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Abstract

The historical design of the call-by-value theory of control relies on the reification of
evaluation contexts as regular functions and on the use of ordinary term application for
jumping to a continuation. To the contrary, the λCtp control calculus, developed by the
authors, distinguishes between jumps and terms. This alternative calculus, which derives
from Parigot’s λµ-calculus, works by direct structural substitution of evaluation contexts.
We review and revisit the legacy theories of control and argue that λCtp provides an obser-
vationally equivalent but smoother theory. In an additional note contributed by Matthias
Felleisen, we review the story of the birth of control calculi during the mid to late eighties
at Indiana University.

1 Introduction

To reason about Scheme programs (Felleisen et al., 1987) introduced the λC re-

duction theory. This theory was not pure in the sense that one of the rules was

applicable only at the top of a program. To address this issue, Felleisen and Hieb

introduced the λC revised reduction theory (Felleisen & Hieb, 1992) that was exclu-

sively made of contextually valid equations. Both theories suffer a few weaknesses:

- Both reduction theories do not directly express the operational semantics of C:

reduction and operational semantics coincide only at the observational level.

- To simulate the operational semantics, the reduction semantics has to accom-

modate the following reduction rule:

CE : E[CM ] → C (λk. M (λx.A (k E[x])))

However, it turns out that both reduction semantics are not confluent when

extended with this rule.

- The revised theory has a complex notion of answers: An evaluation may sim-

ply yield a value, or produce an answer of the shape C (λk. V ) (with V possibly

containing k) or produce an answer of the shape C (λk. k V ) (again with V

possibly containing k). In the latter case, when V does not contain k, one
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would expect an additional reduction that eliminates the superfluous C appli-

cation:

Celim : C (λk. k M) → M k not free in M

However, it turns out that the addition of this rule to the revised λC reduction

semantics breaks confluence. On this observation, and on the previous one,

Felleisen and Hieb in (Felleisen & Hieb, 1992) write: “We leave unsolved the

problem of finding an extended theory that includes CE or Celim and still

satisfies the classical properties of reduction theories”.
- λC is not as expressive as one might expect. For instance, Scheme’s call/cc

operational semantics

E[call/cc (λk. M)] 7→ E[M [λx.AE[x]/k]]

cannot be simulated. Indeed, if we encode call/cc as usual as λx. C (λk. k (xk)),

one gets

E[call/cc (λk. M)] 7→→ (λx.AE[x]) (M [λx.AE[x]/k])

which does not converge to E[M [λx.AE[x]/k]].

The calculus λCtp provides a solution to the above problems, and thus can be

seen as a replacement of λC. The calculus λCtp is a call-by-value reformulation of

Parigot’s λµ (Parigot, 1992), where µ is renamed into C. It also contains a special

constant called tp which denotes the top-level continuation, making explicit the

abortive capabilities of λC. The essential design differences between λC and λCtp are

the following:

- λCtp has specific variables for contexts while λC does not,
- λC reifies contexts as functions and moves them around using the standard

substitution of λ-calculus while λCtp uses a specific notion of structural substi-

tution of contexts,
- λCtp syntax forces calls to continuations to be abortive while λC uses a specific

reduction rule for this purpose,
- λC does not have a special constant for the top-level continuation.

The calculus λCtp comes with a simple operational semantics expressive enough to

simulate the semantics of call/cc, as described above. It is also expressive enough

to simulate the operational semantics of λC, while the converse is false.

The calculus λCtp comes with a confluent reduction semantics which, to the con-

trary of λC, can simulate its own operational semantics. It also remains confluent

when extended with a rule equivalent to CE.

Since λCtp reduction semantics simulates λCtp operational semantics, which it-

self can simulate λC operational semantics, which itself cannot be simulated by λC

reduction semantics, it follows that the reduction theories of λC and λCtp do not

simulate each other, as already observed in (Ong & Stewart, 1997). However, since

λC operational semantics and reduction semantics are equivalent with respect to

the observational behavior of a program, the same holds for the reduction seman-

tics of λC and λCtp. In short: A λC program reduces to an answer if and only if the

corresponding λCtp program reduces to an answer.
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x, a, v, f, c, k ∈ Vars
M, N ∈ Terms ::= x | λx.M | M N | Abort M | C M
V ∈ Values ::= x | λx.M
E ∈ EvCtxt ::= � | E M | V E

Fig. 1. Syntax of λC

The reduction theory of λCtp can be formulated either on terms or on jumps. If one

formulates it on terms, it shares with the λC revised reduction theory the complexity

of the notion of answer. However, if we formulate it on jumps (and we execute jumps

of the form tp M), the evaluation produces results of the unique shape tpV . In fact,

a similar approach can be done in λC too: By considering evaluation in an abortive

context, all three forms of answers collapse to a single one.

The paper is organized as follows: Section 2 introduces λC, reviews its main

properties and individuates its shortcomings. Section 3 introduces λCtp and shows

how it solves λC’s defects. All along these two sections, the relations between the

different notions of operational and reduction semantics for the two calculi are

investigated. Section 4 summarizes the agreement on the observational behaviors

of λC and λCtp (Figure 8) and the discrepancies regarding the operational semantics

(Figure 9). We conclude in Section 5 together with a historical note by Matthias

Felleisen.

2 Indiana’s Theory of Control

We start with the syntax of λC and its operational semantics. We present the

computational reduction semantics given in (Felleisen et al., 1987). This theory has

two weaknesses:

- it contains one rule, called a computational rule, which is only applicable at

the top of a program;

- the rules are not complete with respect to the operational semantics.

Next, we give the revised reduction semantics from (Felleisen & Hieb, 1992). This

theory characterizes the computational rule in terms of two compatible rules (i.e. ap-

plicable in any context). Thus, solving one problem with the original theory at the

expenses of complicating the correspondence with the operational semantics. We

discuss how this relationship could be simplified by reducing a program in a partic-

ular context, which intuitively captures the execution of a program at the top-level

prompt. As discussed in (Plotkin, 1975), the relationship between the reduction

theory and an evaluator should be mediated by a standardization theorem. To that

end, for both theories we define a notion of standard reduction and of weak-head

reduction (i.e. a notion of standard reduction that stops at values).

2.1 Syntax and Operational Semantics

Figure 1 introduces the syntax of a call-by-value calculus extended with the unary

operators Abort and C. Variables and lambda-abstractions are called values.
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The operational semantics of such a language can be described most concisely

using the following operational rules, which rewrite complete programs:

βv : E[(λx. M)V ] 7→λC
E[M [V/x]]

AbortTE
: E[Abort M ] 7→λC

M

CAbort
TE

: E[CM ] 7→λC
M (λx.Abort E[x])

The reflexive-transitive closure of 7→λC
is denoted by 7→→λC

. In each of the rules, the

entire program is split into an evaluation context E and a current redex to rewrite.

The evaluation context E is a term with exactly one hole, written as �, in it. It

represents what to do after the execution of the redex and is referred to as the

continuation. The first rule expresses what to do when a function is applied to a

value: the argument is substituted for each free occurrence of the bound variable

in the function’s body. According to the second operational rule, the application of

Abort to a term M aborts the current continuation (i.e. E) and returns M to the

top-level. For example, one has:

1 + Abort M + 3 7→λC
M

where in this case the abandoned context is 1 + � + 3. According to the last rule, the

application of C to a term M abandons the current evaluation context and applies

M to a procedural abstraction of that context. Note the presence of the abort

operation in the abstracted context, which is (λx.Abort E[x]) and not (λx. E[x]).

This distinguishes continuations from regular functions. A function returns to the

caller once completed, whereas the invocation of a continuation causes the context

of the application to be discarded.

Through the paper, we will use the λC-term C (λc. 1 + c 2 + (1 + 1)) + 3 as our

running example.

Example 2.1 (Evaluation of C (λc. 1 + c 2 + (1 + 1)) + 3)

The term C (λc. 1 + c 2 + (1 + 1)) + 3 is split into the evaluation context � + 3

and the redex C (λc. 1 + c 2 + (1 + 1)). The current evaluation context � + 3 is

abandoned and the argument of C is applied to a procedural abstraction of that

context:

C (λc. 1 + c 2 + (1 + 1)) + 3 7→λC
(λc. 1 + c 2 + (1 + 1)) (λx.Abort (x + 3))

Continuing with the evaluation:

(λc. 1 + c 2 + (1 + 1)) (λx.Abort (x + 3)) 7→λC
1 + (λx.Abort (x + 3)) 2 + (1 + 1)

The invocation of the continuation abandons the calling context 1 + � + (1 + 1):

1 + (λx.Abort (x + 3)) 2 + (1 + 1) 7→λC
1 + Abort (2 + 3) + (1 + 1)) 7→→λC

5

C is at least as expressive as Abort; it can be used to define an operator A

equivalent to Abort:

AM ∆
= C (λk. M) where k does not occur free in M (Abbrev. 1)
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βv : (λx. M) V →c M [V/x]
CL : (CM) N →c C (λc. M (λf.A (c (f N))))
CR : V (C M) →c C (λc. M (λx.A (c (V x))))
CT : CM ⊲CT

M (λx.Ax)

Fig. 2. Reduction and computation rules of call-by-value λC

(Felleisen-Friedman-Kohlbecker-Duba)

To capture the proviso we often use which refers to an anonymous variable, and

write AM as C (λ . M). If we replace CAbort
TE

by

CTE
: E[CM ] 7→λC

M (λx.AE[x]) ,

then AbortTE
, where Abort has been replaced by A, becomes derivable:

E[AM ] 7→λC
(λ . M) (λx.AE[x]) 7→λC

M .

Henceforth, we have the following easy result:

Proposition 2.2

For M with no occurrences of Abort,

M 7→→λC
V with rules βv, AbortTE

and CAbort
TE

iff M 7→→λC
V ′ with rules βv and CTE

where V ′ is V where each Abort has been replaced by A.

We will therefore focus on C in the remainder of the paper, and, unless stated

otherwise, use A and CTE
instead of Abort, AbortTE

and CAbort
TE

.

2.2 Felleisen-Friedman-Kohlbecker-Duba Reduction Semantics

2.2.1 Reduction Rules

The initial reduction semantics of λC in (Felleisen et al., 1987) is characterized by

a combination of congruent reduction rules (written →c) applicable at any place of

an expression and of a so-called computational rule (written ⊲CT
) applicable only

at the top-level of a computation. The rules are on Figure 2.

The local reduction rules are intuitively related to the operational rules as follows.

Instead of capturing the entire evaluation context surrounding an invocation of C

in one step, the rules CL and CR allow one to lift the control operation step-by-step

until it reaches the top-level. At that point rule CT applies the abort continua-

tion. The C-reduction →→c is defined as the reflexive-transitive closure of →c. The

C-computation ⊲c is defined as the union of →→c and ⊲CT
. Its reflexive-transitive

closure is written ⊲∗c . Its reflexive-symmetric-transitive closure is written
⊲
=c. The

C-computation ⊲c is proved to satisfy the diamond property.

Example 2.3 (Reduction of C (λc. 1 + c 2 + (1 + 1)) + 3)



6 Zena M. Ariola and Hugo Herbelin

C (λc. 1 + c 2 + (1 + 1)) + 3 →c CL
C (λc′. (λc. 1 + c 2 + (1 + 1)) (λx.A (c′ (x + 3)))) →c βv

C (λc′. 1 + ((λx.A (c′ (x + 3))) 2) + (1 + 1)) →c βv

C (λc′. 1 + A (c′( 2 + 3)) + (1 + 1)) →→

C (λc′.A (c′ (2 + 3))) ⊲CT

(λc′.A (c′ (2 + 3))) (λx.Ax) →→c

A (A 5) ⊲CT

(λ .A 5) (λx.Ax) →c βv

A 5 ⊲CT

(λ . 5) (λx.Ax) →c βv

5

2.2.2 Weak-Head Reduction

A part from the ⊲CT
rule, the other rules can be applied in any order, including under

a lambda-abstraction and a C-abstraction. However, to use the reduction theory to

reason about evaluation, it is important to define a notion of reduction which mimics

the evaluator. To that end, one defines the notion of weak-head reduction. The C-

computation has a natural notion of weak-head reduction (called standard reduction

function in (Felleisen et al., 1987), following Plotkin’s terminology (Plotkin, 1975)).

We say that M weakly head reduces to N for →c, written M
wh
→c N , iff M has the

form E[P ], where P is a βv, CL or CR redex that reduces to Q, and N is E[Q]

(i.e.reduction occurs in an evaluation context position). The notation
wh
→→c stands

for the reflexive-transitive closure of
wh
→c. We say that M weakly head reduces to N

for ⊲c, written M
wh
⊲c N , iff M

wh
→c N or M ⊲CT

N . The notation
wh

⊲∗c stands for the

reflexive-transitive closure of
wh
⊲c .

Example 2.4 (Weak-head reduction of C (λc. 1 + c 2 + (1 + 1)) + 3)

We writeAx for the abort continuation λx.Ax. We divide the reductions in different
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groups separated by a blank line. Each group will collapse into a single step shortly.

