A robust implementation of delimited control

Zena M. Ariola Hugo Herbelin David Herman
University of Oregon INRIA-Futurs Mozilla Research
ariola@cs.uoregon.edu Hugo.Herbelin@inria.fr dherman@mozilla.com
Daniel Keith

University of Oregon
dkeith@cs.uoregon.edu

Abstract

Filinski provides an encoding shiftandresetin terms of undelimited abortive control and state
in the context of a call-by-value language. The correctoé#ise encoding is shown with respect to
a continuation-passing style semantics and it relies optbgram being surrounded by a top-level
reset. We present an alternative correctness proof basad @perational semantics gififtandreset
which, in the presence of a top-level reset, is sound and epith respect to the continuation-
passing style semantics. We then revisit the encoding agntifgl the cause of a space leak as a
lack of preservation of strictness. In the encoding of shkifiion-strict invocation of the top-level
continuation is made strict. We propose a hew encoding amaepts correctness. The new encoding
eliminates the space leak and provides more robust erratlingn In particular, the correctness of
the new encoding does not require the program to be surrounda top-level reset.

1 Introduction

In his seminal paper, Filinski[6] showed that the delimiteaitrol operatorshift andresetare complete
with respect to monadic effects and can be represented ihklayeaalue language such as SML in terms
of the abortive control operatarallcc and one mutable variable. The correctness of the encoding is
with respect to a continuation passing style semanticshignpaper, we show the correctness of the en-
coding based on an operational approach, which reveals kwoiitegions in the encoding. In addition to
suffering from a well-known space leak, Filinski’s encaglirelies on the program being surrounded by a
top-level reset. Without a top-level reset, the encodirtggloes erratically—formally, it produces a value
which might be different from the one produced by Kameyama ldasegawa axiomatization ehift
andreset[11]. Enforcing this invariant operationally would reqeiaccess to the top-level continuation,
which SML does not provide.

We present an alternative encoding which provides better bandling and memory use and show
its correctness. The issue with the original encoding isgtrectness is not preserved. In an expression
of the form

shift (fn k => €)

there is an implicit invocation of the top-level continwatiwhich is non-strict: a jump to the top-level is
performed before evaluating the argument. In the encodirag,invocation is made explicit through the
presence of the abort operator, which however comes withca sémantics. A similar problem occurs
in the encoding otallcc in terms of% [8]. In an expression of the form

callcc (fn k => €

there is an implicit occurrence afjust beforee. That occurrence is non-strict, that is, it can be called
with an expression instead of a value. In the encoding, tbairence becomes strict.

We start with a review of abortive and composable contilmmatiin SectionEl2 arid 3. In Sectioh 4,
we present Filinski's encoding of composable control imzof (undelimited) abortive control and state
and discuss its limitations. In Sectibh 5, we present a naeding and its correctness. In Sectidn 6, we
present a new encoding 6&11cc in terms of¢’. We conclude in Sectidd 7.

ariola@cs.uoregon.edu
Hugo.Herbelin@inria.fr
dherman@mozilla.com
dkeith@cs.uoregon.edu

2 2 ABORTIVE CONTROL

2 Abortive control

We start with a call-by-valu@ -calculus whose syntax and operational semantics areildeddrelow:

Expressions e= vjee
Values vV = Axe|X
Evaluation contexts E:= [|]|Ee|VE
E[(Ax.e) V] — E[e[v/X]] (1)

(As usual,— stands for the reflexive and transitive closure-ef.) Languages such as SML and
Scheme extend -calculus with primitives for modifying the flow of controlAn example iscallcc,
which reifies thecontinuationof an expression, i.e., the remaining work to be done aftatuating
the expression, as a function. Consider the expregdian?) + (5+ 4); assuming a left-to-right order
of evaluation, the continuation of the subexpressionsbis the functionAx.3+x. We can give this
function a name by writing1+ 2) + callcc(Ak.5+4). In general, the evaluation of the expression
callcc(Ak.e) binds the current continuation kobefore evaluating.

