can type, or if you are reading the
book online, as fast as you can copy and paste—but you should take the time to make sure
you understand what your computer is doing as you carry out each step in the tutorial.

At the end of each chapter you will find a set of exercises. These are similar to the ques-
tions you would find in a more traditional textbook and are designed to test your under-
standing of the material in that chapter. If you have completed the tutorial and understood
what happened at each step along the way you should be able to answer these questions.

tl;dr

This book is designed to be read one section at a time.
Each section has very few pages.

The projects at the end of each section are “tutorial’ style
exercises that tell you exactly what to type. Do these exercises.
They will reinforce what you read.

After you complete a chapter try your hand at the programming projects at the end of the chapter. The
only way to learn how to program is to write programs. These exercises will get you started.

T0. Type this statement to see a
message from Python:

>>> print("hello")
hello

xi

Notes for Instructors
The book is organized as a set of projects that gives students an opportunity to explore
important ideas in computer science. In most cases, the main concepts are algorithms, and
the projects are examples of how algorithms provide computational solutions to important
problems.

An interactive programming language like Python provides a “computational workbench”
where students can experiment with algorithms by typing expressions and immediately see-
ing the results. The language sets up an environment where students can run computations
and explore the effects of changing parameters or modifying operations performed at key
steps of the computation.

The topics presented in the book are outlined below. The general pattern for each chapter
will be to first introduce the concept presented in that chapter; this introductory section will
essentially be an essay that tries to make the case that the idea is interesting and worth un-
derstanding in more detail. The main part of the chapter will be the development, through a
series of projects, of one or more algorithms that illustrate the idea and provide the student
with a chance to experiment.

1 Introduction

The book starts with a general introduction to computation, focusing on the idea that com-
puter science is not just about computers and is not just programming.

2 The Python Workbench

The second chapter is a brief introduction to Python and how it can be used as a “computa-
tional workbench” to set up experiments with computations. The project takes the students
through the construction of a few simple programs, for example a function that converts
temperature from Celsius to Fahrenheit. This chapter introduces the ideas of objects, vari-
ables, functions, and conditional execution.

3 The Sieve of Eratosthenes

This chapter introduces the first real algorithm studied in the book. It also introduces a few
more practical techniques used later in the book: making lists of numbers and iterating over
a list. The project starts with simple expressions involving integers, shows how to make a
list of numbers, then how to selectively remove composite numbers, and leads finally to an
algorithm that creates a complete list of prime numbers.

4 A Journey of a Thousand Miles

This chapter builds on the basic idea of iteration presented in the previous chapter. The
project shows how iteration can be used to solve two common problems, searching and
sorting, using linear search and insertion sort. An important idea in computing in this
chapter is scalability, and students are introduced to O notation.

xii Preface

1

2

3

4

5

6

7

8

9

10

11

12

Chapter CS Concepts Python Programming

Introduction

The Python
Workbench

The Sieve of
Eratosthenes

A Journey of a
Thousand Miles

Divide and Conquer

Spam, Spam, Spam,
Mail, and Spam

Now for Something
Completely Different

Bit by Bit

The War of the Words

I’d Like to Have an
Argument, Please

The Music of the
Spheres

The Traveling
Salesman

Algorithms, computation

Interactive computing

Iteration, containers,
algorithm animation

Linear search, insertion
sort, scalability

Binary search, merge sort,
exponential growth, log₂
Machine learning,
Bayesian inference

Pseudorandom numbers,
permutations, testing

Binary representations,
trees, queues, parity bits,
text compression

von Neumann architecture

Natural language
processing

Computer simulation,
computational science

Graphs, genetic algorithms

IDE, objects, functions, libraries, import,
variables, assignment, numbers, strings,
Boolean values, if statements

Lists, list indices, for loops, incremental
development

While loops, Boolean operators

◆ Recursive functions

File paths, text files, string processing,
dictionaries

mod operator, namespaces, classes, instance
variables

ASCII, Unicode, bitwise operators

String library, more string methods, regular
expressions

◆ Generators

◆ denotes extra-credit project

1
2

3

11

5

12

9

8

6 7

10

4

The first four chapters introduce
fundamental programming constructs
and should be presented in order.
Chapters 5 through 7 also present
important programming constructs but
may be omitted if later projects will
not use these constructs.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

xiii

5 Divide and Conquer

The important idea in this chapter is that a more sophisticated strategy for solving a problem
can lead to a more efficient computation. The project shows how binary search takes up to
log

2

n steps instead of n, and merge sort takes at most n log

2

n steps instead of n

2.

6 Spam, Spam, Spam, Mail, and Spam

The algorithm used for experiments in this chapter is a Bayesian spam filter, a simple exam-
ple of how “big data” can influence decision making. The chapter also introduces Python
constructs for reading text files, Python dictionary (associative array) objects, and has addi-
tional exercises in string processing.