C (λc. 1 + c 2 + (1 + 1)) + 3
wh
→c

C (λc′. (λc. 1 + c 2 + (1 + 1)) (λx.A (c′ (x + 3)))) ⊲CT

(λc′. (λc. 1 + c 2 + (1 + 1)) (λx.A (c′ (x + 3))))Ax
wh
→c

(λc. 1 + c 2 + (1 + 1)) (λx.A (Ax (x + 3)))
wh
→c

1 + (λx.A (Ax (x + 3))) 2 + (1 + 1)
wh
→c

1 +A (Ax (2 + 3)) + (1 + 1)
wh
→c

1 + C (λq. (λ .Ax (2 + 3)) (λz.A (q (z + (1 + 1)))))
wh
→c

C (λr. (λq. (λ .Ax (2 + 3)) (λz.A (q (z + (1 + 1))))) (λw.A (r (1 + w)))) ⊲CT

(λr. (λq. (λ .Ax (2 + 3)) (λz.A (q (z + (1 + 1))))) (λw.A (r (1 + w))))Ax
wh
→c

(λq. (λ .Ax (2 + 3)) (λz.A (q (z + (1 + 1))))) (λw.A (Ax (1 + w)))
wh
→c

(λ .Ax (2 + 3)) (λz.A ((λw.A (Ax (1 + w))) (z + (1 + 1))))
wh
→c

(λx.Ax) (2 + 3)
wh
→c

(λx.Ax) 5
wh
→c

A 5 ⊲CT

(λ . 5) (λx.Ax)
wh
→c

5

The following proposition extends the unique context lemma in (Felleisen & Fried-

man, 1986) to terms with free variables:

Proposition 2.5 (Unique context lemma for
wh

⊲∗c )

Let M be a term in λC. Exactly one of the following cases happens:

- M is a value V (we also say that M is an answer).

- M has a unique decomposition under the form E[P ] where P is a βv, CL or

CR redex.

- M has the form CN which is a ⊲CT
redex.

- M has a unique decomposition under the form E[xV ] in which case M is said

to have its weak-head reduction stopped.

Especially, a weak-head redex, if it exists, is unique.

Intermezzo 2.6
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Observe that if M weakly head reduces to N by CL or CR, then it is necessarily

weakly head reducible further by a sequence (possibly empty) of CL or CR, ended

by ⊲CT
and by as many βv as the number of CL or CR. We write ⊲CTE∗

for such a

combination of rules (which generalizes ⊲CT
):

CTE∗ : E[CM ] ⊲CTE∗
M E∗

where E∗ is defined as:

�
∗ = λx.Ax

E[V �]∗ = λx.A (E∗ (V x))

E[� N ]∗ = λx.A (E∗ (xN))

Example 2.7 (Alternative weak-head reduction of C(λc. 1 + c 2 + (1 + 1)) + 3)

C (λc. 1 + c 2 + (1 + 1)) + 3 ⊲CTE∗

(λc. 1 + c 2 + (1 + 1)) (λx.A ((λx.Ax) (x + 3)))
wh
→c

1 + (λx.A ((λx.Ax) (x + 3))) 2 + (1 + 1)
wh
→c

1 + A ((λx.Ax) (2 + 3)) + (1 + 1) ⊲CTE∗

(λ . (λx.Ax) (2 + 3)) (λz.A ((λw.A ((λx.Ax) (1 + w))) (z + (1 + 1))))
wh
→c

(λx.Ax) (2 + 3)
wh
→c

(λx.Ax) 5
wh
→c

A 5 ⊲CTE∗

(λ . 5) (λx.Ax)
wh
→c

5

Comparing it with the reduction in Example 2.4, one has that the first CTE∗ step

corresponds to one lifting step, one ⊲CT
step and one βv step. The second CTE∗

corresponds to two lifting steps, one ⊲CT
step and two βv steps. Whereas the last

CTE∗ corresponds to one ⊲CT
step.

Moreover, if M is of the form λk. N , then E[C (λk. N)] weakly head reduces

further to N [E∗/k]. This leads to the following variant of ⊲CTE∗
:

C′TE∗
: E[C (λk. N)] ⊲C′

TE∗
N [E∗/k]

Let C−L , C−R and C−T be the restrictions of CL, CR and CT that apply only when

the body of C is not an abstraction. Writing
wh
⊲ CTE∗ βv

for the union of ⊲CTE∗
and

weak-head βv, and
wh
⊲ C′

TE∗
C−

T
C−

L
C−

R
βv

for the union of ⊲C′
TE∗

and weak-head reduction

of C−T , C−L , C−R and βv redexes, we get the following equivalence:

Proposition 2.8

M
wh

⊲∗c V iff M
wh

⊲∗CTE∗ βv
V iff M

wh

⊲∗C′
TE∗

C−

T
C−

L
C−

R
βv

V . Moreover, the Unique Context

Lemma still holds by replacing items 2 and 3 in its statement by the rules composing
wh

⊲∗CTE∗ βv
or by the rules composing

wh

⊲∗C′
TE∗

C−

T
C−

L
C−

R
βv

.
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2.2.3 Operational Semantics vs Weak-Head Reduction

The formulation of weak-head reduction in terms of CTE∗ and βv allows one to

compare it to the operational semantics: βv steps match but CTE∗ steps do not.

Indeed, the weak-head reduction reduces E[CM ] to M E∗ while the operational se-

mantics reduces it to (M (λx.AE[x])). Consider our example term, the operational

semantics binds continuation variable c to λx.A (x + 3), whereas the weak-head

reduction binds c to (λx.A ((λx.Ax) (x + 3))). In general, the problem is that the

operational semantics lifts the context at once, whereas the reduction theory lifts

the control operation step-by-step. Unfortunately, each lifting introduces a new λ-

abstraction to represent its partial continuation. The applications of these partial

continuations, like the application

(λx.Ax) (x + 3)

above, cannot be simplified because the argument is not a value. The relation

between λx.AE[x] and E∗ has been investigated in (Felleisen et al., 1987). This

relation, written ≈p in (Felleisen et al., 1987), turns out to be expressible from βv

and the following two additional rules:

βΩ : (λx.AE[x])M → AE[M ]

Cidem : C (λc. CM) → C (λc. M (λx.Ax))

Both rules are observationally sound (especially, the rule Cidem will be discussed in

Section 2.3). This leads to the following reformulation of Theorem 4.7 in (Felleisen

et al., 1987) (we need Proposition 2.2 as the original result is stated for 7→λC
with

Abort, i.e. with the operational rules CAbort
TE

and AbortTE
):

Theorem 2.9 (Simul. of oper. sem. by weak-head red. for initial theory)

M 7→→λC
V iff M

wh

⊲∗c V ′ for some V ′ such that V ′→→βΩCidemβv
V .

Especially, if V is C-free, M 7→→λC
V iff M

wh

⊲∗c V .

Example 2.10 ( A λC-term and its evaluation and weak-head reduction)

Weak-head reduction of our example term is able to reach the value produced by

the operational semantics. Consider instead the term C (λk. k (λx. k)) z. According

to the operational semantics one has:

C (λk. k (λx. k)) z 7→→λC
λf.A (f z)

With respect to the weak-head reduction for ⊲c one has:

C (λk. k (λx. k)) z
wh
→c CL

C (λc. (λk. k (λx. k)) (λf.A (c (f z)))) ⊲CT

(λc. (λk. k (λx. k)) (λf.A (c (f z)))) (λx.Ax)
wh

⊲∗c
λf.A ((λx.Ax) (f z))
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To obtain the value of the evaluator one proceeds with the additional rules:

λf.A ((λx.Ax) (f z)) → βΩ

λf.A (A (f z)) → Cidem
λf.A ((λ . f z) (λx.Ax)) → βv

λf.A (f z)

Note that
wh
→→c (i.e. without ⊲c) does not reduce the above term to a value.

2.2.4 Weak-Head Standardization

Theorem 3.10 in (Felleisen et al., 1986) gives a general standardization result for

⊲∗c . We give below its restriction to the case of reduction to a value.

Theorem 2.11 (Weak-head standardization for ⊲∗c)

M ⊲∗c V iff M
wh

⊲∗c V ′, where V ′→→cV .

Proof

From the general standardization theorem in (Felleisen et al., 1986) and the as-

sumption that a standard reduction leading to a value strictly extends weak-head

reduction. Note that in general, for this latter assumption to be true it requires

some redesign of the notion of standardization. See the remark below.

Remark 2.12

There is a small flaw in the definition of standard reduction used in (Felleisen

et al., 1986). This flaw actually already occurs in Plotkin’s definition of standard

reduction (Plotkin, 1975) on which (Felleisen et al., 1986) relies. Plotkin’s notion of

standard reduction is not deterministic and it does not satisfy the property that a

standard reduction necessarily extends weak-head reduction. Assume for instance

that M
wh
→c M ′ and N

wh
→c N ′. Then, the two following distinct reduction paths are

standard with respect to Plotkin-style definition of standardization:

(λy.M)N →c (λy.M)N ′ →c (λy.M ′)N ′

(λy.M)N →c (λy.M ′)N →c (λy.M ′)N ′

The first derivation is standard because it reduces first a weak-head redex and

the second is standard by congruence of standardization with respect to applica-

tion. Only the first one extends weak-head reduction. A solution to the problem

is to restrict congruence with respect to application to congruence with respect to

evaluation contexts.

2.3 Felleisen and Hieb’s Reduction Semantics

The revised λC theory in (Felleisen & Hieb, 1992) characterizes the uses of CT
that are valid in any evaluation context. These uses are captured by two new rules

called Cidem and Ctop . This leads to the new context-compatible reduction system

→ presented in Figure 3. We write →→ for its reflexive-transitive closure and = for

its reflexive-symmetric-transitive closure.
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βv : (λx.M) V → M [V/x]
CL : (C M) N → C (λc. M (λf.A (c (f N))))
CR : V (C M) → C (λc. M (λx.A (c (V x))))
Cidem : C (λc. C M) → C (λc. M (λx.Ax))
Ctop : CM → C (λc. M (λx.A (c x)))

Fig. 3. Reduction rules of call-by-value λC (Felleisen and Hieb)

If after some uses of the rules CL and CR, another control operator is reached,

Cidem applies the abort continuation. At any point, it is possible to use Ctop to start

applying M to part of the captured context and then continue lifting the outer C

to accumulate more of the context. As for the operational rules, the right-hand

sides of the reduction rules contain the abort operation. Indeed, the main use of

rule Ctop is to surround each invocation of a continuation with the abort operation.

Ctop turns what looks like a regular function call into a continuation’s invocation.

For example, in the term C (λc. 1 + c 2 + 3) continuation c is invoked using the

normal syntax for function application. However, after Ctop , the application of the

continuation is surrounded by the abort operation:

C (λc. 1 + c 2 + 3)→ C (λk. (λc. 1 + c 2 + 3) (λx.A (k x)))→→C (λk. 1 + A (k 2) + 3)

Example 2.13 (Reduction of C (λc. 1 + c 2 + (1 + 1)) + 3 )

C (λc. 1 + c 2 + (1 + 1)) + 3 → CL
C (λc′. (λc. 1 + c 2 + (1 + 1)) (λx.A (c′ (x + 3)))) → βv

C (λc′. 1 + ((λx.A (c′ (x + 3))) 2) + (1 + 1)) → βv

C (λc′. 1 + A (c′( 2 + 3)) + (1 + 1)) →→

C (λc′.A (c′ (2 + 3))) → Cidem
C (λc′. (λ . c′ (2 + 3)) (λx.Ax)) →→

C (λc′. c′ 5)

Notice that there is no reduction rule that allows one to reduce the above term

to 5, as it happens according to the operational semantics and the original theory.

Applications of rule Ctop does not help:

C (λc′. c′ 5) →→ C (λc.A (c 5))

Remark 2.14

The problem with rule Ctop is that even in the simply-typed case, it makes the

reduction system not strongly normalizable:

C y → C (λc. y (λx.A (c x)))→ C (λc′. (λc. y (λx.A (c x))) (λx.A (c′ x)))→ · · ·

Theorem 2.15

The λC-calculus is confluent.

Proof

This is proved in Theorem 3.14 of (Felleisen & Hieb, 1992) by first showing the
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confluence of the following reduction system (called λC′):

βv : (λx. M)V → M [V/x]

C′L : (C (λk. M))N → C (λc. M [(λf.A (c (f N)))/k])

C′R : V (C (λk. M)) → C (λc. M [λx.A (c (V x))/k])

C′idem : C (λc. C (λk. M)) → C (λc. M [(λx.Ax)/k])

C′top : C (λk. M) → C (λc. M [(λx.A (c x))/k])

Ctop : CM → C (λc. M (λx.A (c x)))

λC′ has the same reflexive-transitive closure of λC, therefore confluence of λC follows.

Remark 2.16

Even though the reduction rules can be applied in any context, they do have a

strategy embedded in them. For example, one cannot reduce the following term

(A 2) (A 5)

to both A 2 and A 5, thus contradicting the confluence result. The above term

reduces to A 2 but cannot reduce to A 5. According to the CR rule, the argument

A 5 can only be lifted after the function part is reduced to a value. This reflects a left-

to-right evaluation strategy. Reduction rules which enforce a right-to-left evaluation

order are as follows:

M (CN) → C (λc. N (λx.A (c (M x))))

(CM)V → C (λc. M (λf.A (c (f V ))))

2.3.1 Weak-Head Reduction

Felleisen and Hieb give a definition of weak-head reduction for the revised the-

ory1. This is not as obvious as for Felleisen-Friedman-Kohlbecker-Duba’s theory

because the removal of CT makes the connection with the operational semantics less

tight. Felleisen and Hieb give the following ad hoc definition that mimics Felleisen-

Friedman-Kohlbecker-Duba weak-head reduction. The definition is in two steps.