A continuation bound byallcc in fact differs from ordinary functions: once it is calledyrtrol
does not return to the caller. We refer to this kind of valuamaabortive continuation Traditionally,
abortive behavior is specified operationally with an ab@erator, writtenes. For example, the con-
tinuation in our example term would be writtdrx.«7 (3+ x) rather tham x.3+ x. This semantics is
captured formally by the following two rules:

E[callcc(Ake)] —— E[egAx.« E[X/K]|
E[« € — e
Example 2.1. Consider the following reduction:
(142) 4+ callcc(Ak4d+ (k2)) (E=3+]])
3+ ((4+ (k2))[Axe (3+x)/K])
3+ (4+ ((Ax.e (3+X)) 2))

3+ 4+ (3+2)) (E=3+(4+])])
3+2

Notice how when continuatiokis invoked the context 3 (4+ []) is abandoned.

T Tl

To better distinguish between the abort traditionally présn the operational rules of control op-
erators from the abort present in a program, we adopt a €lifferotation for continuations. We write
Ax.o/ E[X] as(E). We rephrase the operational semanticsaflcc as follows:

E[callcc(Ake)] — E[€e[(E)/K]
E[(E") V] — E'|V|

Another example of an abortive operator4s[4]. Given an expression of the forf#i(Ak.e), after
binding k to the continuation, control does not return to the surringndontext but returns to the top-
level:

E[€¢(Ak.e)] — €[(E) /K|

For example:
(1+2)+%(Ak5+4)—»5+4 .

The abort operataty is expressible in terms o i
o e=%(A_e)

1We use. for a variable which does not occur free in the body of an alsion.

3 Composable control

Danvy and Filinski[[8] and Felleisenl[4] proposed ghemptor resetoperator, written #, talelimitthe
context captured by a continuation. We define the oper#fas the analogue teallcc in the presence
of a prompt. For example, in the expression:

2+ #(1+ . (Ake))

the continuatiork stands for the contextl+ []) instead of(2+#(1+[])). The delimited expression
¢ (Ak.e) becomes’# (Ak.<7 e). The syntax and semantics of a call-by-value lambda-aadcektended
with delimited control expressions (referred toAgs,) are as follows:

Expression e = V|ee| X (Axe) | e|tHe
Value v = Xx|Axe|(E)
Context F = []|Fe|VvF|#F
Delimited Context E ::= [|]|Ee|VE
F#E[Z (Ake)]] —— F#E[e[(E)/K]]|
F#E[</ €] — Fl#e)
FHE(EH V] — FHEM]]
F[#v] — F[V]

Unlike functions, abortive continuations are not compésator example, the expressiont2#(1+

A (Ak.(k (k 2)))) evaluates to 5 rather than 6. By contrasimposable continuation@, [3], which
we denote(E), are functional representations of continuations thatatoabort. The shift expression,
written (A x.e), is analogous to &-expression but captures a composable continuation. Tiitebsy
and semantics of a call-by-value lambda-calculus extemdigdshift and reset (referred to ds4) is as
follows:

Expression e = v|ee| Y (Axe)|#e

Value v = x|Axe]|(E)

The definitions of contextg andF are as before.
FHE[S (Ake)]] — F[#(e[<<]E>>/ k)]

FI(E) V] — F[#E|V|
F[#v] — F[V|
Example 3.1.
2+#(1+.7(Akk (k2))

)
— 2+ #((L+ [N (((1+]) 2))
— §+Z*(<<1+H>>((#(1+2))))
— 2+

In the following, we are going to show the correctness ohBHti's encoding of shift and reset with
respect to the above operational semantics. Thereforefirstigoal is to relate this semantics to the
continuation-passing style specification of shift and tre¥ge make use of Kameyama and Hasegawa
axiomatization (written as=xy) of shift and reset, which is shown sound and complete wiheet to
the continuation-passing style semantics [11]. We vdiffor the expression obtained by writing #s
(e) and(E) asAx.(E[X]).

Theorem 3.2. Given aA o4 expression e:

1. If e— o4 Vvthen &h =KH vkh,

4 4 COMPOSABLE CONTROL AS ABORTIVE CONTROL AND STATE

2. If &M =¢y v thenaV, such thatte — o4 V.

Notice that in order to reach completeness the expresseusrie be surrounded by a top-level reset.
This is due to the presence of tl¥é-elim axiom:

< (Akk e) = e, if kdoes not occur free ia .

Whereas? (Ak.k 1) =k 1, the expressior’(Ak.k 1) is “stuck” according to the operational semantics.
However, if a program is surrounded by a reset thendhelim axiom is not needed, and completeness
holds.

