CSE443 - Introduction to Computer and Network Security

Network Security

Professor Kevin Butler
Winter 2011
Networking

- Fundamentally about transmitting information between two devices
- Direct communication is now possible between any two devices anywhere (just about)
 - Lots of abstraction involved
 - Lots of network components
 - Standard protocols
 - Wired and wireless
 - Works in *protection* environment
- What about ensuring *security*?
Network Security

- Every machine is connected
 - What is trust model of the network?

- Not just limited to dogs as users
Exploiting the network ...

- The Internet is extremely vulnerable to attack
 - it is a huge open system ...
 - which adheres to the *end-to-end* principle
 - smart end-points, dumb network

- Can you think of any *large-scale attacks* that would be enabled by this setup?
E2E Argument

- Clark et al. discussed a property of good systems that says features should be placed as close to resources as possible
 - In communication, this means that we want the middle of the network to be simple, and the end-points to be smart (e.g., do everything you can at the end-points)
 - “Dumb, minimal network”
 - This is the guiding principle of IP (Internet)
 - Q: Does this have an effect on security?

- Note: this is a departure from the early networks which smart network, dumb terminals
Network security: the high bits

• The network is …
 ‣ … a collection of interconnected computers
 ‣ … with resources that must be protected
 ‣ … from unwanted inspection or modification
 ‣ … while maintaining adequate quality of service.

• Another way of seeing network security is
 ‣ Securing the network infrastructure such that the integrity, confidentiality, and availability of the resources is maintained.

• Q: How do we do this?
The network ...
The big picture

- Internet Protocol (IP)
 - Really refers to a whole collection of protocols making up the vast majority of the Internet

- Routing
 - How these packets move from place to place

- Network management
 - Administrators have to maintain the services and infrastructure supporting everyone’s daily activities
Aside: Malware

- **Malware** - software that exhibits malicious behavior (typically manifest on user system)
 - *virus* - self-replicating code, typically transferring by shared media, filesystems, email, etc.
 - *worm* - self-propagating program that travels over the network

- The behaviors are as wide ranging as imagination
 - *backdoor* - hidden entry point into system that allows quick access to elevated privileges
 - *rootkit* - system replacement that hides adversary behavior
 - *key logger* - program that monitors, records, and potentially transmits keyboard input to adversary
 - *trojan* - malicious software disguised as legitimate program
Security Problems in the TCP/IP Protocol Suite

• Bellovin’s observations about security problems in IP
 ‣ Not really a study of how IP is misused, e.g., IP addresses for authentication, but really what is inherently bad about the way in which IP is setup

• A good overview of the basic ways in which security and the IP design is at odds
Sequence number prediction

- TCP/IP uses a *three-way handshake* to establish a connection
 1. C -> S: Q_C
 2. S -> C: Q_S, ack(Q_C) where sequence number Q_S is nonce
 3. C -> S: ack(Q_S) … then send data

2. However assume the bad guy does not hear msg 2, if he can guess Q_S, then he can get S to accept whatever data it wants (useful if doing IP authentication, e.g., “rsh”)

![Diagram of three-way handshake]
The only way you really fix this problem to stop making the sequence numbers predictable:

- Randomize them -- you can use DES or some other mechanism to generate them randomly
- There is an entire sub-field devoted to the creation and management of randomness in OSes

Also, you could look for inconsistencies in timing information:

- Assumption: the adversary has different timing than client
- Helpful, but far from definitive
Routing Manipulation

• **RIP - routing information protocol**
 ‣ Distance vector routing protocol used for local network
 ‣ Routers exchange reachability and “distance” vectors for all the sub-networks within (a typically small) domain
 ‣ Use vectors to decide which is best, notification of changes is propagated quickly

• **So, the big problem is that you receive vast amounts of data that a router uses to form the routing table**
 ‣ So, just forge that, and the game is up
 ‣ Manipulate paths, DOS, hijack connections, etc.

• **Solutions:**
 ‣ Authenticate data, but this is less than obvious how to do this efficiently (a whole lot of people are trying)
Internet Control Message Protocol (ICMP)

- ICMP is used as a control plane for IP messages
 - Ping (connectivity probe)
 - Destination Unreachable (error notification)
 - Time-to-live exceeded (error notification)

- These are used for good purposes, and are largely indispensable tools for network management and control
 - Error notification codes can be used to reset connections without any

- Solution: verify/sanity check sources and content
 - ICMP “returned packets”

- Real solution: filter most of ICMP, ignore it
The “ping of death” …

- In 1996, someone discovered that many operating systems, routers, etc. could be crash/rebooted by sending a single malformed packet
 - It turns out that you can send a IP packet larger than 65,535 \(2^{16}\), it would crash the system
 - The real reason lies in the way fragmentation works
 - It allows somebody to send a packet bigger than IP allows
 - Which blows up most fixed buffer size implementations
 - … and dumps core, blue screen of death, etc.
 - Note: this is not really ICMP specific, but easy (try it)
    ```
    % ping -l 65510 your.host.ip.address
    ```
- This was a popular pastime of early hackers
 - Solution: patch the implementations
Address Resolution Protocol (ARP)

- Protocol used to map IP address onto the physical layer addresses (MAC)
 1. ARP request: who has x.x.x.x?
 2. ARP response: me!
- Policy: last one in wins
- Used to forward packets on the appropriate interfaces by network devices (e.g., bridges)

Q: Why would you want to spoof an IP address?
ARP poisoning

- Attack: replace good entries with your own
- Leads to
 - Session hijacking
 - Man-in-the-middle attacks
 - Denial of service, etc.