7 Now for Something Completely Different

The big idea in this chapter is randomness, and how random numbers can be used in a
variety of algorithms, from games to scientific applications. There is an interesting paradox
here: can we really generate random outputs from an algorithm? The answer is that ran-
dom numbers generated by an algorithm are pseudorandom, and the project takes students
through the steps in the development and testing of a pseudorandom number generator.
This is the chapter where students are introduced to module structure in Python and get a
chance to write their own simple class definitions.

8 Bit by Bit

The projects in this chapter are related to encoding data: using patterns of binary digits
to encode numbers and letters, the number of bits required to encode a set of items, text
compression with Huffman trees, and error correction with parity bits.

9 The War of the Words

This chapter introduces the important ideas that functions can also be encoded as a string
of bits and that instructions are stored in a computer’s memory along with data. The project
uses the game of Corewar, which is a contest between two programs running in the same
virtual machine; a program wins if it can write a halt instruction over the opponent’s code.
The projects lead the student through the phases of a processor’s fetch-decode-execute cycle
and emphasizes how a word that is a piece of data (the constant 0) for one program becomes
an instruction (halt) for the other program.

10 I’d Like to Have an Argument, Please

The project in this chapter is based on a Python implementation of Joseph Weizenbaum’s
ELIZA program, and shows how very simple pattern matching rules can be used to trans-
form input sentences, giving the illusion that the computer is carrying on a conversation.
By the end of the chapter students will see how difficult natural language processing is,
and how semantics and real-world knowledge are required for effective natural language
understanding.

xiv Preface

11 The Music of the Spheres

The big idea in this chapter is computer simulation. The project leads to an ab initio simu-
lation of the motion of planets in the solar system. The chapter introduces issues related to
verification and other topics in computer simulation.

12 The Traveling Salesman

The final chapter introduces the idea of intractable problems, building on ideas of scalability
from earlier chapters. The project is based on a genetic algorithm and gives students the
opportunity to explore probabilistic solutions. The tutorial has students use predefined code
for Map and Tour classes to create random tours, so they can see how tours can be mutated
and how collections of tours evolve until an optimal or near-optimal solution is obtained.

Pedagogical Considerations
This book was written primarily for CS0 courses, where the goal is to introduce the key
concepts and, as much as possible, give a broad overview of the field. If augmented by
additional material on Python programming and further programming exercises it could
also be used for a more in-depth introduction as part of a CS1 course.

The projects have been used in courses at the University of Oregon. At UO we cover the
first two chapters during the first week, but after that we spend between one and two weeks
on the remaining topics chosen for that term. Lectures emphasize material from the first
sections of a chapter, describing the problem and how it might be solved computationally,
and explaining how that week’s lab project gives some experience with the computation.
Students have an option of attending a lab session, where an instructor is available to help
them work through the material, but many students do the tutorials on their own. Live
demonstrations of the tutorial projects, both in lecture and in lab sessions, have proved to
be very effective.

At the end of each chapter there is a set of exercises that asks questions about issues raised
in the chapter. After the students have completed the tutorial, they are asked to answer a
selected set of questions and submit them as a “lab report” that gives them a chance to
explain what they learned. Similar questions are given on exams.

Software, Documentation, and Lab Manuals
The software that accompanies this book is a set of modules named PythonLabs. Python-
Labs is written exclusively in Python, using only libraries and modules that are part of the
standard Python distribution. There is one Python module for each lab project. All of the
modules have been collected into a single “egg,” which makes it easy to install all the lab
software in one step at the beginning of the term. The PythonLabs modules also include
data files and sample Python code that students can copy and modify.

A Lab Manual with step-by-step instructions for installing Python and PythonLabs is avail-
able from the book website at http://www.cs.uoregon.edu/eic. There is a separate ver-
sion of the manual for Windows XP, Mac OS X, and Linux. The manual also includes tips for
editing programs and running commands in a terminal emulator.

xv

Acknowledgments
This book is the result of many years of teaching introductory courses, and the material has
evolved considerably over that time. The students and teaching assistants involved with
these courses, and my colleagues at Oregon and elsewhere, have had a major influence on
the topics and exercises presented here. I am very grateful for their comments and feedback.

I would like to thank Tom Cortina, Dilsun Kaynar, and Roger Dannenberg from Carnegie-
Mellon University and the students in their Principles of Computing course who offered to
“test drive” preliminary versions of this Python edition.

Randi Cohen, my editor at CRC Press, was instrumental in getting the first book published.
I never would have considered writing a new version of Explorations in Computing without
her patience and timely encouragement.

As always, I am eternally grateful for the support of my wife Leslie and my daughter
Kathleen, who bears at least part of the responsibility for the Monty Python references in
the section titles. I love you both.

John Conery
Eugene, Oregon

Website

The website for this book is at

http://www.cs.uoregon.edu/eic

The website has
• Copies of the lab manual (PDF documents that can be downloaded
 for free)
• Links to the latest versions of the PythonLabs software and documentation
• Errata and other news

Explorations in Computing

Mac OS X Lab Manual

