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Abstract

Filinski provides an encoding ofshiftandresetin terms of undelimited abortive control and state
in the context of a call-by-value language. The correctnessof the encoding is shown with respect to
a continuation-passing style semantics and it relies on theprogram being surrounded by a top-level
reset. We present an alternative correctness proof based onan operational semantics ofshiftandreset
which, in the presence of a top-level reset, is sound and complete with respect to the continuation-
passing style semantics. We then revisit the encoding and identify the cause of a space leak as a
lack of preservation of strictness. In the encoding of shift, a non-strict invocation of the top-level
continuation is made strict. We propose a new encoding and prove its correctness. The new encoding
eliminates the space leak and provides more robust error handling. In particular, the correctness of
the new encoding does not require the program to be surrounded by a top-level reset.

1 Introduction

In his seminal paper, Filinski [6] showed that the delimitedcontrol operatorsshift andresetare complete
with respect to monadic effects and can be represented in a call-by-value language such as SML in terms
of the abortive control operatorcallcc and one mutable variable. The correctness of the encoding is
with respect to a continuation passing style semantics. In this paper, we show the correctness of the en-
coding based on an operational approach, which reveals somelimitations in the encoding. In addition to
suffering from a well-known space leak, Filinski’s encoding relies on the program being surrounded by a
top-level reset. Without a top-level reset, the encoding behaves erratically—formally, it produces a value
which might be different from the one produced by Kameyama and Hasegawa axiomatization ofshift
andreset[11]. Enforcing this invariant operationally would require access to the top-level continuation,
which SML does not provide.

We present an alternative encoding which provides better error handling and memory use and show
its correctness. The issue with the original encoding is that strictness is not preserved. In an expression
of the form

shift (fn k => e)

there is an implicit invocation of the top-level continuation which is non-strict: a jump to the top-level is
performed before evaluating the argument. In the encoding,that invocation is made explicit through the
presence of the abort operator, which however comes with a strict semantics. A similar problem occurs
in the encoding ofcallcc in terms ofC [8]. In an expression of the form

callcc (fn k => e)

there is an implicit occurrence ofk just beforee. That occurrence is non-strict, that is, it can be called
with an expression instead of a value. In the encoding, that occurrence becomes strict.

We start with a review of abortive and composable continuations in Sections 2 and 3. In Section 4,
we present Filinski’s encoding of composable control in terms of (undelimited) abortive control and state
and discuss its limitations. In Section 5, we present a new encoding and its correctness. In Section 6, we
present a new encoding ofcallcc in terms ofC . We conclude in Section 7.
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2 Abortive control

We start with a call-by-valueλ -calculus whose syntax and operational semantics are described below:

Expressions e ::= v | e e
Values v ::= λx.e | x
Evaluation contexts E ::= [] | E e| v E

E[(λx.e) v] 7−→ E[e[v/x]] (1)

(As usual,7−→→ stands for the reflexive and transitive closure of7−→.) Languages such as SML and
Scheme extendλ -calculus with primitives for modifying the flow of control.An example iscallcc,
which reifies thecontinuationof an expression, i.e., the remaining work to be done after evaluating
the expression, as a function. Consider the expression(1+ 2)+ (5+ 4); assuming a left-to-right order
of evaluation, the continuation of the subexpression 5+ 4 is the functionλx.3+ x. We can give this
function a name by writing(1+ 2) + callcc(λk.5+ 4). In general, the evaluation of the expression
callcc(λk.e) binds the current continuation tok before evaluatinge.