4 Composable control asabortive control and state

We now turn our attention to Filinski's encoding of shift grins of (undelimited) abortive control and
state [[6]. We present this encoding in two steps. We statt thi¢ encoding of shift in terms o, #
and (delimited)e. Next, we encode?” in terms of its undelimited counterpardllcc and implement
and.< by respectively updating and reading a mutable cell.

4.1 Composable control as (delimited) abortive control and prompt

Operationally, the difference betweeri and (delimited)#” occurs when a continuation is invoked: a
composable continuation behaves like an abortive cortimuavith a prompt surrounding the applica-
tion. Thus, we can simulate composable continuations bysnding each invocation of a continuation
with a prompt, indicating that control must return to theleral This relies on the dynamic nature of

prompts[[2].
Example 4.1. Wrappingk with a prompt allows it to be composed:

2+#(1+ 7 (Akk (#(k 2))))
— 2+#1+ ((1+[]) (#(1+(]) 2))))
— 24+#(14 ((1+[]) (#(1+2))))
— 244
Formally,. can be expressed in terms of (delimitédand # [17[2]:
S (Ak.e) = C(Ak.eAxH#(k x)/K]))
or equivalently in terms of7”, # and (delimited) abort [14]:
L (Ak.e) = (Ak.of e]Ax#(k x)/K]) 2

The correctness of the encoding is expressed next, Weerenotes the encoding ofAa,4 expres-
sion into aA .-« expression. The composable continuat{@) is encoded a& x.#((E) X).

Lemma4.2. Given aA o4 expression e:
1. Ife— gy vthenaV,[e] — yyuV;

2. If [e} n—»%%#vthenﬂ\/,eﬁ»y#\/.

4.2 Prompt as abortive control and state 5

4.2 Prompt asabortive control and state

To model the prompt a global variable callewkis introduced. A reset expressior gorresponds to
updatingmk The abort expressior/e readsmk after the evaluation oé. In other words, the abort
expression is made strict. The delimited control operatobecomes the undelimited control operator
callcc. Since Filinski’s encoding of a prompt and abort expressitnoduce several intermediate steps,
we opt for hiding those steps under more complex operatinted and leave the prompt and a strict abort
in the target language. We call this languagg: 1 cc..., its syntax is:

Expression e = Vv]|ee|callcc(Axe) | oe|#e| mki=w|MissingReset
Value v = Xx|Axel(E)

Metacontinuation w := A_MissingReset |AX.(mk:=w;(E) X)

Configuration C = eW|uncaught:MissingReset,wW

Evaluation ContextE = []|Ee|VE|a%E

In the following, ;€ stands for(A _.€) e

E[(Ax.e) v],w — E[e[v/X]],w

E[#e|,w — E[ds €, Ax.(mk:=w; (E) X)
E[callcc(Ake),w +—— E[e[(E)/K]],

E[(E') v].w — EMw

E[a% V],w — E[wV,w

E[mk w],w — E[wW],wW
E[MissingReset|,w +—— uncaught:MissingReset,w

The encoding of & .« expression into a target language expression, writtén asimply corresponds
to replacing each occurrence .gf and.«/ with callcc and.e, respectively. Variablenkis initialized
to a function which always faults. We model this by embeddiamgexpressiore into the following
configuration:

[el, wi

wherew; stands fod _MissingReset.

Lemma 4.3. Given aA , .« expression €:
1. If ey pvthenaV, (€], Wi —cat1comm V, Wi;
2. If [#e],Wi —> cat1ccaw VWi then3aV #er— ou V.

We combine the two encodings and wijite[] for the encoding of & o« expression into the language
with callcc and state.