First, we say that M C-weakly head reduces to N , written M
C-wh
→ N , in the follow-

ing cases:

- M has the form C (λk. E[P ]), where P is a βv, CL or CR redex that reduces

to Q, and N is C (λk. E[Q])

- M has the form C (λk. C P ) which is a Cidem redex and N is C (λk. P λx.Ax).

Note that the C-weakly head reduction never applies Ctop but it does reduce the

top-level Cidem redex. Moreover, it reduces under a C-abstraction. We write
C-wh
→→

for the reflexive-transitive closure of
C-wh
→ . Then, M is said to iteratively weakly

head reduce to N , written M
wh
→→ N , when either M

wh
→→c N or, for some P , M

wh
→→c

C P →Ctop
C (λk. P λx.A (k x))

C-wh
→→ N , where

wh
→→c is as in Section 2.2.2.

1 Weak-head reduction is called standard reduction function in Felleisen and Hieb (Felleisen &
Hieb, 1992).
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Example 2.17 (Iterative weak-head reduction of C (λc. 1 + c 2 + (1 + 1)) + 3)

We write Ak
x and Ax for the continuations λx.A (k x) and λx.Ax, respectively.

First, one lifts the control operator to the top-level:

C (λc. 1 + c 2 + (1 + 1)) + 3
wh
→c

C (λc′. (λc. 1 + c 2 + (1 + 1)) (λx.A (c′ (x + 3))))

Ctop is applied next:

C (λc′. (λc. 1 + c 2 + (1 + 1)) (λx.A (c′ (x + 3))))→Ctop

C (λk. (λc′. (λc. 1 + c 2 + (1 + 1)) (λx.A (c′ (x + 3))))Ak
x)

From this point on Ctop is disallowed. One continues with the application of either

βv, CL or CR under a C-abstraction:

C (λk. (λc′. (λc. 1 + c 2 + (1 + 1)) (λx.A (c′ (x + 3))))Ak
x)

C-wh
→→

C (λk. C (λr. (λq. (λ .Ak
x (2 + 3)) (λz.A (q (z + (1 + 1))))) (λw.A (r (1 + w)))))

At this point, Cidem is applied:

C (λk. C (λr. (λq. (λ .Ak
x (2 + 3)) (λz.A (q (z + (1 + 1))))) (λw.A (r (1 + w)))))

C-wh
→

C (λk. (λr. (λq. (λ .Ak
x (2 + 3)) (λz.A (q (z + (1 + 1))))) (λw.A (r (1 + w))))Ax)

We continue the weak-head reduction under a C-abstraction:

C (λk. (λr. (λq. (λ .Ak
x (2 + 3)) (λz.A (q (z + (1 + 1))))) (λw.A (r (1 + w))))Ax)

C-wh
→→

C (λk.A (k 5))

One last Cidem application leads to the answer:

C (λk.A (k 5))
C-wh
→

C (λk. (λ . k 5) (λx.Ax))
C-wh
→

C (λk. k 5)

Comparing this reduction with the one in Example 2.4, notice how the first ⊲CT

corresponds to a Ctop step, whereas the other two occurrences correspond to Cidem
steps.

As pointed out earlier, the iterative weak-head reduction does not produce the

value that the evaluator would produce. The problem is that there is no way to get

rid of the outermost C. To that end, we introduce the following notion: M is said

to evaluate to a value V iff

- M
wh
→→ V ; or

- M
wh
→→ C (λk. k (Vk[λx.A (k x)/k])) and V ≡ Vk[λx.Ax/k]; or

- M
wh
→→ C (λk. Vk[λx.A (k x)/k]) and V ≡ Vk[λx.Ax/k].

Example 2.18

We would say that our running example evaluates to 5. We also say that C (λk. k)

evaluates to λx.Ax since:

C (λk. k)→Ctop
C (λk. (λk. k) (λx.A (k x)))

C-wh
→ C (λk. λx.A (k x))

and λx.A (k x) ≡ k [λx.A (k x)/k] and λx.Ax ≡ k [λx.Ax/k].
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The theorem below follows from Theorem 3.9 in (Felleisen & Hieb, 1992). Note

that the mapping of the reduction sequences is one-to-one: the unique Ctop step, if

any, maps to a CT step and all Cidem steps map to CT steps too.

Theorem 2.19 (Corresp. between initial and revised weak-head reduction)

M
wh

⊲∗c V iff M evaluates to V .

Combined with Theorem 2.9, we finally get the following simulation of the oper-

ational semantics:

Corollary 2.20 (Simul. of oper. sem. by weak-head red. for the revised theory)

M 7→→λC
V iff one of the following cases happens:

- M
wh
→→ V ′ where V ′→→βΩCidemβv

V

- M
wh
→→ C (λk. k Vk[λx.A (k x)/k]) where Vk[λx.Ax/k]→→βΩCidemβv

V

- M
wh
→→ C (λk. Vk[λx.A (k x)/k]) where Vk[λx.Ax/k]→→βΩCidemβv

V .

Example 2.21

- Consider the term C (λk. k (λz. k)), one has:

C (λk. k (λz. k)) 7→→λC
(λz. λx. Ax)

Whereas, with respect to the reduction semantics:

C (λk. k (λz. k))
wh
→→ C (λk. k (λz. λx.A (k x))) ≡ C (λk. k ((λz. k)[λx.A (k x)/k]))

and

(λz. λx. Ax) ≡ (λz. k)[λx.Ax/k]

- Consider the term C (λk. k (λx. k)) z of Example 2.10, one has:

C (λk. k (λx. k)) z
wh
→c

C (λc. (λk. k (λx. k)) (λf.A (c (f z)))) →Ctop

C (λc. (λc. (λk. k (λx. k)) (λf.A (c (f z)))) (λx.A (c x)))
C-wh
→→

C (λc. c (λf.A ((λx.A (c x)) (f z))))

Where:

λf.A ((λx.A (c x)) (f z)) ≡ λf.A (c (f z))[λx.A (c x)/c]

and

λf.A (c (f z))[λx.Ax/c] ≡ λf.A ((λx.Ax) (f z))→→βΩCidemβv
λf.A (f z)

That answers are not only values is the return consequence of the removal of

the computational rule CT .

Intermezzo 2.22

To simplify the correspondence between the reduction and operational semantics,

in (Felleisen & Hieb, 1992) two additional rules were proposed:

Celim : C (λk. k M) → M k not free in M

CE : E[CM ] → C (λk. M (λx.A (k E[x])))
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Rule Celim allows one to reduce our example term C (λc. 1 + c 2 + (1 + 1)) + 3 to

the final value 5. The addition of the rule however breaks the confluence of λC:

C (λk. k (x y)) //

����

x y

C (λk. (λx.A (k x)) (x y))

The two diverging computations cannot be brought together. Using CE one can

naturally express that any part of the evaluation context outside an application of

C can be captured and reified as a partial continuation. However, it destroys the

confluence of λC since one cannot complete the following diagram:

C (λk. k)x y // //

����

C (λq. λz.A (q (z x y)))

C (λq. (λz.A ((λw.A(q (w y))) (z x))))

Notice that CTE∗ is derivable in Felleisen and Hieb reduction theory extended with

βΩ.

Weak head reduction
wh
→→ is defined globally without relying on a uniform one-step

notion of weak-head reduction. Especially, when the answer is not a value, a Ctop

step has necessarily to occur in between the (possibly empty)
wh
→→c path and the

(possibly empty)
C-wh
→→ path. The following unique context lemma for Felleisen and

Hieb’s reduction shows when exactly Ctop is needed.

Proposition 2.23 (Unique context lemma for →λC
)

Let M be a term in λC. Exactly one of the following cases happens:

- M has the form V or C (λk. k V ) or C (λk. V ), in which case we say that M

is an answer.

- M has a unique decomposition under the form E[xV ] or C (λk. E[xV ]) (with

x 6= k) or C (E[xV ]) or C x in which case M is said to have its weak-head

reduction stopped.

- M has a unique decomposition under the form E[P ] or C (λk. E[P ]) where P

is a βv, CL or CR redex.

- M has the form C (λk. C P ) which is a Cidem redex.

- M has a unique decomposition under the form C (λk. E[k V ]) with E non

empty in which case only a Ctop applies. No other Ctop step is further needed.

2.3.2 Weak-Head Reduction in an Abortive Context

Felleisen and Hieb’s notion of weak-head reduction has the following weaknesses:

- The notion of final answer is complex.

- The definition of weak-head reduction is not local and requires an explicit Ctop
step which is not strictly necessary from the point of view of head reduction.
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To circumvent these weaknesses, we restate the previous results for terms explic-

itly evaluated in an abortive context, i.e. for expressions of the form AM . Note

that in this case, the weak-head reduction is restricted to a
C-wh
→→ path and it does

not require Ctop .

Example 2.24 (Weak-head reduction in an abortive context)

We will reduce our running term as follows:

A (C (λc. 1 + c 2 + (1 + 1)) + 3)
C-wh
→

A (C (λc′. (λc. 1 + c 2 + (1 + 1)) (λx.A (c′ (x + 3)))))
C-wh
→ Cidem

A ((λc′. (λc. 1 + c 2 + (1 + 1)) (λx.A (c′ (x + 3))))Ax)
C-wh
→→

A 5

We then get a tighter connection with the initial theory of control (CT steps map

one-to-one to Cidem steps) and hence, thanks to Theorem 2.9, a tighter correspon-

dence with the operational semantics.

Theorem 2.25 (Corresp. betw. initial and revised w.-h. red. in abortive context)

M
wh

⊲∗c N iff AM
C-wh
→→ AN .

Corollary 2.26 (Simul. of oper. sem. by weak-head red. in abortive context)

M 7→→λC
V iff AM

C-wh
→→ AV ′ where V ′→→βΩCidemβv

V .

Especially, if V is C-free, M 7→→λC
V iff AM

C-wh
→→ AV .

Remark 2.27

To emphasize the role of reasoning in an abortive context, we show that if M→→A

for A an answer, then AM→→AV for some value V :

AC (λk. k V ) → Cidem
A ((λk. k V ) (λx.Ax)) → βv

A ((λx.Ax)V [λx.Ax/k]) → βv

A (AV [λx.Ax/k]) → Cidem
A ((λ . V [λx.Ax/k]) (λx.Ax)) → βv

A (V [λx.Ax/k])

AC (λk. V ) → Cidem
A ((λk. V )(λx.Ax)) → βv

A (V [λx.Ax/k])

We restate the unique context lemma.

Proposition 2.28 (Unique context lemma for →λC
in abortive context)

Let M be a term in λC. Exactly one of the following cases happens:

- AM has the form AV .
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- AM has a unique decomposition under the form AE[P ] where P is a βv, CL
or CR redex.

- AM has the form A (CN) which is a Cidem redex.

- AM has the form AE[xV ] in which case M is said to have its weak-head

reduction in abortive context stopped.

Intermezzo 2.29

As in Section 2.2.2, one can observe that if AM C-weakly-head reduces to AN

by CL or CR, then AN necessarily C-weakly-head reduces further by a sequence

(possibly empty) of CL or CR, ended by Cidem and by as many βv as the number of

CL or CR. We write→CA
E∗

for such a combination of rules (which generalizes Cidem):

CAE∗ : AE[CM ] →CA
E∗

A (M E∗)

where E∗ is defined as in Section 2.2.2. If moreover M is of the form λk. N then

A (M E∗) reduces further to AN [E∗/k]. This leads to the following variant of

→CA
E∗

:

C
′A
E∗ : AE[C (λk. N)] →C

′A
E∗

AN [E∗/k]

Let C−L and C−R be as in Section 2.2.2 and C−idem be the restriction of Cidem
that applies only when the body of the innermost C is not an abstraction. Writing
C-wh
→ CA

E∗βv
for the union of weak-head CAE∗ and βv, and

C-wh
→ C

′A
E∗C

−

idem
C−

L
C−

R
βv

for the

union of weak-head C
′A
E∗ , C

−
idem , C−L , C−R and βv, we get the following equivalence:

Proposition 2.30

AM
C-wh
→→ AV iff AM

C-wh
→→ CA

E∗βv
AV iff AM

C-wh
→→ C

′A
E∗C

−

idem
C−

L
C−

R
βv
AV .

2.4 The λC-calculus without the Ctop rule: the λC⋆-calculus

As observed previosuly, if one reduces terms of the form AM then rule Ctop is not

needed, its effect is subsumed by the Cidem rule. We let λC⋆ stand for the reduction

theory without rule Ctop .

Theorem 2.31

The λC⋆ -calculus is confluent.

Proof

As pointed out in the proof of confluence for λC (Theorem 2.15), Felleisen and Heib

prove confluence of an equivalent reduction system, the λC′ calculus. In addition,

they also state the confluence of λC′ without the Ctop and C′
top

rules. However, we

cannot rely on this result to show confluence of λC⋆ , since the two reduction systems

are not equivalent. To simulate a CL reduction in λC′ one actually needs the Ctop

rule. Consider the λC⋆ reduction:

(C x) y → C (λc. x λf.A (c (f y)))
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The simulation in λC′ is:

(C x) y → Ctop

(C (λc. x λz.A (c z))) y → C′L
C (λc. x λz.A ((λx.A (c (x y))) z)) → βv

C (λc. x λz.A (A (c (z y)))) → C′idem
C (λc. x λz.A (c (z y)))

We therefore give a direct proof of confluence using van Oostrom’s method of de-

creasing diagrams (See Appendix A).