- Lots of other ways to abuse ARP.
- Nobody has really come up with a good solution
 - Except smart bridges, routers that keep track of MACs
- However, some not worried
 - If adversary is in your perimeter, you are in big trouble
 - You should validate the source of each packet independently (e.g., via IPsec)
Finger user identity

- host gives up who is logged in, existence of identities

```
butler@ix: ~ 7$ finger butler
Login name: butler                      In real life: Kevin Butler
Directory: /home/faculty/butler         Shell: /bin/zsh
On since Feb 20 18:29:46 on pts/22 from wheatking
Mail last read Sun Feb 20 18:02:11 2011
Plan:                                   
World domination.
```

This is horrible in a distributed environment

- Privacy, privacy, privacy… (assuming any of you Facebook users still care about this)
- Lots of information to start a compromise of the user
POP/SMTPT/FTP

- Post office protocol - mail retrieval
 - Passwords passed in the clear (duh)
 - Solution: SSL, SSH, Kerberos

- Simple mail transport protocol (SMTP) - email
 - Nothing authenticated: SPAM
 - Nothing hidden: eavesdropping
 - Solution: your guess is as good as mine

- File Transfer protocol - file retrieval
 - Passwords passed in the clear (duh)
 - Solution: SSL, SSH, Kerberos
DNS - The domain name system

- DNS maps between IP address (12.1.1.3) and domain and host names (ix.cs.uoregon.edu)
 - How it works: the “root” servers redirect you to the top level domains (TLD) DNS servers, which redirect you to the appropriate sub-domain, and recursively ….
 - Note: there are 13 “root” servers that contain the TLDs for .org, .edu, and country specific registries (.fr, .ch)
DNS Vulnerabilities

- Nothing is authenticated, so really the game is over
 - You can not really trust what you hear …
 - But, many applications are doing just that.
 - Spoofing of DNS is really dangerous

- Moreover, DNS is a catalog of resources
 - Zone-transfers allow bulk acquisition of DNS data
 - … and hence provide a map for attacking the network

- Lots of opportunity to abuse the system
 - Relies heavily on caching for efficiency -- cache pollution
 - Once something is wrong, it can remain that way in caches for a long time (e.g., it takes a long time flush)
 - Data may be corrupted before it gets to authoritative server
DNSSEC

- A standard-based (IETF) solution to security in DNS
 - Prevents data spoofing and corruption
 - Public key based solution to verifying DNS data
 - Authenticates
 - Communication between servers
 - DNS data
 - Public keys (a bootstrap for PKI?)
- New as of last year:
 - DNSSEC signed root zone up
DNSsec Mechanisms

• TSIG: transaction signatures protect DNS operations
 ‣ Zone loads, some server to server requests (master -> slave), etc.
 ‣ Time-stamped signed responses for dynamic requests
 ‣ A misnomer -- it currently uses shared secrets for TSIG (HMAC) or do real signatures using public key cryptography

• SIG0: a public key equivalent of TSIG
 ‣ Works similarly, but with public keys
 ‣ Not as popular as TSIG, being evaluated
 ‣ Note: these mechanisms assume clock sync. (NTP)
• Securing the DNS records
 ‣ Each domain signs their “zone” with a private key
 ‣ Public keys published via DNS
 ‣ *Indirectly* signed by parent zones
 ‣ Ideally, you only need a self-signed root, and follow keys down the hierarchy
DNSsec challenges

- Incremental deployability
 - Everyone has DNS, can’t assume a flag day
- Resource imbalances
 - Some devices can’t afford real authentication
- Cultural
 - Most people don’t have any strong reason to have secure DNS ($$$ not justified in most environments)
 - Lots of transitive trust assumptions (you have no idea how the middlemen do business)
- Take away: DNSsec will be deployed, but usage and uptake is still unclear
Communications Security

- A host wants to establish a secure channel to remote hosts over an untrusted network
 - Not Login – end-users may not even be aware that protections in place
 - Remote hosts may be internal or external
- The protection service must …
 - Authenticate the end-points (each other)
 - Negotiate what security is necessary (and how)
 - Establish a secure channel
 - Process the traffic between the end points
- Also known as *transport security*.
IPsec (not IPSec!)