Theorem 4.4. Given aA o4 expression e:
1 Ife—gpv then;l\/a H—e—ﬂ y Wi —callccait! \/7Wi;

2. If [[#e]], Wi — car1cca Vs Wi then3dV #er—s o4 V.

6 4 COMPOSABLE CONTROL AS ABORTIVE CONTROL AND STATE

4.3 Spaceleak

Let us now revisit the encoding with respect to intensiomabpprties such as space. Consider the fol-
lowing definition:

loopl = 1

loopn = .“(Akloop(n-1))

According to the operational semantics.&f, the execution of #ioop 3) always occurs at a bounded
distance from the root:

#(loop 3) — #.7(Ak.loop (3-1)) — #(loop (3-1)) — #(loop (2-1))
The same happens for its encodin@\ip ./ 4:
#(loop 3) — #7 (Ak.</ (loop (3-1))) — #<7 (loop (3-1)) — #oop (3-1) — #oop (2-1)

However, the translation Wc,11....4 does not preserve the property of reduction at a boundeahdist
from the top. We underline the redex perfomed, unless itagap redex::

#(loop 3),w; —
s(loop 3), Ax.mk:= wi; ([])x —
ds(callcc(Ak.as(loop(3-1)))), Ax.mk:=wi; ([[)x —
s(ts(loop(3-1))), Ax.mk:= w;; ([])X —
Al Ao H(100p(2-1)))), Axmk:= wi: ([])x

In other words, the SML implementation leads to a space laa&rm of the form~’ (A k.e) implicitly
invokes the continuation corresponding to the nearest ptorm the first step of the encoding , that
implicit invocation to the top-level manifests itself ineth operator. Whereas other occurrences of the
continuations are strict, evaluating their argument leefrforming the jump, the invocation of the top-
level continuation follows a non-strict discipline. Hovesythat property is not preserved by the second
step of the encoding since th# operator is made strict.

4.4 Robustness of the encoding

We have shown correctness of the encoding with respect taaian to values. We now discuss the
behavior of the encoding when the top-level reset is missiigce the metacontinuation capturedni
always produces an error when invoked, we were lead to leeli@t a shift expression with an undefined
top-level would raise an error, and indeed running the falhg example with the actual implementation
in SML supported our belief:

Example4.5.
P shift (fn k => 99);

uncaught exception MissingReset

We were therefore surprised to observe the following result

Example4.6.
P shift (fn k => (k 1) + 3);

val it = 1 : int

It was not clear to us why the above term did not produce am.gEx@n more surprisingly, we continued
with the re-evaluation of our previous term:

Example4.7.
P shift (fn k => 99);

Error: throw from one top-level expression into another

which now exhibited different behavior than before.

To be clear, these behaviors do not contradict the correstokFilinski’s encoding. According to
Filinski's type and effect systeni|[7], the programs in gioesiare ill-effect-typed, and therefore the
implementation is unconstrained. We were neverthelegwisad by this behavior, which we can now
explain.

Example 4.8. We show the execution of Examle 4.5 :

-7 (AK.99)]|,A _MissingReset
[(Ak.o/ 99)],A _MissingReset
= callcc(Ak.2%99),A _MissingReset
— (A_MissingReset) 99, A _MissingReset
—» uncaught: MissingReset,A_MissingReset

Now consider the tern¥’(Ak.(k 1) 4+ 3) of Example_4.6. Consistent with the previous example, we
were expecting the encoding to produce an error. Surphsitige result is 1.

[-7(Ak.(k1)+3)]],A _MissingReset
= callcc(Ak.oZ (((Ax#(k X)) 1) +3)),A_MissingReset

— s ((AX#(([]) X)) 1) +3),A_MissingReset

— s (#(([]) 1) +3),A_MissingReset

— s (s (([]) 1) +3), Ax.(mki=wi; (o ([] +3)) X)

— LAx.(mki=w;; (% ([]+3)) X)
Notice that a useful invariant does not hold, namely thahatdnd of the execution, the variable mk
should contain its initial value. We continue with the exgsien of Examplé4]7:

-7 (Ak99) T, Ax.(mk:=wi; (e ([]+3)) X)
= callcc(Ak.%99),Ax.(mk:=w;; (% ([] + 3)) X)
— (AX.(mk:i=w;; (s ([] +3)) X)) 99, Ax.(mk:=wi; (o ([] +3)) X)
— (5 ([]+3)) 9w

Because SML’s interactive shell disallows returning to iolgéractions, the above configuration causes
the error seen in Example 4.7.

Since usingshiftwithout a top-levetesetis a client error, Filinski’'s specification imposes no regli
ments on the behavior of these examples. Indeed, theseapnegrould be rejected as ill-typed in his
framework. However, in an implementation language suchhis, $he type system does not guarantee
the presence of a top-levedset A robust implementation should therefore defend agaimsh snvalid
uses ofshift by raising an error.