A continuation bound bycallcc in fact differs from ordinary functions: once it is called, control
does not return to the caller. We refer to this kind of value asan abortive continuation. Traditionally,
abortive behavior is specified operationally with an abort operator, writtenA . For example, the con-
tinuation in our example term would be writtenλx.A (3+ x) rather thanλx.3+ x. This semantics is
captured formally by the following two rules:

E[callcc(λk.e)] 7−→ E[e[λx.A E[x]/k]]
E[A e] 7−→ e

Example 2.1. Consider the following reduction:

(1+2)+callcc(λk.4+(k 2)) (E ≡ 3+[])
7−→→ 3+((4+(k 2))[λxA (3+x)/k])

≡ 3+(4+((λx.A (3+x)) 2))
7−→ 3+(4+A (3+2)) (E ≡ 3+(4+[]))
7−→ 3+2

Notice how when continuationk is invoked the context 3+(4+[]) is abandoned.

To better distinguish between the abort traditionally present in the operational rules of control op-
erators from the abort present in a program, we adopt a different notation for continuations. We write
λx.A E[x] as〈E〉. We rephrase the operational semantics ofcallcc as follows:

E[callcc(λk.e)] 7−→ E[e[〈E〉/k]]
E[〈E′〉 v] 7−→ E′[v]

Another example of an abortive operator isC [4]. Given an expression of the formC (λk.e), after
binding k to the continuation, control does not return to the surrounding context but returns to the top-
level:

E[C (λk.e)] 7−→ e[〈E〉/k]

For example:
(1+2)+C (λk.5+4) 7−→→ 5+4 .

The abort operatorA is expressible in terms ofC :1

A e= C (λ .e)

1We use for a variable which does not occur free in the body of an abstraction.
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3 Composable control

Danvy and Filinski [3] and Felleisen [4] proposed thepromptor resetoperator, written #, todelimit the
context captured by a continuation. We define the operatorK as the analogue tocallcc in the presence
of a prompt. For example, in the expression:

2+#(1+K (λk.e))

the continuationk stands for the context〈1+[]〉 instead of〈2+#(1+[])〉. The delimited expression
C (λk.e) becomesK (λk.A e). The syntax and semantics of a call-by-value lambda-calculus extended
with delimited control expressions (referred to asλK A #) are as follows:

Expression e ::= v | e e| K (λx.e) | A e | #e
Value v ::= x | λx.e | 〈E〉
Context F ::= [] | F e | v F | #F
Delimited Context E ::= [] | E e| v E

F [#E[K (λk.e)]] 7−→ F[#E[e[〈E〉/k]]]
F [#E[A e]] 7−→ F[#e]
F [#E[〈E′〉 v]] 7−→ F[#[E′[v]]]
F [#v] 7−→ F[v]

Unlike functions, abortive continuations are not composable: for example, the expression 2+#(1+
K (λk.(k (k 2)))) evaluates to 5 rather than 6. By contrast,composable continuations[4, 3], which
we denote〈〈E〉〉, are functional representations of continuations that do not abort. The shift expression,
written S (λx.e), is analogous to aC -expression but captures a composable continuation. The syntax
and semantics of a call-by-value lambda-calculus extendedwith shift and reset (referred to asλS #) is as
follows:

Expression e ::= v | e e| S (λx.e) | #e
Value v ::= x | λx.e | 〈〈E〉〉

The definitions of contextsE andF are as before.

F [#E[S (λk.e)]] 7−→ F[#(e[〈〈E〉〉/k])]
F [〈〈E〉〉 v] 7−→ F[#E[v]]
F [#v] 7−→ F[v]

Example 3.1.
2+#(1+S (λk.k (k 2)))

7−→ 2+#(〈〈1+[]〉〉((〈〈1+[]〉〉 2)))
7−→ 2+#(〈〈1+[]〉〉((#(1+2))))
7−→→ 2+4

In the following, we are going to show the correctness of Filinski’s encoding of shift and reset with
respect to the above operational semantics. Therefore, ourfirst goal is to relate this semantics to the
continuation-passing style specification of shift and reset. We make use of Kameyama and Hasegawa
axiomatization (written as=KH) of shift and reset, which is shown sound and complete with respect to
the continuation-passing style semantics [11]. We writeekh for the expression obtained by writing #e as
〈e〉 and〈〈E〉〉 asλx.〈E[x]〉.