As pointed out in the appendix, to deal with the duplication caused by the βv

reduction one works with the notion of parallel reduction. There is an interference

between a βv reduction and a CR redex, which as shown below is benign:

(λk. k C (λq. q x))V

CR

��

βv // V C (λq. q x)

CR

��
�

�

�

(λk. C (λc. (λq. q x) (λx.A (c (k x)))))V
βv

//___ C (λc. (λq. q x) (λx.A (c (V x))))

The lifting rules do not interfere with themselves:

C (λk. k C (λq. q x)) y

CR

��

CL // C (λc. (λk. k C (λq. q x)) (λf.A (c (f y))))

CR

��
�

�

�

C (λk. C (λc. (λq. q x) (λx.A (c (k x)))))y
CL

//__________ M

where the common term M is

C (λc. (λk. C (λc. (λq. q x) (λx.A (c (k x))))) (λf.A (c (f y))))

However, the lifting rules interfere with a Cidem reduction:

C (λc. C M) N
Cidem

//

CL

��

C (λc. M λx.Ax)N

CL

��
�

�

�

M2

βv

��
�

�

�

C (λq. (λc. C M) (λf.A (q (f N))))
βv

//___ M1
//______ M3

where M1 is

C (λq. CM [(λf.A (q (f N)))/c])

M2 is

C (λq. (λc. M λx.Ax) (λf.A (q (f N))))

and M3 is

C (λq. M [(λf.A (q (f N)))/c] (λx.Ax))

To solve the problem we take the CL, CR > βv.
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Cidem interferes with itself:

C (λk. C (λq. C M)) //

��

C (λk. C(λq. M λx.Ax))

��
�

�

�

C (λk. (λq.M (λx.Ax)) (λx.Ax))

βv

��
�

�

�

C (λk. (λq. C M) (λx.Ax))
βv

//___ C (λk. C M [(λx.Ax)/q]) //___ C (λk. (M [(λx.Ax)/q]) λx.Ax)

To make the above diagram decreasing we take Cidem > βv.

2.4.1 Weak-Head Standardization in an Abortive Context

The purpose of this section is to prove a weak-head standardization theorem for

the revised notion of control. In (Felleisen & Hieb, 1992) there is a notion of stan-

dardization, which however is non-deterministic. We first recall Felleisen and Hieb’s

results and deduce from it that Ctop is useless for weak-head standardization in an

abortive context. Our own deterministic weak-head standardization theorem comes

next.

Based on (Felleisen & Hieb, 1992), we say that M FH-weakly head reduces to M ′,

written M
FH-wh
→ M ′, if there exists an evaluation context Ed such that M ≡ Ed[N ]

and M ′ ≡ Ed[N ′] for N and N ′ a redex and its contractum, respectively. The

evaluation context Ed is defined as follows:

Ed ::= E | C (λk. E)

Note that the decomposition of an evaluation context and a redex is not unique. In

fact, the term AC (λk. CN) contains four standard redexes:

Ed ≡ � and a Ctop redex

Ed ≡ � and a Cidem redex

Ed ≡ A� and a Ctop redex

Ed ≡ A� and a Cidem redex

Any reduction path can be factorized through a FH-weak-head reduction:

Theorem 2.32 (FH-standardization)

AM→→λC
AV iff AM

FH-wh
→→ λC

AV ′ for some V ′.

Proof

We rely on the standardization theorem (Theorem 3.16) in (Felleisen & Hieb, 1992),

which itself directly relies on Plotkin (Plotkin, 1975) for its proof. Felleisen and

Hieb’s standardization theorem states that M→→λC
N iff M

s
→→ N , where M

s
→→ N

is defined by the following clauses:

- M
FH-wh
→→ N implies M

s
→→ N

- M
s
→→ N and M ′ s

→→ N ′ implies M M ′ s
→→ N M ′ s

→→ N N ′

- M
s
→→ N implies λx.M

s
→→ λx.N and CM

s
→→ CN
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From Felleisen and Hieb’s standardization theorem we obtain AM
FH-wh
→→ λC

AV

iff AM
FH-wh
→→ λC

AN
s
→→ AV ′ s

→→ AV with N
FH-wh
→→ V ′. By definition of

FH-wh
→→ ,

AN
FH-wh
→→ AV ′ hence the result.

Proposition 2.33

If AM→→λC
AV then AM→→λ

C⋆AV ′.

Proof

From the standardization of λC (Theorem 2.32), AM
FH-wh
→→ λC

AV ′. Next, we prove

the following diagram:

AM

λC⋆ $$ $$H

H

H

H

H Ctop

FH-wh // M ′

λC⋆

����
�

�

�

AM ′′

(2)

If Ed is empty, one has:

AM // C (λk. (λ . M)(λx.A (k x)))

βv

��
�

�

�

AM

Since the top-level term is of the form AM , if Ed is non-empty it must be of the

form AE. If E is empty:

A (CM)

Cidem

##

#

)

-

0

3

4

5

6

7

8

:

;

<

@

E

Ctop

FH-wh// A (C (λk. M (λx.A (k x))))

Cidem

��
�

�

�

A ((λk. M (λx.A (k x)))(λx.Ax))

βv

��
�

�

�

A (M (λx.A ((λx.Ax)x)))

βv

��
�

�

�

A (M (λx.A (Ax)))

Cidem,βv

����
�

�

�

A (M (λx.Ax))

Otherwise, let the top-level term be of the form AE[E′[CM ]] where E′ is either
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� N or V N . If E′ is � N we have:

(CM)N

CL

$$

&

-

1

5

6

7

8

:

;

<

=

>

@

A

C

E

H

Ctop

FH-wh // C (λk. M (λx.A (k x)))N

CL

��
�

�

�

C (λr. (λk. M (λx.A (k x))) (λz.A (r (z N))))

βv

��
�

�

�

C (λr. M (λx.A ((λz.A (r (z N)))x)))

βv

��
�

�

�

C (λr. M (λx.A (A (r (xN)))))

Cidem,βv

��
�

�

�

C (λr. M (λx.A (r (xN))))

A similar diagram can be constructed if E′ is V �.

From diagram 2 one concludes AM =λC⋆ AV . The result then follows from

confluence of λC⋆ and the fact that values are stable with respect to λC⋆ reductions.

Note that diagram 2 does not hold if the Ctop reduction is not standard. For

example, with respect to the following reduction:

A (Ω (C M))→ A (Ω (C (λk. M λx.A (k x))))

where Ω stands for a non-terminating computation, one cannot find a common term

N such that A (Ω (C M))→→λ
C⋆ N and A (Ω (C (λk. M λx.A (k x))))→→λ

C⋆ N .

Theorem 2.34 (Weak-head standardization for →→λC
in an abortive context)

AM→→λC
AV iff AM

C-wh
→→ AV ′, where V ′→→λC

V .

Proof

From Proposition 2.33, AM→→λ
C⋆AV ′. We follow the proof technique in (Huet

& Lévy, 1991). Let B be the reduction AM→→λ
C⋆AV ′. First one shows that the

reduction B contracts the descendant of the weak-head redex, say U1, occurring in

AM . Then one constructs the projection of the reduction B with respect to the

U1-reduction, i.e., one closes the diagram below

AM // //

C-wh

��

AV ′

����
�

�

�

AM1
// //___ AV ′′

We denote the reduction AM1→→AV ′′ as B/U1. Since the reduction B/U1 also leads

to an answer, one can proceed by performing the projection (B/U1)/U2, where U2 is

the weak-head redex contracted by the reduction B/U1. As before, also (B/U1)/U2

leads to an answer. To guarantee the termination of such a process one has to show

that at each step the weight associated to each reduction decreases.
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We explain the weight associated to a reduction through an example. To the

following reduction:

A ((λx. (x z) + (x z)) (λx. 2 + 2)) →

A ((λx. (x z) + (x z)) (λx. 4)) →

A ((λx. 4) z + (λx. 4) z) →

A (4 + (λx. 4) z) →

A (4 + 4) →

A 8

we associate the measure 〈1, 1, 1, 1, 1〉. The projection of the above reduction with

respect to the weak-head redex (i.e. the outermost βv redex) is:

A (((λx. 2 + 2) z) + ((λx. 2 + 2) z)) →→

A (((λx. 4) z) + ((λx. 4) z)) ≡

A (((λx. 4) z) + ((λx. 4) z)) →

A (4 + (λx. 4) z) →

A (4 + 4) →

A 8

The weight associated to the above reduction is 〈1, 1, 1, 0, 2〉. In other words, the tu-

ple represents the number of times each redex of the original sequence has been du-

plicated. Using the lexicographic order on tuples we have 〈1, 1, 1, 1, 1〉 > 〈1, 1, 1, 0, 2〉.

Notice how we count the steps from the answer up to the original term, otherwise,

due to duplication of redexes the weight will not decrease. Other than the usual

duplication caused by the βv rule, a duplication in the horizontal line can be caused

by the interference between CL and Cidem , and Cidem and itself, as shown in the

proof of confluence of λC⋆ (Theorem 2.31). This however can be taken care of by

working with C
′A
E∗ , C

−
idem , C−L , C−R and βv, as in Proposition 2.30. The projection of

B with respect to a C−idem , C−L or C−R redex is easy because none of them interfere

with Cidem . The projection of B with respect to a C
′A
E∗ redex is defined as follows.

If B does not start with a weak-head redex, this first redex is projected and the

rest of B is recursively projected with respect to the C
′A
E∗ redex. If B starts with a

weak-head redex then the C
′A
E∗ reduction necessarily starts with the same weak-head

redex (see Proposition 2.28). This redex is removed in B and the projection process

continues with the rest of B and the rest of C
′A
E∗ , i.e. C

′A
E∗ with its weak-head redex

omitted. If this weak-head redex is CL or CR, omitting it in C
′A
E∗ still leaves us with

a (shorter) C
′A
E∗ redex. If this weak-head redex is Cidem then the C

′A
E∗ redex collapses

into a sequence of βv redexes and each of them is recursively removed from B.

2.5 The Impact of Continuations as Regular Functions

In addition to losing strong normalization (see Remark 2.14), treating continuations

as regular functions means that continuations follow the call-by-value discipline:

their arguments must be reduced to values before the actual invocation is performed.

Consider the following λC evaluation:

C (λc. c (2 + 1)) 7→→λC
(λc. c (2 + 1)) (λx.Ax) 7→→λC

(λx.Ax) (2 + 1)
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The next evaluation step is to apply the reified continuation (λx.Ax) to the argu-

ment 2 + 1. However, 2 + 1 must be simplified to a value first which is wasteful.

Indeed, this behavior has a well-known space leak which is demonstrated by the

following example:

loop 0 = 0

loop n = C (λc. c (loop (n - 1)))

When the recursive call to loop (n-1) returns, the continuation c is invoked, which

abandons the entire current stack. So the recursive call to loop takes place on top of

a stack which will never be used. If the recursive call increases the size of the stack

before looping, as is the case here, the result is that the stack grows proportional

to the depth of recursion, as shown below:

loop 3

7→→λC
(λx.Ax) (loop 2)

7→→λC
(λx.A (λx.Ax)x) (loop 1)

7→→λC
(λx.A ((λx.A ((λx.Ax)x))x)) (loop 0)

Requiring that the argument of a continuation be a value forces one to evaluate

the argument in some continuation and then erase this continuation, instead of

the equivalent but more efficient choice of first erasing the continuation and then

evaluating the argument (Ganz et al., 1999). One could imagine treating a contin-

uation invocation differently from a regular function call, allowing one to perform

the invocation even though the argument is not a value. This would avoid the space

leak alluded to above:

loop 3 7→→ (λx.Ax) (loop (3 - 1)) 7→→ A (loop (3 - 1))

Notice how the continuation is invoked instead of reducing the argument. We ad-

dress these issues together with the lack of strong normalization in the context of

the λCtp-calculus, which we introduce in the next section.

Intermezzo 2.35

Matthias Felleisen and his colleagues studied and designed other control operators.

In a historical note starting on page 41, Matthias reviews the story of their discovery.

In here, we briefly explain call/cc and F ; their operational rules are as follows:

E[call/ccM ] 7→ E[M (λx.AE[x])]

E[FM ] 7→ M (λx. E[x])

The rules show that call/cc differs from C in that call/cc duplicates the evalua-

tion context. If the captured continuation is not invoked, control goes back to the

context surrounding the call/cc. For example, with E being the context � + 1,

one has:

call/cc (λc. 4) + 1 7→ E[(λc. 4)(λx.AE[x])] 7→ E[4] 7→ 5

Whereas, if call/cc is replaced with C one has:

C (λc. 4) + 1 7→→ 4

F differs from C in that the invocation of the continuation does not abort the calling
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x, a, v, f ∈ Vars
k, c ∈ KVars

KConsts = { tp }
q ∈ KAtoms ::= k | tp

M, N ∈ Terms ::= x | λx.M | M N | C (λk. J)
V ∈ Values ::= x | λx.M
J ∈ Jumps ::= q M

E ∈ EvCtxt ::= � | E M | V E

Fig. 4. Syntax of λCtp

context. In fact, the body of captured continuation contains E[x] instead of AE[x]

:

F (λc. 1 + c 2 + (1 + 1)) + 3 7→

(λc. 1 + c 2 + (1 + 1)) (λx. x + 3) 7→→

1 + 5 + (1 + 1) 7→→

8

3 A Revised Theory of Control: The λCtp-calculus

The λCtp-calculus was presented in a previous work (Ariola & Herbelin, 2003; Ariola

et al., 2004). It is basically a call-by-value version of Parigot’s λµ-calculus (Parigot,

1992), where µ is renamed into C. It also contains a special constant tp to denote

the top-level continuation. The distinguishing feature of the λCtp calculus is that it

reserves a special treatment for the invocation of a continuation, which we refer to

as a jump.