5 An alternative encoding

Since SML does not have access to the top-level continyatierforce the implementation to raise an
error when that is not explicitly set. To that end, we add til®iing operational rules to the semantics

of Ay s

E[# (Ake)] —— uncaught:MissingReset
E[(E") V] +—— uncaught:MissingReset
E[« €] +—— uncaught:MissingReset

8 5 ANALTERNATIVE ENCODING

Similarly, we add the following rule to the semanticsAgf:
E[¥(Ak.e)] — uncaught:MissingReset

The new operational semantics of shift and reset loses segscand completeness with respect to
Kameyama and Hasegawa axiomatization since, accordiihg toperational semantics? (Ak.1) would
raise an error but return 1 in Kameyama and Hasegawa axiratiati. To validate the”-elim axiom
the implementation would need access to the top-level moation. Since this is not possible in SML,
we opt to sacrifice the axiom and work instead with KameyanthHasegawa axiomatization without
the .7 -elim axiom, written akH_. The correctness of the new operational semantics becomes:

Theorem 5.1. Given aA &4 expression e:
1. If e—» o4 vthen &' = N,
2. If e—» »y uncaught :MissingReset then " =, .7 (Ak.€¢) for an expression’e
3. If M =¢y vthen3V, such that e— 44 V.
4. If M= .Z(Ak€) then e— o4 uncaught :MissingReset.

We now present an alternative encoding which provides tbetter handling. To regain the non-
strict behavior in the second step of the encoding we appigradard delay/force transformation. We let
|e| denote the new encoding ofAa, .4 expression into @¢a11cco €Xpression, which in addition to
replacing.#” with callcc is defined as follows (we ugg to represent some arbitrary constant value) :

He] = (#(AxA_X) [e])0
6] = (A |#e])

| [e] | stands for the combination of the regular encoding hje./« plus the new encoding.
Theorem 5.2. Given aA o4 expression e:
1. e—» o4 uncaught :MissingReset iff [[€]],Wi —ca11ccm uncaught :MissingReset,W;.

2. Ife—» gy vthenaV,|[e]],Wi —ca11cemm V', Wi;
if Ije—H yWi —caliccaitt! Vs Wi thenzl\/» E— op V.

Corollary 5.3. Given aA &4 expression e,

1. 1f M=y vthenaV, [[€]], Wi —car1cemgs Vs Wi;
If e =y 7 (Ak.€) then|[e] |, w; > callccait Uncaught :MissingReset, W;.

2. If HG—H,Wi F—callcc.oit! V, W thenﬂ\/,ekh =KH_ \/;
if [[e]],Wi —ca11ccms uncaught :MissingReset,w; then é" =1 .7 (Ak.€) for an expres-
sion é.

If an expressiore needs to capture a delimited continuation and no delinstpresent, then[e] |, w;
produces an error, whereas Filinski's encoding produceswewhich might be different from the one
produced by Kameyama and Hasegawa axiomatization.

5.1 SML implementation of the alternative encoding 9

Example 5.4. Going back to the example of Sectionl4.3, the new encodingueshas followsl¢op n=
| [-(Ak.oop(n-1))]|).We underline the redex perfomed, unless it is the top redex

[[#(loop 3) 1], wi

(#(Ax.A_x)(loop 3)))(),wi

(((AxA_x)(100p 3))) (), Ax.mk:=w; {[] ()

(s((AXA _X)callcc(AK.a(A _#((Ax.A _x)loop (3-1))())))) (), Ax-mk:=w;; ([] ())x
(s (AxA -X) Zo(A_#{(AxA _X)loop (3-1))())))), Ax.mk: —w.,<n 0)x
(s((AxA_X)({[]))(A-#(AxA_x)loop (3-1))())))) (), W

(A_#(AxA _x)loop (3-1))())(),w;

#((AxA _x)loop (3-1))(),w;

HHHH

Reduction does not always occur at the top of an expressiowektkr, the depth of the redex contracted
is bounded. With respect to Examplel4.6 the new encodingviestas follows:

[(AK(KL)+3)] |, w

callcc(Ak e (A . (FAXA_X)((Ax.(#AXxA_X)(kx) ())1)+3))())), W
s (A_(FHAXA _X) ((AX#HAXA_X)(kX) ())1)+3))),w;
(A_MissingReset)(A_.(HAXA _X) ((AX(#AXA _X)(k X)) ())1)+3))),w;
uncaught :MissingReset, W