Theorem 3.2. Given aλS # expression e:

1. If e 7−→→S # v then ekh =KH vkh.
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2. If ekh =KH v then∃v′, such that#e 7−→→S # v′.

Notice that in order to reach completeness the expression needs to be surrounded by a top-level reset.
This is due to the presence of theS -elim axiom:

S (λk.k e) = e, if k does not occur free ine .

WhereasS (λk.k 1) =KH 1, the expressionS (λk.k 1) is “stuck” according to the operational semantics.
However, if a program is surrounded by a reset then theS -elim axiom is not needed, and completeness
holds.

4 Composable control as abortive control and state

We now turn our attention to Filinski’s encoding of shift in terms of (undelimited) abortive control and
state [6]. We present this encoding in two steps. We start with the encoding of shift in terms ofK , #
and (delimited)A . Next, we encodeK in terms of its undelimited counterpartcallcc and implement
# andA by respectively updating and reading a mutable cell.

4.1 Composable control as (delimited) abortive control and prompt

Operationally, the difference betweenS and (delimited)C occurs when a continuation is invoked: a
composable continuation behaves like an abortive continuation with a prompt surrounding the applica-
tion. Thus, we can simulate composable continuations by surrounding each invocation of a continuation
with a prompt, indicating that control must return to the caller. This relies on the dynamic nature of
prompts [2].

Example 4.1. Wrappingk with a prompt allows it to be composed:

2+#(1+K (λk.k (#(k 2))))
7−→ 2+#(1+(〈1+[]〉 (#(〈1+[]〉 2))))
7−→ 2+#(1+(〈1+[]〉 (#(1+2))))
7−→→ 2+4

Formally,S can be expressed in terms of (delimited)C and # [17, 2]:

S (λk.e) = C (λk.e[λx.#(k x)/k]))

or equivalently in terms ofK , # and (delimited) abort [14]:

S (λk.e) = K (λk.A e[λx.#(k x)/k]) (2)

The correctness of the encoding is expressed next, where⌈e⌉ denotes the encoding of aλS # expres-
sion into aλK A # expression. The composable continuation〈〈E〉〉 is encoded asλx.#(〈E〉 x).

Lemma 4.2. Given aλS # expression e:

1. If e 7−→→S # v then∃v′,⌈e⌉ 7−→→K A # v′;

2. If ⌈e⌉ 7−→→K A # v then∃v′,e 7−→→S # v′.
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4.2 Prompt as abortive control and state

To model the prompt a global variable calledmk is introduced. A reset expression #e corresponds to
updatingmk. The abort expressionA e readsmk after the evaluation ofe. In other words, the abort
expression is made strict. The delimited control operatorK becomes the undelimited control operator
callcc. Since Filinski’s encoding of a prompt and abort expressionintroduce several intermediate steps,
we opt for hiding those steps under more complex operationalrules and leave the prompt and a strict abort
in the target language. We call this languageλcallccAs#!, its syntax is:

Expression e ::= v | e e| callcc(λx.e) | As e | #e | mk:= w | MissingReset
Value v ::= x | λx.e | 〈E〉
Metacontinuation w ::= λ .MissingReset | λx.(mk:= w;〈E〉 x)
Configuration c ::= e,w | uncaught:MissingReset,w
Evaluation Context E ::= [] | E e| v E | As E

In the following,e;e′ stands for(λ .e′) e:

E[(λx.e) v],w 7−→ E[e[v/x]],w
E[#e],w 7−→ E[As e],λx.(mk := w;〈E〉 x)
E[callcc(λk.e)],w 7−→ E[e[〈E〉/k]],w
E[〈E′〉 v],w 7−→ E′[v],w
E[As v],w 7−→ E[w v],w
E[mk:= w′],w 7−→ E[w′],w′

E[MissingReset],w 7−→ uncaught:MissingReset,w

The encoding of aλK A # expression into a target language expression, written as⌈·⌉, simply corresponds
to replacing each occurrence ofK andA with callcc andAs, respectively. Variablemk is initialized
to a function which always faults. We model this by embeddingan expressione into the following
configuration:

⌈e⌉,wi

wherewi stands forλ .MissingReset.