3.1 Syntax and Operational Semantics

The syntax of λCtp is in Figure 4. The use of C is restricted: the argument is al-

ways a λ-abstraction which binds a continuation variable. Thus, one cannot write

a term such as C (λk. (λx. C x) k). We refer to a term of the form C (λk. J) as a

C-abstraction. The body of a C-abstraction is restricted to a jump. There is a con-

tinuation constant tp which denotes the top-level continuation. For example, one

would write the λC-term C (λ . 5) as C (λ . tp 5), explicitly indicating the return to

the top-level. Variables bound to continuations are distinct from other variables

and can only occur in application position, thus one cannot write a term such

as C (λk. k). Moreover, the invocation of a continuation must be surrounded by a

C-abstraction. Instead of writing (k 2) + 1 one is forced to write C (λ . k 2) + 1.

This means that the abortive nature of continuations, instead of being reflected in

the semantics, is captured in the syntax itself. The C-abstraction surrounding the

invocation of a continuation resembles the use of the ML throw construct (Duba

et al., 1991). To summarize, aborting a computation (i.e., throwing to the top-level

continuation) is written as:

AM ∆
= C (λ . tpM) (Abbrev. 3)
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(x)◦ ∆
= x

(λx.M)◦ ∆
= λx.M◦

(M N)◦ ∆
= M◦ N◦

(CM)◦ ∆
= C (λk. tp (M◦ (λx. Th k x)))

Fig. 5. Translation of λC in λCtp

(x)• ∆
=x

(λx.M)• ∆
= λx. M•

(M N)• ∆
= M• N•

(C (λk. J))• ∆
= C (λk. J•)

tpM• ∆
= M•

k M• ∆
= k M•

Fig. 6. Translation of λCtp in λC

and throwing to a user-defined continuation is written as:

Th k M ∆
= C (λ . k M) (Abbrev. 4)

The operational semantics of programs is given below:

βv : E[(λx. M)V ] 7→λCtp
E[M [V/x]]

CTE
: E[C (λk. k M)] 7→λCtp

E[M [tp E/k]]

CTE

′ : E[C (λk. tp M)] 7→λCtp
M [tp E/k]

Unlike the operational semantics for λC, these rules make use of a new notion of

substitution, called structural substitution, which was first introduced in (Parigot,

1992). The general form of structural substitution is written M [q E/k] (resp. J [q E/k])

and reads as: “replace every jump of the form k N in M (resp. J) with the jump

(q E[N ]) (and recursively in N)”. The substitutions M [tp E/k] and J [tp E/k] are

defined similarly.

The structural substitution M [q E/k] (resp. J [q E/k]) is inductively defined as fol-

lows:

x [q E/k] ≡ x

(λx. M) [q E/k] ≡ λx.(M [q E/k])

(M N) [q E/k] ≡ M [q E/k] N [q E/k]

C (λk. J) [q E/k] ≡ C (λk. J)

C (λk′. J) [q E/k] ≡ C (λk′. J [q E/k]) k′ 6= k

(k M) [q E/k] ≡ q E[M [q E/k]]

(k′ M) [q E/k] ≡ k′ M [q E/k] k′ 6= k

(tp M) [q E/k] ≡ tp M [q E/k]

Note that this notion is not applicable to λC since continuations are not neces-

sarily applied to an argument.

The translation of λC-terms into the λCtp-calculus is given in Figure 5. If E is a

context, its compositional application on each component of the context is written
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βv : (λx.M) V → M [V/x]
CL : C (λk. J) N → C (λk. J k (� N)/k])
CR : V C (λk. J) → C (λk. J [k (V �)/k])
Cidem : q C (λk. J) → J [q �/k]

Fig. 7. Reductions of call-by-value λCtp

E◦. COMMENT by Zena: The above notion of doverlineE is not clear END

Notice how in the C-abstraction case three things are happening:

- the captured continuation is given a name k;

- the implicit jump to the top-level is made explicit;

- the implicit aborting of the context when k is applied is also made explicit.

Based on Abbrev. 1, we have:

(AM)
◦
→βv

AM◦ (5)

The translation from a λCtp-term M to a λC-term is denoted by M• and simply

corresponds to dropping each reference to tp and interpreting each jump as a regular

application. The formal definition is given in Figure 6.

There are two important differences between λC and the set of terms coming

from the translation: First, for terms in the image of the translation, occurrences

of k N are necessarily surrounded by some “C (λk”. Therefore, rule Ctop is not

needed to evaluate terms coming from λCtp. Second, in the image of the translation

each continuation is applied to an argument. This makes the use of structural

substitution possible.

Example 3.1 (The evaluation of our example term)

The evaluation of the λCtp-term corresponding to the λC-term C (λc. 1 + c 2 + (1 +

1)) + 3 is shown below:

(C (λc. 1 + c 2 + (1 + 1)) + 3)◦ ∆
=

C(λk. tp ((λc. 1 + c 2 + (1 + 1)) (λx. Th k x))) + 3 7→→λCtp

((λc. 1 + c 2 + (1 + 1)) (λx. Th k x)) [tp (� + 3)/k] ≡

(λc. 1 + c 2 + (1 + 1)) (λx.A (x + 3)) 7→→λCtp

1 + A ( 2 + 3) + (1 + 1) 7→→λCtp

5

In spite of being defined on structural substitution, the operational semantics

given for λCtp faithfully implements the operational semantics assigned to λC. We

consider here λC with the primitive operator Abort and we let (Abort M)
◦∆
=AM◦.

We have:

Proposition 3.2 (Simulation of λC oper. sem. in λCtp)

M 7→λC
N in λC with primitive abort operator iff M◦ 7→λCtp

N◦ in λCtp.
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Proof

The first clause (β-reduction) of each operational semantics trivially correspond.

The second clause for λCtp does not occur by definition of M◦. Finally, the second

and third clauses for λC map to the third clause in λCtp as shown below:

E[CM ]
◦ ∆

= E◦[C (λk. tp (M◦ (λx. Th k x)))]

7→λC
(M◦ (λx. Th k x))[tp E◦/k]

≡ M◦ (λx.AE◦[x])
∆
= M (λx.Abort E[x])

◦

E[Abort M ]
◦ ∆

= E◦[AM◦]
∆
= E◦[C (λ . tpM◦)]

7→λC
M◦

By Proposition 2.2 and by iteration of the previous proposition, we get:

Proposition 3.3

M 7→→λC
V with or without primitive abort iff M◦ 7→→λCtp

V ◦.

λCtp faithfully simulates λC through ◦ but the converse is not true. Compared to

λC, the structural substitution of λCtp “optimizes” the application to the continua-

tion as it does not require that the argument of the continuation be evaluated first.

Conversely, 7→→λC
“delays” the call to the continuation leading to a possible space

leak as discussed in Section 2.5. By reasoning on non-terminating terms, one can

show the following:

Proposition 3.4 (Non simulation of λCtp oper. sem. in λC)

We may have M 7→λCtp
N without having M• 7→→λC

N•

Proof

Consider M ≡ E[C (λk. k Ω)] where Ω stands for a non-terminating computation

(with no occurrence of k). Then M 7→λCtp
E[Ω] and M• 7→→λC

((λx.A (E[x])) Ω).

Since the evaluation of Ω is non-terminating, ((λx.A (E[x])) Ω) will never reach

E[Ω]. Note that one could even get an irreversible space leak in λC when instead

the evaluation in λCtp is simply looping: take Ω ≡ Y (λx. C (λk. k x)), with Y some

fixpoint operator of λ-calculus (e.g. λf. (λy. (f (y y))λy. (f (y y)))).

However, we have a simulation up to applications of βΩ.

Proposition 3.5 (Simulation of λCtp oper. sem. in λC up to βΩ)

M 7→→λCtp
V iff M• 7→→λC

V ′ where V ′ and V satisfy V ′→→βΩCidemβv
V •

The next remark will allow to simplify the notations used in the proof of Propo-

sition 3.5.

Remark 3.6
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(On the ability to express states in the syntax) One motivation for the λ-calculus

extended with control is to provide a framework to abstractly study the operational

semantics of real languages. With a language like λC, the focus is on terms. Espe-

cially, the notion of state, though crucial in any actual implementation of a language

handling continuations, is not representable in λC. With the explicit introduction

of the top-level continuation tp, the situation changes. Indeed, tp can be identified

with the “bottom of the stack” of stack-based computing devices. Especially, the

operational semantics of λCtp defined above can be equally rewritten as follows:

βv : tp E[(λx. M)V ] 7→λCtp
tp E[M [V/x]]

CTE
: tp E[C (λk. k M)] 7→λCtp

tp E [M [tp E/k]]

CTE

′ : tp E[C (λk. tp M)] 7→λCtp
tp M [tp E/k]

or, more concisely, as:

βv : tpE[(λx. M)V ] 7→λCtp
tpE[M V/x]]

CTE
: tpE[C (λk. J)] 7→λCtp

J [tpcst E/k]]

More generally, the evaluation semantics could be extended to open computations

as follows:

βv : q E[(λx. M)V ] 7→λCtp
q E[M [V/x]]

CTE
: q E[C (λk. J)] 7→λCtp

J [q E/k]]

Proof of Proposition 3.5. The result is of the same kind as Theorem 2.9 (i.e.

Th 4.7 of Felleisen-Friedman-Kohlbecker-Duba (Felleisen et al., 1987)). Instead of

exhibiting the relation characterizing how the two reduction paths differ, as done

in (Felleisen et al., 1987), we reason by nested induction. The only difficulty is to

manage the slow down caused by the replacement of structural substitutions by

substitutions of reified contexts.

We first prove that M 7→→λCtp
V implies M• 7→→λC

V ′→→βΩCidemβv
V •. We reason by

induction on the length of the reduction path. The case of an empty reduction is

trivial so we can assume that M 7→λCtp
M ′ 7→→λCtp

V and by the induction hypoth-

esis, we get M ′• 7→→λC
V ′→→βΩCidemβv

V •. We focus on the reduction M 7→λCtp
M ′.

The case of a βv contraction is easy as it behaves the same in both 7→→λCtp
and 7→→λC

.

Let’s then assume that M is E[C (λk. J)] and M ′ is P [tpE/k] (if J is tpP ) or M ′

is E[P [tp E/k]] (if J is k P ). On the λC side, the reduction is simulated by M• 7→λC

(λk. J•) (λx.AE[x]
•
) 7→λC

J• [λx.AE[x]
•
/k]. If moreover J has the form k W with

W a value, the reduction can progress even further with J• [λx.AE[x]•/k] 7→λC

AE[W ]• [λx.AE[x]•/k] 7→→λC
E[W ]• [λx.AE[x]•/k]. To get a uniform notation,

we let J+ be J if J has not the form k W and E[W ] otherwise. We can then

restate the reduction in λC as follows: M• 7→→λC
J+•

[λx.AE[x]•/k]. To use the

induction hypothesis we need to lift the reduction M ′• 7→→λC
V ′, where M ′• can be

equally seen as J+ [tpE/k]
•
, into some reduction starting from J+•

[λx.AE[x]
•
/k].

To this aim, we show that J+ [tp E/k]
•
7→→λC

V ′ implies J+•
[λx.AE[x]

•
/k] 7→→λC

V ′′• [λx.AE[x]
•
/k] where V ′ is V ′′ [tp E/k]

•
. Since

V ′′• [λx.AE[x]
•
/k]→→βΩCidemβv

V ′′ [tp E/k]
•
≡ V ′
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the value V • will eventually be reached.

The auxiliary result is by induction on the length of the reduction path from

J+ [tpE/k]
•

to V ′. The case of an empty reduction path is trivial. Otherwise

J+ [tpE/k]
•
7→λC

P 7→→λC
V ′. Necessarily, J+ has the form tp E′[C (λk′. J ′)] or

tpE′[(λx. M)N ] and it reduces to some J ′′. Hence P has the form J ′′ [tp E/k]
•

and

the same reduction step occurs in J+•
[λx.AE[x]

•
/k] leading to J ′′• [λx.AE[x]

•
/k].

If J ′′ has not the form k W , the subsidiary induction hypothesis is directly ap-

plicable. Otherwise, we need first to insert a few extra steps to release the con-

text out of its reification: k W • [λx.AE[x]•/k] 7→λC
AE[W ]• [λx.AE[x]•/k] 7→→λC

E[W ]• [λx.AE[x]•/k].