ITL

5.1 SML implementation of the alternative encoding

functor NewControl (type ans) : CONTROL =
struct
open Escape
exception MissingReset
val mk : ((unit -> ans) -> void) ref = ref (fn _ => raise MissingReset)
fun abort thunk = coerce (!mk thunk)
type ans = ans
fun reset h = escape (fn k =>
let val m
in
mk := (fn x => (mk :=m; k x));
abort (let val x = h ()
in fn () => x
end)

I'mk

end) O
fun shift h =
escape (fn k =>
abort (fn () =>
reset (fn () =>
h (fn v =>
reset (fn () => coerce (k v))))))
fun C h =
escape (fn k =>
abort (fn () => reset (fn () =>
h (fn v => coerce (k v)))))
end;

10 6 DELAYING THE JUMP VERSUS DELAYING EVALUATION

With this implementation, we can see that Examplek 4.5 titBl7 behave as expected:

- shift (fn k => 99);

uncaught exception MissingReset

- shift (fn k => (k 1) + 3);

uncaught exception MissingReset

- reset (fn () => (shift (fn k => raise Fail "") handle Fail _ => 99))
handle Fail _ => 0;

val it = 0 : ans

6 Delayingthejump versusdelaying evaluation

In the encoding of shift, a non-strict invocation of the legel continuation is made strict. A similar
problem occurs in the encoding @11 cc in terms of the abortive control operatét, which is expressed
as follows:

callcc(Ake) =% (Akk e (3)

This encoding suffers from a space leakl[16, 8]. Siaa®lcc does not abandon its continuation, the
encoding via the abortiv&” restores the continuation by immediately applykgo e. But looking
closer, if we consider the semanticsaafl1cc(Ak.e) to have an implicit occurrence @fjust beforee,
that occurrence requires special treatment. Whereas otloeirrences ok are strict, evaluating their
argument before performing the jump, this first implicit ooence follows a non-strict discipline:

E[(E') e/ — E'[¢]

The encodin@]3 delays this jump urdifter evaluatinge, which leads to the space leak. A more faithful
encoding should delay the evaluationeafntil after it restores the aborted continuation. We carieaeh
this by placinge in a thunk, jumping and then forcing the thunk [9]. Let us denthe encoding of an
expressioreas|e]. Itis defined as follows:

[callcc(Ake)] = ZAk(KA_[e][Ax.(kA_X)/K)) ()
[(E)] = Ax(E[]] O) A-x

By applying the thunk outside the body @f (using () to represent some arbitrary constant value), we
force the evaluation af after the jump.

Notice how the new encoding renders the implicit occurresfdeexplicit. The special status of this
occurrence is reflected in the fact tlegs turned into a thunk before it is evaluated, whereas sulesgq
arguments are passedKkdully evaluated. This is a key insight. The specificationuiegs a different
evaluation strategy for applyirigthan the implementation language affords; it is not posdiblapply a
continuation to an unevaluated expression. So our implé&tien requires an encoding of expressions
that does not rely on the underlying evaluation order of theléementation semantics.

Lemma 6.1. Given an expression e:
1. ve.e— € = [e] —» [€]
2. Ve.[e]| —» € = T er— €&, & — [€].

Theorem 6.2. Given an expression e, if-e— v then3V', [e] — V/; if [e] — v then3V e— V.

11

Remark 6.3. By writing (E) asAx.«7 E[x], the encoding ofE) can be expressed in Felleisen reduction
theory A, [B]. It corresponds to multiple applications of th&-rule (see[]l). On the contrary, the
encoding[(B) requires the following rule, callg:

(Ax.o/ E[X) e— o E[¢ (4)

This rule is not part of the\y-calculus. It is shown correct with respect to a cps semanitic[11].
Therefore, the original encoding is sound. However, thevabale points out that the difference between
the two encodings becomes observable with the additionr@&ndic effects such as exceptions. In fact,
as given in[[11], in the presence of dynamic effects (suchhagptompt) the above rule takes a more
restricted form. For example, evaluation context E canragitere an exception which is raised in e,
or equivalently E cannot redefine the prompt. Thus, in thegumee of exceptions, the soundness of the
traditional encoding does not hold, but it holds for the newading.