Lemma 4.3. Given aλK A # expression e:

1. If e 7−→→K A # v then∃v′,⌈e⌉,wi 7−→→callccAs#! v′,wi ;

2. If ⌈#e⌉,wi 7−→→callccAs#! v,wi then∃v′,#e 7−→→K A # v′.

We combine the two encodings and write⌈⌈e⌉⌉ for the encoding of aλS # expression into the language
with callcc and state.

Theorem 4.4. Given aλS # expression e:

1. If e 7−→→S # v then∃v′,⌈⌈e⌉⌉,wi 7−→→callccAs#! v′,wi;

2. If ⌈⌈#e⌉⌉,wi 7−→→callccAs#! v,wi then∃v′,#e 7−→→S # v′.
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4.3 Space leak

Let us now revisit the encoding with respect to intensional properties such as space. Consider the fol-
lowing definition:

loop 1 = 1
loop n = S (λk.loop(n-1))

According to the operational semantics ofS , the execution of #(loop 3) always occurs at a bounded
distance from the root:

#(loop 3) 7−→ #S (λk.loop (3-1)) 7−→ #(loop (3-1)) 7−→→ #(loop (2-1))

The same happens for its encoding inλK A #:

#(loop 3) 7−→ #K (λk.A (loop (3-1))) 7−→ #A (loop (3-1)) 7−→ #loop (3-1) 7−→→ #loop (2-1)

However, the translation toλcallccAs#! does not preserve the property of reduction at a bounded distance
from the top. We underline the redex perfomed, unless it is the top redex::

#(loop 3),wi 7−→
As(loop 3),λx.mk:= wi;〈[ ]〉x 7−→

As(callcc(λk.As(loop(3-1)))),λx.mk:= wi;〈[ ]〉x 7−→

As(As(loop(3-1))),λx.mk:= wi;〈[ ]〉x 7−→→

As(As(As(loop(2-1)))),λx.mk := wi;〈[ ]〉x

In other words, the SML implementation leads to a space leak.A term of the formS (λk.e) implicitly
invokes the continuation corresponding to the nearest prompt. In the first step of the encoding , that
implicit invocation to the top-level manifests itself in the A operator. Whereas other occurrences of the
continuations are strict, evaluating their argument before performing the jump, the invocation of the top-
level continuation follows a non-strict discipline. However, that property is not preserved by the second
step of the encoding since theA operator is made strict.

4.4 Robustness of the encoding

We have shown correctness of the encoding with respect to evaluation to values. We now discuss the
behavior of the encoding when the top-level reset is missing. Since the metacontinuation captured inmk
always produces an error when invoked, we were lead to believe that a shift expression with an undefined
top-level would raise an error, and indeed running the following example with the actual implementation
in SML supported our belief:

Example 4.5.
shift (fn k => 99);

uncaught exception MissingReset

We were therefore surprised to observe the following result:

Example 4.6.
shift (fn k => (k 1) + 3);

val it = 1 : int

It was not clear to us why the above term did not produce an error. Even more surprisingly, we continued
with the re-evaluation of our previous term:
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Example 4.7.
shift (fn k => 99);

Error: throw from one top-level expression into another

which now exhibited different behavior than before.
To be clear, these behaviors do not contradict the correctness of Filinski’s encoding. According to

Filinski’s type and effect system [7], the programs in question are ill-effect-typed, and therefore the
implementation is unconstrained. We were nevertheless surprised by this behavior, which we can now
explain.

Example 4.8. We show the execution of Example 4.5 :

⌈⌈S (λk.99)⌉⌉,λ .MissingReset
⌈K (λk.A 99)⌉,λ .MissingReset

= callcc(λk.As 99),λ .MissingReset
7−→→ (λ .MissingReset) 99,λ .MissingReset
7−→→ uncaught: MissingReset,λ .MissingReset

Now consider the termS (λk.(k 1)+3) of Example 4.6. Consistent with the previous example, we
were expecting the encoding to produce an error. Surprisingly, the result is 1.