- Host level protection service
 - IP-layer security (below TCP/UDP)
 - De-facto standard for host level security
 - Developed by the IETF (over many years)
 - Available in most operating systems/devices
 - E.g., XP, Vista, OS X, Linux, BSD*, ...
 - Implements a wide range of protocols and cryptographic algorithms

- Selectively provides
 - Confidentiality, integrity, authenticity, replay protection, DOS protection
IPsec and the IP protocol stack

- IPsec puts the two main protocols in between IP and the other protocols
 - AH - authentication header
 - ESP - encapsulating security payload

- Tunnel vs. transport?
 - Key management/authentication
 - Policy

- Other function provided by external protocols and architectures
“IP over IP”

- Network-level packets are encapsulated
- Allows traffic to avoid firewalls
IPsec Protocol Suite

Policy/Configuration Management

(SPS) Security Policy System

Key Management

(IKE) Internet Key Exchange

Manual

Packet Processing

(ESP) Encapsulating Security Payload

(AH) Authentication Header

Security Policy System
Internet Key Exchange (IKE)

- Built on of ISAKMP framework
- Two phase protocol used to establish parameters and keys for session
 - Phase 1: authenticate peers, establish secure channel
 - Phase 2: negotiate parameters, establish a security association (SA)
- The details are unimaginably complex
- The SA defines algorithms, keys, and policy used to secure the session
IPsec: Packet Handling (Bump …)

IP Protocol Stack

SADB
IPsec

Network (IP)
Data Link
Physical

Presentation
Session
Transport
Application
Authentication Header (AH)

- Authenticity and integrity
 - via HMAC
 - over IP headers and data

- Advantage: the authenticity of data and IP header information is protected
 - it gets a little complicated with *mutable* fields, which are supposed to be altered by network as packet traverses the network
 - some fields are *immutable*, and are protected

- Confidentiality of data is *not* preserved

- Replay protection via AH sequence numbers
 - note that this replicates some features of TCP (good?)
IPsec AH Packet Format

IPv4 AH Packet Format

<table>
<thead>
<tr>
<th>IPv4 Header</th>
<th>Authentication Header</th>
<th>Higher Level Protocol Data</th>
</tr>
</thead>
</table>

AH Header Format

<table>
<thead>
<tr>
<th>Next Header</th>
<th>Length</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Security Parameter Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authentication Data (variable number of 32-bit words)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Authentication Header (AH)

- Modifications to the packet format

AH Packet
- Authenticated
- Encrypted
IPsec Authentication

- **SPI**: (spy) identifies the security association for this packet
 - Type of crypto checksum, how large it is, and how it is computed
 - Really the policy for the packet

- **Authentication data**
 - Hash of packet contents include IP header as specified by SPI
 - Treat transient fields (TTL, header checksum) as zero

- **Keyed MD5 Hash is default**
Encapsulating Security Payload (ESP)

- Confidentiality, authenticity and integrity
 - via encryption and HMAC
 - over IP payload (data)
- Advantage: the security manipulations are done solely on user data
 - TCP packet is fully secured
 - simplifies processing
- Use “null” encryption to get authenticity/integrity only
- Note that the TCP ports are hidden when encrypted
 - good: better security, less is known about traffic
 - bad: impossible for FW to filter/traffic based on port
- Cost: can require many more resources than AH
IPv4 ESP Packet Format

Unencrypted
- IP Header
- Other IP Headers

Encrypted
- ESP Header
- Encrypted Data

ESP Header Format
- Security Parameter Identifier (SPI)
- Opaque Transform Data, variable length

DES + MD5 ESP Format
- Security Parameters Index (SPI)
- Initialization Vector (optional)
- Replay Prevention Field (incrementing count)
- Payload Data (with padding)
- Authentication checksum
Encapsulating Security Payload (ESP)

- Modifications to packet format

![ESP Packet Diagram]

- Encapsulated Payload
- MAC
- Authenticated
- Encrypted
Practical Issues and Limitations

- **IPsec implementations**
 - Large footprint
 - resource poor devices are in trouble
 - New standards to simplify (e.g., JFK, IKE2)
 - Slow to adopt new technologies

- **Issues**
 - IPsec tries to be “everything for everybody at all times”
 - Massive, complicated, and unwieldy
 - Policy infrastructure has not emerged
 - Large-scale management tools are limited (e.g., CISCO)
 - Often not used securely (common pre-shared keys)
Network Isolation: VPNs

- Idea: I want to create a collection of hosts that operate in a coordinated way
 - E.g., a virtual security perimeter over physical network
 - Hosts work as if they are isolated from malicious hosts

- Solution: Virtual Private Networks
 - Create virtual network topology over physical network
 - Use communications security protocol suites to secure virtual links “tunneling”
 - Manage networks as if they are physically separate
 - Hosts can route traffic to regular networks (split-tunneling)
VPN Example: RW/Telecommuter

- Internet
- LAN

- Physical Link
- Logical Link (IPsec)

(network edge)
VPN Example: Hub and Spoke

- **Internet**
- **LAN**

- **Physical Link**
- **Logical Link (IPsec)**

(network edge)
VPN Example: Mesh

- **Internet**
- **LAN**

Physical Link
- **Logical Link (IPsec)**

(network edge)
Virtual LANs (VLANs)

- VPNs build with hardware
 - No encryption – none needed
 - “wire based isolation”
 - Switches increasingly support VLANs
 - Allows networks to be reorganized without rewiring

- Example usage: two departments in same hallway
 - Each office is associated with department
 - Configuring the network switch gives physical isolation
 - Note: often used to ensure QoS