Conversely, we reason on states and show that for J closed, J• 7→→λC
V ′ implies

J 7→→λCtp
tpV for some value V such that V ′→→βΩCidemβv

V •. This is by induction

on the length of the reduction path from J• to V ′. Since J is closed, it has the

form tpM . The difficult case is when M is E[C (λk. J)] in which case J• 7→λC

(λk. J ′•) (λx.AE[x]
•
) 7→λC

J ′•[λx.AE[x]
•
/k] while tpM 7→λCtp

J ′ [tp E/k]. Since

the induction hypothesis only gives J ′[λx.AE[x]/k] 7→→λCtp
tp V with V ′→→βΩCidemβv

V •,

we use a subsidiary induction to show that if J ′ [λx.AE[x]/k] 7→→λCtp
tp V then

J ′ [tp E/k] 7→→λCtp
tp W [tp E/k] for some W such that V is W [λx.AE[x]]. The

only case which does not directly commute is when J ′ is k W ′ in which case

J ′ [λx.AE[x]/k] 7→λCtp
tp (AE[W ′])[λx.AE[x]/k] 7→λCtp

tp E[W ′] [λx.AE[x]/k]

while on the other side we already have J [tp E/k] ≡ tp E[W ′][ tp E/k]. It re-

mains to observe again that W [λx.AE[x]/k]•→→βΩCidemβv
W [tpE/k]• to finally get

V ′→→βΩCidemβv
W [tp E/k]•.

3.2 Reduction Semantics

The reduction semantics is given in Figure 7. Like the original calculus, the rules

CL and CR allow one to lift the control operation step-by-step until it reaches a

point where it can no longer be lifted. When the control operator reaches a jump

to the top-level (rule Cidem with q instantiated with tp), the captured continuation

is the trivial continuation modeled by tp. Otherwise, if the control operator reaches

a regular continuation variable k, the captured continuation becomes k.

3.2.1 Confluence

Remark 3.7

The λCtp reduction rules are overlapping: a CL reduction can destroy a Cidem redex,

as shown below:

C (λk. k C (λq. q x)) y

CL

��

Cidem

// C (λk. k x) y

CL

��
�

�

�

C (λk. k (C (λq. q x) y))
CL

//___ C (λk. k C (λq. q (x y)))
Cidem

//___ C (λk. k (x y))

To complete the above diagram the newly created CL redex has to be reduced,

as also observed by Baba et al. (Baba et al., 2001) in the context of call-by-value
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Parigot’s λµ calculus. This complicates the proof of confluence based on the method

of parallel reductions of Tait and Martin-Löf, since the parallel reduction does not

satisfy the diamond property. The solution in (Baba et al., 2001) is to introduce

the following generalization of Cidem :

CJ
E : q E[C (λk. J)] → J [q E/k]

The new rule allows one to close the above diagram in one step.

Theorem 3.8

λCtp is confluent.

Proof

Follows the same steps as the proof of confluence of call-by-value λµ (Baba et al.,

2001). Since λCtp reductions rules are duplicating and interfering, one considers the

alternative reduction system λCtp. The calculus λCtp allows the reduction of multiple

redexes in one step and contains the generalization of Cidem given in the above

remark (see rule CJ
E). The calculi λCtp and λCtp have the same transitive closure, and

λCtp has the diamond property.

3.2.2 Robustness

The λCtp reduction system can be also extended with the Celim rule which eliminates

a superfluous jump whose target is the current continuation:

Celim : C (λk. k M)→M k not free in M

The counterpart of CE in λCtp is the following rule:

CE : E[C (λk. J ] → C (λk. J [k E/k])

In contrast with λC, CE is derivable from CL and CR in λCtp.

The fact that jumps never occur on the left- or right-hand-side of an application

makes the need for a rule like Ctop useless. As a consequence, no rule artificially

breaks strong normalization (see e.g. (Ariola & Herbelin, 2003; Ariola et al., 2005)

for a proof of strong normalization in the simply-typed case).

The use of structural substitution avoids also the space leak discussed in Section

2.5. We have:

loop 3 7→λCtp
C (λc. c (loop (3 - 1))) 7→λCtp

loop 3 - 1) 7→λCtp
· · ·

3.2.3 Comparison with Felleisen and Hieb’s Reduction System

In λC, weak-head reduction simulates the operational semantics only up to some

use of βΩ, Cidem and βv. Similarly, the operational semantics of λCtp is simulated by

the operational semantics of λC only up to some use of the same rules. The same

kind of discrepancy shows up in the mutual simulation of the λC reduction rules by

λCtp reduction rules.
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First, we need to define an equivalent of βΩ on the λCtp side,

βΩ : (λx.Th k x)M → Th k M .

We denote with =λCtp, βΩ
the convertibility relation induced by the reduction relation

λCtp and the βΩ axiom.

Proposition 3.9

Let M and N be λC-terms. If M =λC
N then M◦ =λCtp, βΩ

N◦. More precisely, if

M →λC
N then there exists P such that M◦→→λCtp

P←←βΩ, βv, Cidem
N◦.

Proof

By cases:

(CL)

((CM)N)◦ ∆
= C (λk.tp M◦ (λx. Th k x)))N◦

→CL
C (λk. tp M◦ (λx. Th k (xN◦)))

←Cidem
C (λk. tp M◦ (λx.A (Th k (xN◦))))

←βΩ
C (λk.tp (M◦ (λx.A ((λz.Th k z) (xN◦)))))

←βv
C (λk. tp ((λc. M◦ (λx.A (c (xN◦)))) (λz.Th k z)))

By (5) ←βv
C (λk.tp ((λc.M◦ (λx.(A (c (xN)))

◦
)) (λz. Th k z)))

∆
= C (λc. M (λx.A (c (xN))))

◦

(CR)

(V (CM))
◦ ∆

= V ◦ C (λk.tp M◦ (λx. Th k x))

→CR
C (λk. tp (M◦ (λx. Th k (V ◦ x))))

←Cidem
C (λk.tp (M◦ (λx. A (Th k (V ◦ x)))))

←βΩ
C (λk.tp (M◦ (λx. A ((λz.Th k z) (V ◦ x)))))

←βv
C (λk. tp ((λc. M◦ (λx.A (c (V ◦ x)))) (λz. Th k z)))

By (5) ←βv
C (λk. tp ((λc. M◦ (λx. (A (c (V x)))◦)) (λz. Th k z)))

∆
= C (λc. M (λx.A (c (V x))))◦

(Cidem)

C (λc. CM)
◦ ∆

= C (λk. tp (λc. C (λk′. tp (M◦ λx. Th k′ x))) (λx. Th k x))

→βv
C (λk. tp C (λk′. tpM◦ [λx. Th k x/c] (λx. Th k′ x)))

→Cidem
C (λk. tp M◦ [λx. Th k x/c] (λx.Ax))

←βv
C (λk. tp ((λc. M◦ (λx.Ax)) (λx. Th k x)))

By (5) ←βv
C (λk. tp ((λc. M◦ (λx. (Ax)◦)) (λx. Th k x)))

∆
= C (λc. M (λx.Ax))◦

(Ctop)

(CM)
◦ ∆

= C (λk. tp (M◦ λx. Th k x))

←Cidem
C (λk. tp (M◦ λx.A (Th k x)))

←←βv
C (λk. tp ((λc. (M◦ λx.A (c x))) (λx. Th k x)))

By (5) ←βv
C (λk. tp ((λc. (M◦ λx. (A (c x))◦)) (λx. Th k x)))

∆
= C (λc. M (λx.A (c x)))◦
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Conversely, to simulate a λCtp reduction in λC, we need βΩ.

Proposition 3.10

Let M and N be closed λCtp-terms. If M →λCtp
N then we have that M•→→λ

C⋆ , βΩ
N•.

Proof

In the following, M [E/k] and M [AE/k] stand for structural substitution: each ap-

plication of k to an argument N in M is replaced by E [N [E/k]] andAE [N [AE/k]],

respectively. We remark that M [AE/k] reduces to M [E/k] by Cidem and βv.

We proceed by cases:

(CL)

(C (λk. J)M)
• ∆

= C (λk. J•)M•

→CL
C (λk. (λk. J•) (λf.A (k (f M•))))

→βv
C (λk. J• [λf.A (k (f M•))/k])

→→βΩ
C (λk. J• [A (k (� M))/k])

→→Cidem , βv
C (λk. J• [k (� M)/k])

∆
= C (λk. J [k (� M)/k])

•

(CR) As the previous case.

(Cidem) We have two cases:

C (λk. tp C (λk′. J))• ∆
= C (λk. C (λk′. J•))

→→Cidem , βv
C (λk. J• [λx.Ax/k′])

→→βΩ
C (λk. J• [A�/k′])

→→Cidem , βv
C (λk. J• [�/k′])

∆
= C (λk. J [tp �/k′])

•

C (λk. k′′ C (λk′. J))
• ∆

= C (λk. k′′ C (λk′. J•))

→→CR
C (λk. C (λk′. J• [λx.A (k′ (k′′ x))/k′]))

→→Cidem , βv
C (λk. J• [λx.A ((λy.A y) (k′′ x))/k′])

→→βΩ
C (λk. J• [λx.A (A (k′′ x))/k′])

→→Cidem , βv
C (λk. J• [λx.A (k′′

�)/k′])

→→βΩ
C (λk. J• [A (k′′

�)/k′])

→→Cidem , βv
C (λk. J• [k′′

�/k′])
∆
= C (λk. J [k′′

�/k′])
•

Remark incidentally that the composition of • and ◦ is not the identity in general.

Proposition 3.11

For all M in λCtp, M•◦→→βΩCidem
M . For all M in λC, M◦•→→Ctop

M .

Due to the previous results and the use of βΩ in the simulation, we cannot prove

that in general λCtp and λC simulate each other. For instance, C (λk. k C (λk′. k′ x))

is convertible to C (λk. k x) in λCtp but is not in λC. This observation has been noted

in (Ong & Stewart, 1997) and (de Groote, 1994) who have pointed out that the
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relation between the λC-calculus and the call-by-value λµ-calculus does not preserve

convertibility, even though such a correspondence of the convertibility relation holds

in the case of call-by-name.

In order to relate λC and λCtp, we focus on the observational behavior of the

evaluation relation: a program (i.e., a term without free variables) in λC produces

an answer if and only if the evaluation of the related program in λCtp produces an

answer. As shown in Example 2.27 and Section 2.3.2, the three distinct types of

answers can be simplified if the program is reduced in a context representing the

top-level. We thus formulate correctness as follows:

Given a closed λC-term M , AM→→λC
AV iff tp M◦→→λCtp

tpV ′ .

Before considering the general case, we focus on the weak-head reduction.

3.3 Weak-Head Reduction of Terms

Like λC, the reduction rules of λCtp are not complete with respect to the operational

semantics when applied to terms. In particular, they cannot simulate the following

evaluations:

C (λk. k M) 7→ M [tp �/k]

C (λ . tp M) 7→ M

For example, the reduction rules cannot reduce the program

C (λk. k (λx. Th k (λy. y)))

to λx.A (λy. y). Like the λC-calculus, the λCtp-calculus can produce three kinds of

answers: V , C (λk. k V ) or C (λk. tp V ). The reason is that a computation involving

control is dependent on its evaluation context. While the operational semantics im-

plicitly works in an empty evaluation context, the reduction semantics cannot grant

this assumption. The following proposition, reminiscent of Felleisen and Friedman’s

unique context lemma (Felleisen & Friedman, 1986), summarizes these observations.

Proposition 3.12 (Unique context lemma for →λCtp
on terms)

Let M be a term in λCtp. Exactly one of the following cases happens:

- M has the form V , C (λk. k V ) or C (λk. tpcst V ). In this case M is called an

answer.

- M has one of the following form:

- E[P ] where P is a βv, CL or CR redex,

- C (λk. q E[P ]) where P is a βv, CL or CR redex,

- C (λk. J) where J is a Cidem redex.

In this case, M is called weakly head reducible. If the contraction of the given

redex in M gives N we write M
wh
→ N and we say that M weakly head reduces

to N .

- M has the form E[xV ], C (λk. q E[xV ]) or C (λk. k′ V ) (k′ 6= k). In this case

M is said to have its weak-head reduction stopped. In the first two cases, it is

stopped by x while in the third case it is stopped by k′.
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Especially, a weak-head redex, if it exists, is unique.

We write M
wh
→→ M ′, for the reflexive-transitive closure of

wh
→. We also say that

M iteratively weakly head reduces to M ′ for
wh
→.

3.4 Weak-Head Reduction of Jumps

Fortunately, λCtp has the ability to express a fixed top-level evaluation context: it is

the purpose of the constant tp. The operational semantics can then be simulated in

λCtp by explicitly reasoning on expressions of the form tp M rather than on terms.

In fact, thanks to the notion of jumps, the λCtp calculus has the ability to lift in the

calculus the notion of state that is often considered as a purely implementational

issue in abstract evaluation machines.

The following proposition characterizes the possible forms of a jump.

Proposition 3.13 (Unique context lemma for →λCtp
on jumps)

Let J be a jump in λCtp. Exactly one of the following cases happens:

- J has the form tp V

- J has one of the following form:

- q E[P ] where P is a βv, CL or CR redex,

- q C (λk. J) which is a Cidem redex.

In this case, J is said weakly head reducible. If the contraction of the given

redex in J gives J ′ we write J
wh
→ J ′ and we say that J weakly head reduces

to J ′.

- J has the form q E[xV ] or k V . In this case J is said to have its weak-head

reduction stopped. In the first case, it is stopped by x while in the second case,

it is stopped by k.

Especially, a weak-head redex, if it exists, is unique.