⌈⌈S (λk.(k 1)+3)⌉⌉,λ .MissingReset
= callcc(λk.As (((λx.#(k x)) 1)+3)),λ .MissingReset

7−→→ As (((λx.#(〈[ ]〉 x)) 1)+3),λ .MissingReset
7−→ As (#(〈[ ]〉 1)+3),λ .MissingReset
7−→ As (As (〈[ ]〉 1)+3),λx.(mk:= wi;〈As ([ ]+3)〉 x)
7−→ 1,λx.(mk := wi;〈As ([ ]+3)〉 x)

Notice that a useful invariant does not hold, namely that at the end of the execution, the variable mk
should contain its initial value. We continue with the expression of Example 4.7:

⌈⌈S (λk.99)⌉⌉,λx.(mk := wi;〈As ([ ]+3)〉 x)
= callcc(λk.As99),λx.(mk := wi;〈As ([ ]+3)〉 x)

7−→→ (λx.(mk:= wi ;〈As ([ ]+3)〉 x)) 99,λx.(mk := wi ;〈As ([ ]+3)〉 x)
7−→→ 〈As ([ ]+3)〉 99,wi

Because SML’s interactive shell disallows returning to oldinteractions, the above configuration causes
the error seen in Example 4.7.

Since usingshiftwithout a top-levelresetis a client error, Filinski’s specification imposes no require-
ments on the behavior of these examples. Indeed, these programs would be rejected as ill-typed in his
framework. However, in an implementation language such as SML, the type system does not guarantee
the presence of a top-levelreset. A robust implementation should therefore defend against such invalid
uses ofshift by raising an error.

5 An alternative encoding

Since SML does not have access to the top-level continuation, we force the implementation to raise an
error when that is not explicitly set. To that end, we add the following operational rules to the semantics
of λK A #:

E[K (λk.e)] 7−→ uncaught:MissingReset

E[〈E′〉 v] 7−→ uncaught:MissingReset

E[A e]] 7−→ uncaught:MissingReset
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Similarly, we add the following rule to the semantics ofλS #:

E[S (λk.e)] 7−→ uncaught:MissingReset

The new operational semantics of shift and reset loses soundness and completeness with respect to
Kameyama and Hasegawa axiomatization since, according to the operational semantics,S (λk.1) would
raise an error but return 1 in Kameyama and Hasegawa axiomatization. To validate theS -elim axiom
the implementation would need access to the top-level continuation. Since this is not possible in SML,
we opt to sacrifice the axiom and work instead with Kameyama and Hasegawa axiomatization without
theS -elim axiom, written asKH−. The correctness of the new operational semantics becomes:

Theorem 5.1. Given aλS # expression e:

1. If e 7−→→S # v then ekh =KH− vkh.

2. If e 7−→→S # uncaught:MissingReset then ekh =KH− S (λk.e′) for an expression e′.

3. If ekh =KH− v then∃v′, such that e7−→→S # v′.

4. If ekh =KH− S (λk.e′) then e7−→→S # uncaught:MissingReset.

We now present an alternative encoding which provides better error handling. To regain the non-
strict behavior in the second step of the encoding we apply a standard delay/force transformation. We let
⌊e⌋ denote the new encoding of aλK A # expression into aλcallccAs#! expression, which in addition to
replacingK with callcc is defined as follows (we use() to represent some arbitrary constant value) :

⌊#e⌋ = (#((λx.λ .x) ⌊e⌋))()

⌊A e⌋ = As(λ .⌊#e⌋)

⌊⌈e⌉⌋ stands for the combination of the regular encoding intoλK A # plus the new encoding.