7 Conclusions

In developing syntactic theories we are accustomed to mditing some syntactic differences between
terms. An example is the notion afequivalence. We do the same in proving properties of owries.
When our theorems do not hold we opt for stating that the ptpgmlds up to some syntactic manipu-
lation of our terms. An example is the standardization teegrwhich relates the operational semantics
to a reduction theory [15]. The operational semantics esf®a specific order in the application of the
rewriting rules. However, the reduction semantics is maegilfle; the rules can be applied in any or-
der. In general, one is interested in a more relaxed formisfttieorem which relates values:—v iff

IV, e—» V—v. Unfortunately, the above theorem does not holdXfor The valuess andv' arealmost
the same, but the theory does not relate them.

We emphasize the importance of understanding the reasptisiganismatch and moreover its im-
pact. In case of\y, as discussed in Ariola and Herbelld [1], the underlyingsoemis the absence of
a reduction rule which is instead implicitly present in thgemtional semantics. It is the lack of this
rule that prevents the theory from being extended with mgpgessive rules without losing important
properties such as confluence.

Encodings of control operators offer other examples of amatsh between the specification and the
implementation. We present examples of encodings whiclt@rect if one does not observe space or
errors. This hides complications which only arise when theodings are combined with other effects.
We discovered that the mismatch is due to the lack of preservaf strictness. For example, the
encoding ofcallcc in terms of ¢ turned an implicit non-strict continuation’s invocationto a strict
one. Filinski’'s encoding of delimited control in terms ofaative control and state turned a non-strict
abort operator into a strict one. This caused the systentuora “meaningless” result when we tried to
use it without surrounding a program with a prompt or resebnfan intensional point of view and in
the presence of effects there is a difference between & alrigt, a non-strict abort and not aborting at
all [12]. In that respect, Laird’s unsoundness result [1f3)\g in the presence of exceptions disregards
the abort operation, thus making an inference which is rgiified.

Our new encodings preserve the strictness and do not stdfarthe associated space leak. However,
they still do not appear to address all issues of space cgriBumsincecallcc still captures too much
of the continuation. By making use of SML of New Jerseyglate function, Herman[[10] was able
to address this problem but did not prove whether it is a cete@olution. We leave as future work the
construction of memory models for studying the space copsiom of our encoding.

Finally, the new encoding of shift and reset produces arr @rtbe program attempts to capture a
delimited continuation and no delimiter is present. In thmpAndix we extend our encoding to preserve

12 REFERENCES

the meaning in the presence of exceptions, where the sawanitishift and exceptions is given by
Herman[10]. Notice that some behaviors of Filinski’'s eringdn the presence of exceptions are due to
the strict abort. For example, in the following expression

reset (fn () => (shift (fn k => raise Fail "") handle Fail
handle Fail _ => 0;
val it = 99 : ans

=> 99))

the context surrounding the shift-expression and up tortmpt should be abandoned. This would mean
that the exception should be raised and captured by themoosthandler, thus returninginstead of

99. Our proposed encoding does indeed retur@ur encodings however, do not preserve the number of
times one aborts a computation. For example, our new engadfikel1cc does not work in the presence
of more complex constructs such as Schemgisamic-wind, which admits very fine observations of
control [18]. In particular, it allows one to observe exgatlhen the abort happens. In future work, we
wish to deepen our understanding of how to combine effecéssaund way thus avoiding unexpected
behaviors.

References

[1] Z. M. Ariola and H. Herbelin. Control reduction theorighe benefit of structural substitutiod.. Functional
Programming 18(3):373—419, 2008.

[2] Z. M. Ariola, H. Herbelin, and A. Sabry. A type-theorefmundation of continuations and prompts.AGM
SIGPLAN International Conference on Functional Programgnpages 40-53. ACM Press, New York, 2004.

[3] O. Danvy and A. Filinski. A functional abstraction of tggd contexts. Technical Report 89/12, DIKU,
University of Copenhagen, Copenhagen, Denmark, 1989.

[4] M. Felleisen. The theory and practice of first-class ppten InProceedings of the 15th ACM Symposium on
Principles of Programming Languages (POPL '88ages 180-190, Jan 1988.