We write J
wh
→→ J ′, for the reflexive-transitive closure of

wh
→. We also say that J

iteratively weakly head reduces to J ′. Remark that when M
wh
→ N by executing a

Cidem redex and q M
wh
→ q′ N by also executing a Cidem redex, the two Cidem redexes

are not the same redex. Take for example, q C (λk. k C (λk. J))
wh
→ q C (λk. J) and

C (λk. k C (λk. J))
wh
→ C (λk. J). Remark also that q M

wh
→ q′ M ′ iff either q ≡ q′ and

M
wh
→βvCLCR

M ′, or M
wh
→βvCLCR

C (λk.q′′ N)
wh
→ C (λk.q′′′ N ′) with (q′′′ N ′)[q/k] ≡

q′ M ′. Otherwise said, the weak-head reduction of q M and M only differs in the

possible insertion of Cidem at the time the weak-head reduction of M reaches a term

starting with C.

Comparing Proposition 3.12 to Proposition 3.13 makes it clear that reasoning

on jumps rather than on terms allows for a uniform characterization of answers.

For instance, reasoning on jumps also makes rule Celim derivable. Indeed, as soon

as it is ensured that any expression C (λk. k M) occurs in a context of the form

q E[C (λk.k M)], its reduction to q E[M ], when k does not occur free in M , is a

consequence of the other rules.
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From now on, we focus on jumps. Thanks to the derivability of CE in λCtp, the

following correspondence between the operational and standard reduction semantics

of λCtp can be easily checked:

Proposition 3.14 (Simul. of oper. sem. by weak-head red. in λCtp)

M 7→→λCtp
V iff tp M

wh
→→ tpV .

Combined with Proposition 3.3 together, we get:

Corollary 3.15 (Soundness of w.-h. red. in λCtp for the oper. sem. of λC)

M 7→→λC
V in λC iff tp M◦ wh

→→ tp V ◦ in λCtp.

3.5 Weak-Head Standardization

Theorem 3.16 (Weak-head standardization in λCtp)

tpM→→λCtp
tpV iff tp M

wh
→→ tp V ′, where V→→λCtp

V ′.

Proof

One direction is obvious. For the other direction we proceed as in the proof of The-

orem 2.34, we follow the proof technique in (Huet & Lévy, 1991). A complication

in constructing the projection of a reduction is the interference between CL and

Cidem . As shown in Remark 3.7, the projection of the Cidem reduction with respect

to the weak-head CL redex consists of the reduction of a newly created redex. To

avoid this problem, one replaces each occurrence of Cidem in the reduction from

tpM→→λCtp
tpV by its generalization CJ

E , so that the projection preserves the struc-

ture of the original reduction. Conversely, at the time of projecting a non trivial

weak-head CJ
E redex along a weak-head CR or CL, one simply removes the leading

CR or CL redex and still stays with a (shorter) weak-head CJ
E redex.

4 Connecting λC and λCtp

4.1 Observational Equivalence of λC and λCtp

Figure 8 summarizes the equivalences shown in the paper. Especially, putting to-

gether Theorems 2.9 and 2.25 and Propositions 3.3, 3.5, and 3.14, we get:

Corollary 4.1 (Correspondence between λC and λCtp weak-head reduction)

M
wh

⊲∗c V iff AM
C-wh
→→ AV iff tp M◦ wh

→→ tpV ′◦ where V→→βΩCidemβv
V ′.

M
wh

⊲∗c V iff AM• C-wh
→→ AV iff tp M

wh
→→ tpV ′ where V→→βΩCidemβv

V ′•.

Thanks to the standardization theorems, Theorems 2.34 and 3.16, we can then

extend the correspondence to arbitrary reduction paths:

Corollary 4.2 (Observational correspondence between λC and λCtp)

Let M be a closed λC-term. The evaluation of M converges iff the evaluation of M◦

converges:

M ⊲∗c V iff AM→→λC
AV iff tp M◦→→λCtp

tpV ′ .
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AM
C-wh
→→ AV

KS

Th 2.25 [FH]
��

ksProp 2.34 +3 AM→→λC
AV (λC revised)

M 7→→λC
V

KS

Prop 3.3 & 3.5
��

ks Th 2.9

[FFKD]
+3 M

wh

⊲∗
c V ks Th 2.11

[FFKD]
+3 M ⊲∗

c V (λC initial)

M 7→→λCtp
V ksProp 3.14 +3 tpM

wh
→→ tpV ks Th 3.16 +3 tpM→→λCtp

tpV (λCtp)

“

operational
semantics

” “

weak-head
reduction

” “

reduction
semantics

”

In each statement, V is a priori a different value (see the exact statement of the Proposi-
tions and Theorems for details). In the statements about λC, M is a same λC-term while
it is a λCtp-term in the statements about λCtp. The equivalences hold both when λC is
interpreted in λCtp through ◦ and when λCtp is interpreted in λC though •.

Fig. 8. Summary of observational equivalences

Similarly, let M be a closed λCtp-term. The evaluation of M converges iff the eval-

uation of M• converges:

M• ⊲∗c V iff AM•→→λC
AV iff tpM→→λCtp

tpV ′ .

4.2 Distinguishing Features of the Different Operational and Reduction

Semantics

Figure 9 summarizes how the different operational semantics and weak-head reduc-

tion semantics of λC and λCtp behave. Since βv is simulated the same in all cases,

we focus on CL, CR, Cidem and ⊲c. To allow a full comparison, we consider terms

that are in the image of •. The figure shows how some closed term E[C (λk.M)]

eventually captures the surrounding context of C. The less efficient semantics is the

reduction semantics of λC, then comes the operational semantics of λC and its em-

bedding in λCtp when C is interpreted as an operator of reification of the context as

a regular function. Finally, structural substitution is the most efficient. The results

differ up to βΩβvCidem contractions in the occurrences of the substituends. Note

that all these contractions are non trivial unless E is empty in which case E∗ is

λx.Ax which is the same as λx.AE[x].

4.3 Simulation of Structural Substitution in λC

The mapping ◦ interprets C as an operator that reifies its context into a regular

function. Henceforth, it does not take advantage, as shown by Propositions 3.2 and
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λC w-h. initial red. (
wh
⊲c )

λC w-h. revised red. in abort. context (
C-wh
→→ )

)

M [E∗/k]

βΩ, βv, Cidem

����

0

B

B

B

B

B

@

increm-
ental

subst. of
reified

pieces of
context

1

C

C

C

C

C

A

λC op. sem. ( 7→→λC
)

λCtp op. sem. via ◦ (based on 7→→λCtp
)

λCtp w-h. red. on states via ◦ (based on
wh
→→)

9

=

;

M [λx. AE[x]/k]

βΩ, βv, Cidem

����

 

subst. of
reified
context

!

λCtp op. sem. via •−1 (based on 7→→λCtp
)

λCtp w-h. red. on states via •−1 (based on
wh
→→)

)

M [E/k]

 

structural
substitu-

tion

!

Fig. 9. How E[C (λk.M)] eventually reduces for the different op. sem. and w.-h.
reductions and how the respective results relates.

3.5, of the efficiency of structural substitution. We would get a better efficiency by

directly interpreting λC into the image of λCtp by •. Let’s first focus on closed terms.

On closed terms, • is injective and the characteristic feature of its image in λC

is that C is necessarily applied to an abstraction of the form λk.M , and every

such k bound in the scope of C occurs applied under the form k N . Moreover,

such a subterm k N has to be itself the immediate subterm of some “C (λk′”. Let’s

adopt the further convention that for every such subterm k N surrounded by some

“C (λk′”, this “C (λk′” is omitted if k′ does not occur free in k N . Otherwise said,

if some k N is surrounded by an A, this A is left implicit. Let’s call this restriction

λS0
C

.

Now focusing on open terms, we observe that • is not injective. The reason

is that free variables, whether they are usual variables or continuation variables,

are interpreted in the same and unique class of variables in λC. To remedy this non

injectivity, we modify λS0
C

so to introduce a distinct class of continuations variables.

Let’s call λS
C

the resulting language. It is defined by the following grammar:

x ∈ Vars

k ∈ KVars

M, N ∈ Terms ::= x | λx. M |M N | k M | C (λk.M)

If we restrict λS
C

to the fragment with no free continuation variable, we fall back

on a calculus which is essentially λS0
C

: the distinction between usual variables and

continuation variables becomes unnecessary because it is enough to look at whether

the variable is bound by some λ or by some C to know if it is an ordinary variable or

a continuation variable. Otherwise said, λS0
C

can be equivalently seen as a restriction

of λC (where no distinction between usual and continuation variables is done) and

as a restriction of λS
C
.
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Let † be the following interpretation of λS
C

into λCtp:

x† = x

(λx. M)
†

= λx. M †

(M N)
†

= M † N † if M not some k

(k M)
†

= Th k M †

C (λk.M)
†

= C (λk. k N †) if M has the form k N

C (λk. M)
†

= C (λk. tp M †) otherwise

This interpretation is not surjective (k N and A (k N) have the same image) but

this is sufficient to be able to transfer back structural reduction from λCtp to λS
C
.

The inherited reduction system for λS
C

is the following:

βv : (λx. M)V → M V/x]

CL : C (λk. M)N → C (λk. M [k (� N)/k])

CR : V C (λk. M) → C (λk. M [k (V �)/k])

AL : (k M)N → k M

AR : V (k M) → k M

Cidem : k′ C (λk. M) → M [k′/k]

Cidem
′ : C (λk′. C (λk. M)) → C (λk′. M [A�/k])

Aidem : k′ (k.M) → k M

Aidem
′ : A (k M) → k M

Proposition 4.3 (Simulation of λCtp within λC)

For all M and N in λS
C
, M → N in λS

C
implies M †→→N † in λCtp. For all M and N

in λCtp, M → N in λCtp implies M• → N• in λS
C
. Moreover, M•† ≡ M in λCtp and

M †•→→M in λS
C
. Since λS0

C
is a subset of λC, this provides with a mutual simulation

from this subset of λC with λCtp when the latter is restricted to the terms with no

free continuation variable.

Compiling λC into λS0
C

is now simple: each occurrence of k that is bound by some

C (λk. M) and that is not applied in M is replaced by λx.A (k x) while each subterm

CM where M is not of the form λk. N is replaced by C (λk. (M (λx.A (k x)))) (these

transformations are known to be operationally sound). Of course, occurrences of C

changed that way again behave as operators of functional reification of contexts.

5 Conclusion

We investigated the differences between the historical calculus of control λC and

a calculus called λCtp that is derived from the interpretation of classical proofs as

programs. Both calculi manipulate continuations but the former reifies them as

regular functions and uses ordinary substitution to propagate continuations while

the latter manipulates them directly as evaluation contexts and uses a specific

notion of structural substitution.

We showed that the reduction systems of both calculi, though cannot simulate
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each other, are observationally equivalent. We showed that control based on struc-

tural substitution provides smoother results than control based on context reifica-

tion:

- Operational semantics and weak-head reduction match in the presence of

structural substitution while they differ when contexts are incrementally rei-

fied.

- Reification of contexts expands the size of context, leading to possible space

leaks, while structural substitution does not.

Thanks to the presence of a notation for the continuation of the top-level evalu-

ation, the syntax of λCtp has a finer structure than the syntax of λC. In particular,

the constructions of λC itself can be finely explained from the more elementary

components of λCtp.

We showed that making explicit the continuation of the top-level evaluation pro-

vides a way to uniformly manage the different kinds of answers that control theory

reduction traditionally requires. It also clarifies the role of rules like Ctop in λC or

Celim in the calculi inspired by λµ-calculus: these rules become operationally useless

as soon as the continuation of the evaluation is made formal.

We incidentally proved weak-head standardization and confluence for λCtp and

improved on previous results for λC. Especially, we provided a deterministic weak-

head standardization for the revised theory of λC, we repaired a “deterministic

leak” in Plotkin-style notion of standardization and we showed the confluence of

the revised theory when Ctop is omitted.

Scalability

We believe that our study would apply in a similar way to the call-by-name variant

of λC in which β replaces βv and CR is removed. The main difference will be that

βΩ is a particular case of β in call-by-name.

We believe that our study would also directly apply to the extension of λC

with a delimiter of continuation # (see the historical note) and the operational

rules C[E[λx. M)V ]] → C[E[M [V/x]]], C[E[#V ]] → C[E[V ]] and C[E[CM ]]] →

C[M λx.AE[x]] with C being � or C[E[#�]]. The correspondence would then be

with the λC#tp calculus in (Ariola et al., 2004; Ariola et al., 2007).

Typing

A system of simple types for λCtp, inherited from (Parigot, 1992), has been given

in (Ariola & Herbelin, 2003; Ariola et al., 2005). A peculiarity of this typing system

is that the type of tp is a parameter of the system. Based on the definition of (CM)
◦
,

this typing system leads to naively type C, seen as a stand-alone constant of λC,

with type ((A→ B)→ T )→ A where T is the type of tp and C is polymorphic over

A and B. This is quite constraining as this forces k to be used, in a given instance of

C (λk.M), only in contexts of type B. A more natural approach would be to force B

to be the top-level type T and hence to have C of type ((A→ T )→ T )→ A. With
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this new constraint, each call to k would typically be surrounded by some A (itself

of derived type T → A for any A) to be used in a contexts of arbitrary type. The

system we obtain is strictly equivalent to, e.g., Murthy’s parametric typing system

⊢T (Murthy, 1992) where Murthy’s rule abort1 is replaced by a dumb coercion from

T to ⊥. Indeed, Murthy’s typing system, with this modification, can be seen as

a system where the top-level type T and ⊥ are interchangeable and C can freely

have type ((A → T ) → T ) → A or ((A → ⊥) → ⊥) → A or any of the two other

combination involving T and ⊥.