Theorem 5.2. Given aλS # expression e:

1. e 7−→→S # uncaught:MissingReset iff ⌊⌈e⌉⌋,wi 7−→→callccAs#! uncaught:MissingReset,wi .

2. If e 7−→→S # v then∃v′,⌊⌈e⌉⌋,wi 7−→→callccAs#! v′,wi ;
if ⌊⌈e⌉⌋,wi 7−→→callccAs#! v,wi then∃v′,e 7−→→S # v′.

Corollary 5.3. Given aλS # expression e,

1. If ekh =KH− v then∃v′,⌊⌈e⌉⌋,wi 7−→→callccAs#! v′,wi ;
If ekh =KH− S (λk.e′) then⌊⌈e⌉⌋,wi 7−→→callccAs#! uncaught:MissingReset,wi .

2. If ⌊⌈e⌉⌋,wi 7−→→callccAs#! v,wi then∃v′,ekh =KH− v′;
if ⌊⌈e⌉⌋,wi 7−→→callccAs#! uncaught:MissingReset,wi then ekh =KH− S (λk.e′) for an expres-
sion e′.

If an expressioneneeds to capture a delimited continuation and no delimiter is present, then⌊⌈e⌉⌋,wi

produces an error, whereas Filinski’s encoding produces a value which might be different from the one
produced by Kameyama and Hasegawa axiomatization.
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Example 5.4. Going back to the example of Section 4.3, the new encoding behaves as follows (loop n=
⌊⌈S (λk.loop(n-1))⌉⌋).We underline the redex perfomed, unless it is the top redex:

⌊⌈#(loop 3)⌉⌋,wi

= (#((λx.λ .x)(loop 3)))(),wi

7−→ (As((λx.λ .x)(loop 3)))(),λx.mk := wi ;〈[ ] ()〉x
7−→ (As((λx.λ .x)callcc(λk.As(λ .#((λx.λ .x)loop (3-1))()))))(),λx.mk := wi;〈[ ] ()〉x
7−→ (As((λx.λ .x)As(λ .#((λx.λ .x)loop (3-1))())))(),λx.mk := wi;〈[ ] ()〉x
7−→→ (As((λx.λ .x)(〈[ ] ()〉(λ .#((λx.λ .x)loop (3-1))()))))(),wi

7−→ (λ .#((λx.λ .x)loop (3-1))())(),wi

7−→ #((λx.λ .x)loop (3-1))(),wi

Reduction does not always occur at the top of an expression. However, the depth of the redex contracted
is bounded. With respect to Example 4.6 the new encoding behaves as follows:

⌊⌈S (λk.(k 1)+3)⌉⌋,wi

= callcc(λk.As (λ .(#(λx.λ .x)(((λx.(#(λx.λ .x)(k x)) ())1)+3))())),wi

7−→→ As (λ .(#(λx.λ .x)(((λx.(#(λx.λ .x)(k x)) ())1)+3))),wi

7−→ (λ .MissingReset)(λ .(#(λx.λ .x)(((λx.(#(λx.λ .x)(k x)) ())1)+3))),wi

7−→ uncaught:MissingReset,wi

5.1 SML implementation of the alternative encoding

functor NewControl (type ans) : CONTROL =

struct

open Escape

exception MissingReset

val mk : ((unit -> ans) -> void) ref = ref (fn _ => raise MissingReset)

fun abort thunk = coerce (!mk thunk)

type ans = ans

fun reset h = escape (fn k =>

let val m = !mk

in

mk := (fn x => (mk := m; k x));

abort (let val x = h ()

in fn () => x

end)

end) ()

fun shift h =

escape (fn k =>

abort (fn () =>

reset (fn () =>

h (fn v =>

reset (fn () => coerce (k v))))))

fun C h =

escape (fn k =>

abort (fn () => reset (fn () =>

h (fn v => coerce (k v)))))

end;
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With this implementation, we can see that Examples 4.5 through 4.7 behave as expected:

- shift (fn k => 99);

uncaught exception MissingReset

- shift (fn k => (k 1) + 3);

uncaught exception MissingReset

- reset (fn () => (shift (fn k => raise Fail "") handle Fail _ => 99))

handle Fail _ => 0;

val it = 0 : ans

6 Delaying the jump versus delaying evaluation

In the encoding of shift, a non-strict invocation of the top-level continuation is made strict. A similar
problem occurs in the encoding ofcallcc in terms of the abortive control operatorC , which is expressed
as follows:

callcc(λk.e) = C (λk.k e) (3)

This encoding suffers from a space leak [16, 8]. Sincecallcc does not abandon its continuation, the
encoding via the abortiveC restores the continuation by immediately applyingk to e. But looking
closer, if we consider the semantics ofcallcc(λk.e) to have an implicit occurrence ofk just beforee,
that occurrence requires special treatment. Whereas otheroccurrences ofk are strict, evaluating their
argument before performing the jump, this first implicit occurrence follows a non-strict discipline:

E[〈E′〉 e] 7−→ E′[e]

The encoding 3 delays this jump untilafter evaluatinge, which leads to the space leak. A more faithful
encoding should delay the evaluation ofeuntil after it restores the aborted continuation. We can achieve
this by placinge in a thunk, jumping and then forcing the thunk [9]. Let us denote the encoding of an
expressioneas⌈e⌉. It is defined as follows:

⌈callcc(λk.e)⌉ = C (λk.(k λ .⌈e⌉[λx.(k λ .x)/k])) ()
⌈〈E〉⌉ = λx.(〈E[[ ] ()]〉 λ .x)

By applying the thunk outside the body ofC (using() to represent some arbitrary constant value), we
force the evaluation ofeafter the jump.

Notice how the new encoding renders the implicit occurrenceof k explicit. The special status of this
occurrence is reflected in the fact thate is turned into a thunk before it is evaluated, whereas subsequent
arguments are passed tok fully evaluated. This is a key insight. The specification requires a different
evaluation strategy for applyingk than the implementation language affords; it is not possible to apply a
continuation to an unevaluated expression. So our implementation requires an encoding of expressions
that does not rely on the underlying evaluation order of the implementation semantics.

Lemma 6.1. Given an expression e:

1. ∀e′.e 7−→→ e′ ⇒ ⌈e⌉ 7−→→ ⌈e′⌉

2. ∀e′.⌈e⌉ 7−→→ e′ ⇒∃e′′.e 7−→ e′′, e′ 7−→→ ⌈e′′⌉.

Theorem 6.2. Given an expression e, if e7−→→ v then∃v′,⌈e⌉ 7−→→ v′; if ⌈e⌉ 7−→→ v then∃v′,e 7−→→ v′.
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Remark 6.3. By writing 〈E〉 asλx.A E[x], the encoding of〈E〉 can be expressed in Felleisen reduction
theory λC [5]. It corresponds to multiple applications of theβv-rule (see 1). On the contrary, the
encoding (3) requires the following rule, calledβΩ:

(λx.A E[x]) e 7−→ A E[e] (4)

This rule is not part of theλC -calculus. It is shown correct with respect to a cps semantics in [11].
Therefore, the original encoding is sound. However, the above rule points out that the difference between
the two encodings becomes observable with the addition of dynamic effects such as exceptions. In fact,
as given in [11], in the presence of dynamic effects (such as the prompt) the above rule takes a more
restricted form. For example, evaluation context E cannot capture an exception which is raised in e,
or equivalently E cannot redefine the prompt. Thus, in the presence of exceptions, the soundness of the
traditional encoding does not hold, but it holds for the new encoding.

7 Conclusions

In developing syntactic theories we are accustomed to eliminating some syntactic differences between
terms. An example is the notion ofα-equivalence. We do the same in proving properties of our theories.
When our theorems do not hold we opt for stating that the property holds up to some syntactic manipu-
lation of our terms. An example is the standardization theorem, which relates the operational semantics
to a reduction theory [15]. The operational semantics enforces a specific order in the application of the
rewriting rules. However, the reduction semantics is more flexible; the rules can be applied in any or-
der. In general, one is interested in a more relaxed form of this theorem which relates values:e→→v iff
∃v′,e 7−→→ v′→→v. Unfortunately, the above theorem does not hold forλC . The valuesv andv′ arealmost
the same, but the theory does not relate them.