[5] M. Felleisen and R. Hieb. A revised report on the syntattieories of sequential control and stat&eoret-
ical Computer Sciengd.03(2):235-271, 1992.

[6] A. Filinski. Representing monads. Bonf. Record 21st ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, POPL'94, Portland, OR, USA, 17-a211 1994 pages 446—-457, New York, 1994.
ACM Press.

[7] A. Filinski. Representing layered monads. Rroceedings of the Twenty-Sixth Annual ACM Symposium on
Principles of Programming Languaggsages 175-188. ACM Press, 1999.

[8] M. Flatt, G. Yu, R. B. Findler, and M. Felleisen. Addingloeited and composable control to a production
programming environment. ICFP '07: Proceedings of the 2007 ACM SIGPLAN internatioo@hference
on Functional prog rammingpages 165-176, New York, NY, USA, 2007. ACM.

[9] R. Heib and R. K. Dybvig. Engines from continuatioomputer Language44(2):109-123, 1989.

[10] D. Herman. Functional pearl: The Great Escape. Or, ltoyuinp the border without getting caught. In
ICFP '07: Proceedings of the Twelfth ACM SIGPLAN InternatibConference on Functional Programming
pages 157-164, Oct. 2007.

[11] Y. Kameyama and M. Hasegawa. A sound and complete axipati@an of delimited continuations. IAroc.
of 8th ACM SIGPLAN Int. Conf. on Functional Programming, 83, Uppsala, Sweden, 25-29 Aug. 2003
volume 38(9) ofSIGPLAN Noticespages 177-188. ACM Press, New York, 2003.

[12] O. Kiselyov, C.-c. Shan, and A. Sabry. Delimited dynarinding. InProceedings of the eleventh ACM
SIGPLAN international conference on Functional programgniCFP '06, New York, NY, USA, 2006.

[13] J. Laird. Exceptions, continuations and macro-exgivesess. IlESOP '02: Proceedings of the 11th Euro-
pean Symposium on Programming Languages and SysEgariager-Verlag, 2002.

[14] C. Murthy. Control operators, hierarchies, and psecidssical type systems: A-translation at work AGM
workshop on Continuationpages 49-71, 1992.

REFERENCES 13

[15] G. D. Plotkin. Call-by-name, call-by-value, and thecalculus.Theoretical Comput. S¢il:125-159, 1975.

[16] D. Sitaram.Models of Control and Their Implications for Programmingriguage DesignPhD thesis, Rice
University, 1994.

[17] D. Sitaram and M. Felleisen. Reasoning with continuagill: Full abstraction for models of control. In
Proceedings of the 1990 ACM Conference on LISP and Fundti®regramming, Nice pages 161-175,
New York, NY, 1990. ACM.

[18] M. Sperber, R. Kent Dybvig, M. Flatt, A. Van Straaten,iRadler, and J. Matthews. Revisedeport on the
algorithmic language Scheméournal of Functional Programmind 9(S1):1-301, 2009.

14 A SML IMPLEMENTATION OF THE ENCODING IN THE PRESENCE OF EXCHFONS

A SML implementation of the encoding in the presence of exceptions

functor NewControl2 (type ans) : CONTROL =
struct

open Escape

exception MissingReset

datatype result = 0Ok of ans | Fail of exn

val mkO : ((unit -> result) -> void) =
fn r => raise MissingReset;

val mk = ref mkO;

fun initialize () = mk := mkO;

fun abort x = coerce (!'mk x)

type ans = ans

fun reset t =
case (escape (fn k =>
let val m

Imk
in
mk := (fn x => (mk := m; k x));
abort (let val x = 0k (t ())
handle x => Fail x
in fn () => x
end)
end)
)) of
Ok x => x
| Fail x => raise x

fun shift h =
escape (fn k =>
abort (fn () =>
Ok (reset (fn () =>
(h (fn v =>
reset (fn () =>
coerce (k v))))))))

end;

	Introduction
	Abortive control
	Composable control
	Composable control as abortive control and state
	Composable control as (delimited) abortive control and prompt
	Prompt as abortive control and state
	Space leak
	Robustness of the encoding

	An alternative encoding
	SML implementation of the alternative encoding

	Delaying the jump versus delaying evaluation
	Conclusions
	SML implementation of the encoding in the presence of exceptions