A more interesting typing system is obtained by renouncing to the identification

between ⊥ and the top-level type T and by rather literally seeing ⊥ as an empty

type equipped with the rule Γ ⊢T M : ⊥ implies Γ ⊢T M : B. Then constraining

B to be ⊥ in the naive type of C, we get C of type ((A → ⊥) → T ) → A. By

this approach, we obtain that calls to k in C (λk.M) get usable in contexts of any

type, consistently with the abortive nature of these calls. For instance, a term like

C (λk. if "foo" = k 3 then 1 else 2) would be typable without needing to surround

the call to k with A.

In any case, we believe that typing C with type ((A → ⊥) → ⊥) → A as in

(Griffin, 1990) is overly restrictive for λC though the typing we obtain remains

consistent with the observation that this is a relevant type for C when the top-level

type is itself ⊥. Alternatively, assigning the polymorphic type ((A→ ⊥)→ ⊥)→ A

to C, as in Griffin, forces us to reason in a top-level context of the form C (λk. k �)

where k, of type T → ⊥, has the role of an explicit top-level constant and tp is not

needed any longer.

Implementation

One could ask which of λC or λCtp simulates at best real implementations of control

operators. If we consider the call/cc operator that, among others, Scheme and

SML provide, the common practice is to implement it as an operator that first

duplicates the stack then pushes on the stack a closure that restores this stack.

Formally, this corresponds to the rule

E[call/ccM ] 7→ E[M (λx.AE[x])]

where E schematizes the stack and λx.AE[x] schematizes the restoring operator.

If one try to model call/cc in λC or λCtp one observes that only λCtp is able to

simulate the fact that the stack is kept in place by call/cc. If one takes the

standard encoding of call/cc as λx. C (λk. k (xk)), the derived operational rule is

E[call/ccM ] 7→→λC
(λx.AE[x]) (M (λx.AE[x]))

and the discussion on the inefficiency of such an implementation applies (see Sec-

tion 2.5). No other encoding of call/cc in λC can give the correct operational

semantics because structural substitution is required and λC doesn’t know about

structural substitution.
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To the contrary, λCtp supports the following encoding:

call/cc ∆
= C (λk. k (M (λx. Th k x)))

AM ∆
= Th tp M

that exactly simulates the above operational rule of call/cc:

E[call/ccM ] 7→→λCtp
E[M (λx. Th tp E[x])] ≡ E[M (λx.AE[x])] .

In the absence of exception handling, we can in principle do more by implementing

the calls to the continuation as special calls instead of regular call-by-value function

calls. Consider for example the case of SML in which jumps are made explicit by

calls to the operator throw. If throw k M were implemented as a function that

first restores the stack encoded in its first argument before starting evaluating the

second argument, one would directly obtain the efficiency of structural substitution.

In short, in the absence of exceptions, we could safely assign to throw the following

alternative semantics:

E′[throw (λx.AE[x]) M ] 7→ E[M ] .

COMMENT by Zena: do you that style for throw? END

Of course, if the evaluation of M later throws to another continuation,

the restoring is a useless one, but in any case, it avoids keeping in place a

stack that is definitely known to be useless. In the presence of exceptions

though, this is not a conservative optimization as exceptions jump to the

dynamically-closest handler (which, according to the semantics of SML,

would become the one in E instead of the one in E′).

Related Work

The purpose of this paper was to compare the reduction semantics

of the λC and λCtp calculi which are both variants of usual λ-calculus

with control. We deliberately do not study the connection with the λµ̃-

calculus (Curien & Herbelin, 2000) which is another promisingly “well-

behaved” calculus for call-by-value control.

A comparison between a simply-typed call-by-name variant of λC and

a variant of simply-typed Parigot’s λµ-calculus similar to our calculus λS
C

has been done by (de Groote, 1994). An interesting aspect of this work

is that A is removed from CL as it is the case in the lifting rule for F

(see the historical note below). Using the lifting rules of F in the setting

of λC, can indeed be seen as an improvement of λC since an occurrence

of A is eventually anyway inserted by Cidem . However, the simulation of

Cidem is only marginally treated by de Groote and it strongly depends

on the presence of types. From our point of view, this is because this

study missed the notion of top-level continuation tp and that the only

way to implicitly talk about it was to talk about terms of type ⊥: in the

simply-typed proof-as-program setting, ⊥ is the type of tp (see (Ariola

& Herbelin, 2003; Ariola et al., 2005)).
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A Historical Note:

On the Indiana Control Operators

by Matthias Felleisen

The births of C, F , and prompt took a long time. Indeed, prompt—the

control delimiter—was “born” twice for radically different reasons.

The story begins with Daniel Friedman’s famous “511” course. In the

fall of 1984, a group of enthusiastic PhD students (including Bruce Duba,

Eugene Kohlbecker, and myself) enrolled in this graduate seminar on

programming language research. At the time, Dan Friedman focused

on “coordinate computing,” now known as concurrent and distributed

computing (Filman & Friedman, 1984). Every week he asked us to im-

plement a Scheme simulation of some coordinate computing language.

In the process, we began to program with continuations because every

simulation depended on implementing some form of threads.

After a few of those projects, I realized that capturing only a part of

the current continuation would significantly simplify the programs and

provide some protection of the kernel. In other words, while call/cc

grabbed continuations between the current expression and the prompt,

most simulations needed only a part of this continuation. Since I associ-

ated the activity of truncating the continuation with the visible Scheme

prompt, I dubbed this new construct “first-class prompt.” I used the

term “first-class” because I wanted to place the prompt anywhere in

my program, not just at the top of the main expression. My first crude

implementation used Scheme 84’s macros and engines (Haynes & Fried-

man, 1984).

During the following summer (1985), I worked at the MCC in Austin,

and Dan Friedman came to visit me there in August. When he arrived,

he was excited about a discovery he had made on the flight to Austin. He

had understood that continuations and call/cc could be characterized

by two equations:

f (call/cc g) = call/cc (λk. (g (λx.k (f x))))

(call/cc g) f = call/cc (λk. (g (λx.k (x f))))

He liked the symmetry but he didn’t know where to go from here. After

I returned to Indiana later that month, Bruce, Eugene, Dan and I stud-

ied these equations in more depth. We realized that the call/cc of the

equations wasn’t the call/cc of Scheme and that the equations didn’t

capture call/cc’s behavior properly. So we dubbed this control operator

C (after trying out some other TEX symbols) and continued our search

of meaning in these equations.

By the end of the fall semester, I had understood how these equations

fit in with the rest of Plotkin’s framework on the λv-calculus (Plotkin,
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1975), and we all had figured out the exact relationship between C and

call/cc:

call/cc ∆
= λf. C (λk. k (f k))

C ∆
= λf. call/cc (λk. A (f k))

A e ∆
= C (λ . e)

The result appeared as a conference paper (Felleisen et al., 1986) and

in a cleaned-up journal paper (Felleisen et al., 1987). To establish the va-

lidity of the control calculus, I had to prove a Church-Rosser lemma and

a Standard Reduction lemma. After some experimenting I discovered

that a minor modification of the above equation worked much better:

f (C g) = C (λk. g (λx. A (k (f x))))

(C g) f = C (λk. g (λx. A (k (x f))))

A major blemish remained, however. We could not eliminate the special

top-level rule from our calculus:

C f = f (λx. Ax) when C f is the entire program

Physicists would call this a “major asymmetry,” and I hated it. A minor

blemish was that we had two different versions of these pairs of equations:

one for calculating and one for meta-theorems.

Right after we had submitted the journal paper in 1986, I re-discovered

my nearly forgotten prompt. More concretely, I realized that the con-

dition “. . . is the entire program” in the above equation and “grabbing

the current continuation of the program” (up to the prompt) posed the

same problem. If I turned the “top” of the program into a separate,

algebraically free construction, the calculus would become an ordinary

calculus of control:

# (C f) = # (f (λx. Ax))

A quick check suggested that the revised theory would hold up, but now

I had become curious as to whether I could simplify the calculus even

more.

My search quickly showed that I could simplify the proofs of the meta-

theorems even more if I threw out abort (A) entirely. I knew I could

remove A, because it was just an abbreviation for C anyway. Of course,

just like Dan Friedman’s original equations didn’t specify call/cc, these

revised equations didn’t specify C anymore. The next letter in the cal-

ligraphic alphabet that we hadn’t used yet was F and so I arrived at

these equations:

e (F g) = F (λk. g (λx. k (e x)))

(F g) e = F (λk. g (λx. k (x e)))

# (F e) = # (e (λx. x))
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and furthermore,

C ∆
= λg. F (λk. g (λx. A (k x)))

A e ∆
= F (λ . e)

Once I saw this set of equations, it was crystal clear that this was the

calculus: it had simple equations, the equations described the calcula-

tions, they posed no problem for the meta-theorems, and the system

introduced a powerful new control construct.

Naturally, we (that is, Bruce Duba and I) began to look for other con-

trol constructs that could be “derived” from calculi. Our most important

insight was that we had a design choice concerning the behavior of F

when it encountered a prompt:

- it could do what it does now

- it could eliminate the prompt, and

- it could absorb it.

We called these choices F , F+, and F− because F+ could simulate F and

F could simulate F−. For all three, I sketched out proofs of the major

meta-theorems, and they all worked out fine. At that point, I tried to

use pragmatics to decide which of the three was important. I mostly

used my examples from Dan Friedman’s 1984 course, and those quickly

showed that F was all I needed. That settled the question. When I finally

submitted a paper to POPL 1988, I used F and prompt to introduce

control delimiters into the programming language literature (Felleisen,

1988).

Note: Around the time I left Indiana, I invented my last control opera-

tor(s): G. The standard reduction equation for this family of operators

has this shape:

# E[Genc f ] = # f (enc{E})

where enc is a meta-function that maps evaluation contexts to constructs

inside the programming language. I never developed a theory or a prac-

tical framework for G, but perhaps someone else will.
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A Decreasing diagrams

The problem with showing commutativity by means of a tiling argu-

ment is that one needs to show that the tiling process terminates. van

Oostrom (van Oostrom, 1994) defined the notion of decreasing diagrams

and showed that tiling with decreasing diagrams terminates. Decreasing

diagrams are defined in the setting of labeled abstract reduction systems.

Definition A.1

An abstract rewriting system (ARS) is a structure (A,−→) consisting of a set A and

a binary relation on A. A labeled ARS is a structure 〈A, (−→
l
)l∈L〉, where L is a set

of labels and for each l ∈ L, (A,−→
l
) is an ARS.

To define the notion of decreasing diagram we consider labeled dia-

grams and a well-founded order on the labels. The key to the notion is a

measure |.| defined on strings of labels. This measure is easily computed

by following these steps:

- Write down the string

- Erase every element in the string, such that a larger element occurs

at an earlier position.

- Gather the remaining elements in a multiset.

For example, using the natural numbers with their natural order, we

have

|121232| = |12 232| = |12 23 | = {{1, 2, 2, 3}} .

Definition A.2

Given a set of labels A and a well-founded order < on A, let |.| be the measure

from strings of labels to multisets of labels defined by:

|a1 . . . an| = {{ai| there is no j < i with aj > ai}} .
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Then, the diagram

a

��

b //
a1��

an��
b1

//
bm

//

is decreasing with respect to ≤ if {{a, b}} ≥ |ab1 . . . bm| and {{a, b}} ≥ |ba1 . . . an|.

We can use the notion of decreasing diagrams to prove commutativity

as follows. First, we prove the existence of enough diagrams to start a

tiling process, then we check if all tiles are decreasing. By the following

theorem we can then conclude commutativity.

Theorem A.3

Given a labeled ARS 〈A, (−→
l
)l∈Lα∪Lβ

〉 and a well-founded order on Lα∪Lβ . Define

−−→
α

= ∪a∈Lα
−→
a

and −−→
β

= ∪b∈Lβ
−→
b

. If for every a0, a1, a2 ∈ A, lα ∈ Lα, lβ ∈ Lβ, such

that a0 −−→lα a1 and a0 −−→lβ
a2 there exists a decreasing diagram

a0

lα

��

lβ // a2

α

����
�

�

�

a1
β

// //___

then we have that −−→
α

and −−→
β

are commutative.

A special case arises when we take the sets Lα and Lβ to be equal to the

set of all labels L, then confluence of →L can be concluded. A common

case that decreasing diagrams cannot handle is duplication in both the

horizontal and vertical direction, e.g. there is no possible labeling that

makes the following diagrams all decreasing:

��

//

��
�

�

�

�

�

//_____

��

//

��
�

�

�

�

�

//__ //__

��

//

��
�

�

��
�

�

//_____

It is often possible to solve this problem by introducing a form of par-

allel reduction or complete development in, for example, the horizontal

direction. With respect to parallel reduction the three diagrams should

then collapse into the single diagram

��

‖ //

����
�

�

�

�

�

‖ //_____
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which can be made decreasing by ordering the parallel reduction larger

than the other reductions.


