
A Typed Calculus Supporting Shallow

Embeddings of Abstract Machines

Aaron Bohannon
Zena M. Ariola

Amr Sabry

April 23, 2005

1 Overview

The goal of this work is to draw a formal connection between steps taken by
abstract machines and reductions in a system of proof terms for a version the
sequent calculus. We believe that by doing so we shed light on some essential
characteristics of abstract machines, proofs in sequent calculus systems, and
weak normalization of λ-terms. The machines that we consider are the (call-
by-name) Krivine machine and a call-by-value machine that may be called a
“right-to-left CEK machine” but with some modifications can be seen as a
proto-ZINC machine.

The formal connection we exhibit is, in fact, an embedding of the machines
into the term calculus. We embed run-time data structures, such as the control
stack and environment, in such a way that the operational semantics of the
machine corresponds to reduction steps in the calculus. The abstract machine
state, including the code that it executes, is captured as a term; the abstract
machine transitions are captured as term reductions.

This is in contrast to specifying the operational semantics on top of the
calculus. In other words, our goal is to provide a shallow embedding of an
abstract machine in a calculus/logic, as opposed to a deep embedding. This
allows reasoning about the machine inside the logic itself instead of on top
of it. The logical formulae that are assigned to proof terms provide a type
system for the term language via the Curry-Howard isomorphism, and because
of the method of embedding the machines into the terms, this type system can
be directly lifted to the machine code and machine states, thereby allowing an
elegant and simple formulation of safety, based on the subject reduction theorem
of the calculus.

1



2 Tail-Recursive Evaluators

Plotkin [9] showed how abstract machines could be seen as an implementation of
an evaluation function for a functional programming language. It can be noted
that a basic evaluation function, whether implementing call-by-name or call-by-
value semantics, is not tail-recursive. This corresponds to the fact that the small-
step operational semantics has a recursive definition, relying on congruence
rules. An implementation of these rules naturally involves a process of searching
for the next redex, which may be arbitrarily deep in a term. This search must
be managed with care when computing a sequence of reductions, since the cost
of computing a single reduction step is linear in the size of the term [4].

An implementation of an abstract machine, on the other hand, can be di-
rectly written down as a tail-recursive function. One view of abstract machines is
that they are simply tail-recursive evaluators. The process of constructing such
an evaluator, as presented by Reynolds [11] and more recently explored by Ager
et al. [2], consists of defunctionalizing the continuations in a CPS interpreter. A
defunctionalized continuation is actually just a data structure representing an
evaluation context. As shown by Herbelin [7], proof terms for sequent calculi
have a computational interpretation as evaluation contexts. Thus, it is very
natural to believe that sequent calculi would have a relationship with abstract
machines. A simple connection between the λµµ̃-calculus and the Krivine ma-
chine was observed by Curien and Herbelin [3].

3 Calculi for Machines

If a machine is correctly implements evaluation of λ-terms, then it will certainly
be possible to prove a correspondence between the machine and the λ-calculus.
However, there are various calculi that may be much closer to abstract machines,
i.e. have a more direct statement and proof of correspondence. The closest
correspondence would occur when we could define a translation from machine
states to terms (or vice-versa) in a purely compositional manner, such that the
transitions of the machine could be matched up with the steps of a particular
reduction strategy on the term so that neither one would ever take more than
a statically fixed number of steps for a given step in the other system.

In order to achieve a correspondence at this level, the term calculus must
possess certain features. First, it must be able to simulate weak β-reduction
without performing arbitrarily deep searches for the next redex. Otherwise,
one step in the calculus would correspond to an arbitrary number of steps of
the machine. The λµµ̃-calculus [3] described by Curien and Herbelin has this
property. They define translations from λ-terms to λµµ̃-terms, such that the
computational reduction rules of the λµµ̃-calculus can be used without any con-
gruence rules to simulate weak β-reduction of the λ-terms. Moreover, by making
a simple choice of which way to resolve a critical pair, the same computational
rules can be used to simulate either call-by-name or call-by-value reduction on
λ-terms.

2



Abstract machines are also designed to break down the process of substitu-
tion into small steps, and they generally carry out these substitutions in a lazy
manner. Thus, the other important feature of a good calculus for our simu-
lations is an explicit notion of substitution. Calculi with explicit substitutions
were investigated by Abadi et al. [1] and certain variants have been used to prove
the correctness of abstract machines, e.g. the λenv, which was used by Leroy
[8] when the ZINC machine was introduced. Hardin, Maranget, and Pagano [6]
proposed the λσw-calculus as a “calculus of closures” for proving the correct-
ness of abstract machines and representing the output of compilers. While they
succeeded in providing an elegant calculus specialized for weak β-reduction, the
calculus was still based upon the structure of natural deduction, and therefore
cannot satisfy the requirement of the last paragraph. On the other hand, the
λµµ̃-calculus does not provide any notion of explicit substitution, so it is not
immediately satisfactory, either.