We emphasize the importance of understanding the reasons for this mismatch and moreover its im-
pact. In case ofλC , as discussed in Ariola and Herbelin [1], the underlying reason is the absence of
a reduction rule which is instead implicitly present in the operational semantics. It is the lack of this
rule that prevents the theory from being extended with more expressive rules without losing important
properties such as confluence.

Encodings of control operators offer other examples of a mismatch between the specification and the
implementation. We present examples of encodings which arecorrect if one does not observe space or
errors. This hides complications which only arise when the encodings are combined with other effects.
We discovered that the mismatch is due to the lack of preservation of strictness. For example, the
encoding ofcallcc in terms ofC turned an implicit non-strict continuation’s invocation into a strict
one. Filinski’s encoding of delimited control in terms of abortive control and state turned a non-strict
abort operator into a strict one. This caused the system to return a “meaningless” result when we tried to
use it without surrounding a program with a prompt or reset. From an intensional point of view and in
the presence of effects there is a difference between a strict abort, a non-strict abort and not aborting at
all [12]. In that respect, Laird’s unsoundness result [13] of λC in the presence of exceptions disregards
the abort operation, thus making an inference which is not justified.

Our new encodings preserve the strictness and do not suffer from the associated space leak. However,
they still do not appear to address all issues of space consumption, sincecallcc still captures too much
of the continuation. By making use of SML of New Jersey’sisolate function, Herman [10] was able
to address this problem but did not prove whether it is a complete solution. We leave as future work the
construction of memory models for studying the space consumption of our encoding.

Finally, the new encoding of shift and reset produces an error if the program attempts to capture a
delimited continuation and no delimiter is present. In the Appendix we extend our encoding to preserve
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the meaning in the presence of exceptions, where the semantics of shift and exceptions is given by
Herman [10]. Notice that some behaviors of Filinski’s encoding in the presence of exceptions are due to
the strict abort. For example, in the following expression

reset (fn () => (shift (fn k => raise Fail "") handle Fail _ => 99))

handle Fail _ => 0;

val it = 99 : ans

the context surrounding the shift-expression and up to the prompt should be abandoned. This would mean
that the exception should be raised and captured by the outermost handler, thus returning0 instead of
99. Our proposed encoding does indeed return0. Our encodings however, do not preserve the number of
times one aborts a computation. For example, our new encoding ofcallcc does not work in the presence
of more complex constructs such as Scheme’sdynamic-wind, which admits very fine observations of
control [18]. In particular, it allows one to observe exactly when the abort happens. In future work, we
wish to deepen our understanding of how to combine effects ina sound way thus avoiding unexpected
behaviors.
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14 A SML IMPLEMENTATION OF THE ENCODING IN THE PRESENCE OF EXCEPTIONS

A SML implementation of the encoding in the presence of exceptions

functor NewControl2 (type ans) : CONTROL =

struct

open Escape

exception MissingReset

datatype result = Ok of ans | Fail of exn

val mk0 : ((unit -> result) -> void) =

fn r => raise MissingReset;

val mk = ref mk0;

fun initialize () = mk := mk0;

fun abort x = coerce (!mk x)

type ans = ans

fun reset t =

case (escape (fn k =>

let val m = !mk

in

mk := (fn x => (mk := m; k x));

abort (let val x = Ok (t ())

handle x => Fail x

in fn () => x

end)

end)

()) of

Ok x => x

| Fail x => raise x

fun shift h =

escape (fn k =>

abort (fn () =>

Ok (reset (fn () =>

(h (fn v =>

reset (fn () =>

coerce (k v))))))))

end;
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