A version of the λµµ̃-calculus with explicit substitutions has been studied
and found to be very well-behaved [10]. Unfortunately, the inclusion of explicit
substitutions is not, in itself, enough to guarantee that a calculus has the prop-
erties that we desire. The reason is that when a term has multiple substitutions
at the outermost level, the next redex must (eventually) be a propagation of
the innermost substitution. The search for this redex, which may be arbitrarily
deep, would not mirror the operation of an abstract machine. One way around
this is to take the approach of the λσw-calculus and use simultaneous explicit
substitutions. However, we take another approach and represent environments
within the calculus. This approach was inspired by Douence and Fradet [5],
but instead of working abstractly at the level of combinators, we provide a very
concrete embedding of environments in the calculus, which gives us the benefit
of being able to apply the type system of the calculus to the environments in a
direct way.

4 Our Development

The calculus into which we embed the abstract machines is a slightly modi-
fied version of the λµµ̃-calculus with explicit substitutions that was studied by
Polonovski [10]. Our first modification is the addition of an explicit weakening
construct that acts as a method of garbage collection. This is necessary for simu-
lating the mutable machine registers that abstract machines generally have. The
other modification involves restricting the allowable terms by constraining the
contexts in the typing judgments. This modification is not technically necessary
but allows us to assert that the typable α-equivalent terms are in a one-to-one
correspondence with the typable terms viewed without α-equivalence, thereby
highlighting the successful elimination of the need to keep track of names in
the calculus. The restricted set of terms are allowed to use only a single term
variable—which is used to encode an accumulator register—and two context
variables—one is used for encoding the run-time stack pointer and the other for
encoding the environment pointer. We call this the λµµ̃r↑-calculus.

3



The λµµ̃r↑-calculus imposes a useful structure on terms that is closer to the
level of an abstract machine. In fact, the individual reduction steps in this sys-
tem are much more fine-grained that one would see in most abstract machines.
In order to show how the reduction steps of this calculus correspond to abstract
machines, such as the Krivine machine, it is useful to develop a sort of toolkit
of “macros” for commands and terms in the λµµ̃r↑-calculus. Thereafter, we
exhibit a set of reduction steps on these macro-terms that correspond to mul-
tiple reduction steps at the raw term level. These macro-reductions implement
a specific strategy of small-step reductions; hence, we present one set imple-
menting call-by-name and one set implementing call-by-value, with a concrete
description of the strategies that they implement on the pure λµµ̃r↑-terms.

It becomes apparent that these coarse-grained systems are, in a literal sense,
abstract machines themselves built directly out of the λµµ̃r↑-calculus. It is
then a very small (almost trivial) step to draw the correspondence with the
traditional Krivine machine and a call-by-value machine that is similar to the
ZINC machine, and we see how these machines arise out of the duality of the
calculus. The typing rules of the calculus are then also lifted in the obvious
way to give a type system to the macro-terms and, by extension, the abstract
machines themselves, thus allowing an elegant statement of safety at the level
of machines.

References

[1] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy.
Explicit substitutions. In ACM SIGPLAN-SIGACT Symposium on Pric-
niples of Programming Languages, pages 31–46, New York, 1990. ACM
Press.

[2] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard.
From interpreter to compiler and virtual machine: A functional derivation.
Research Series RS-03-14, BRICS, March 2003. 36 pp.

[3] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In
Proceedings of the ACM SIGPLAN International Conference on Functional
Programming, pages 233–243, New York, 2000. ACM Press.

[4] Olivier Danvy and Lasse R. Nielsen. Syntactic theories in practice. In Mark
van den Brand and Rakesh Verma, editors, Electronic Notes in Theoretical
Computer Science, volume 59. Elsevier, 2001.

[5] Rémi Douence and Pascal Fradet. A systematic study of functional lan-
guage implementations. ACM Trans. Program. Lang. Syst., 20(2):344–387,
1998.

[6] Thérèse Hardin, Luc Maranget, and Bruno Pagano. Functional back-ends
within the lambda-sigma calculus. Technical Report RR-3034, INRIA,
November 1996.

4



[7] H. Herbelin. A lambda-calculus structure isomorphic to Gentzen-style se-
quent calculus structure. In Proc. Annual Conference of the European As-
sociation for Computer Science Logic, Kazimierz, Poland, volume 933 of
Lecture Notes in Computer Science, Berlin, 1994. Springer-Verlag.

[8] Xavier Leroy. The ZINC experiment : an economical implementation of
the ML language. Technical Report RT-0117, INRIA, February 1990.

[9] G. D. Plotkin. Call-by-name, call-by-value, and the lambda-calculus. The-
oretical Computer Science, 1(2):125–159, December 1975.

[10] Emmanuel Polonovski. Substitutions explicites, logique et normalisation.
PhD thesis, Université Paris 7, 2004.

[11] John C. Reynolds. Definitional interpreters for higher-order programming
languages. In Proceedings of the ACM annual conference, pages 717–740.
ACM Press, 1972.

5


