
Classical call-by-need sequent calculi:

The unity of semantic artifacts

Zena M. Ariola1 & Paul Downen1 & Hugo Herbelin2 & Keiko Nakata3 &
Alexis Saurin2

1 University of Oregon, ariola@cs.uoregon.edu pdownen@cs.uoregon.edu
2 Laboratoire PPS, équipe πr2, CNRS, INRIA & Université Paris Diderot

{herbelin,saurin}@pps.jussieu.fr
3 Institute of Cybernetics, Tallinn University keiko@cs.ioc.ee

Abstract. We systematically derive a classical call-by-need sequent cal-
culus, which does not require an unbounded search for the standard re-
dex, by using the unity of semantic artifacts proposed by Danvy et al.

The calculus serves as an intermediate step toward the generation of an
environment-based abstract machine. The resulting abstract machine is
context-free, so that each step is parametric in all but one component.
The context-free machine elegantly leads to an environment-based CPS
transformation. This transformation is observationally di�erent from a
natural classical extension of the transformation of Okasaki et al., due to
duplication of un-evaluated bindings. We further demonstrate the use-
fulness of a systematic approach by deriving an abstract machine and
CPS for an alternative classical call-by-need calculus.

Keywords: call-by-need, lazy evaluation, duality of computation, sequent cal-
culus, λµ-calculus, classical logic, control

1 Introduction

Lazy languages such as Haskell use the call-by-need evaluation model. It has been
formalized by Ariola et al. [1] and Maraist et al. [6], and while their equational
theory di�ers, the calculi are observationally equivalent. Both Garcia et al. [5]
and Danvy et al. [4] present abstract machines that implement the standard call-
by-need reduction. The two machines are observationally the same�however,
they di�er substantially in their construction. Danvy et al. derive an abstract
machine systematically from the standard reduction using correctness-preserving
program transformations, and thus the resulting abstract machine is correct by
construction.

Classical call-by-need, an extension of call-by-need with control operators,
was introduced by Ariola et al. [2]. Unlike minimal call-by-need (without control
operators), the classical extension does not preserve observational equivalence
with call-by-name. Example 1 below returns 99 when evaluated with classical
call-by-need, and instead returns 0 using call-by-name.

Example 1.

let a = callcc(fn k ⇒ (true, fn x ⇒ throw k x)); x = fst a; q = snd a
in if x then q (false , fn x ⇒ 0) else 99

In a language with control, determining which computations must be shared

becomes an interesting question. In a term of the form (where I stands for the
identity function) let a = I I in let b = callcc(fn k ⇒ e) in e', even though
continuation k might be called more than once, it seems reasonable to share the
computation of I I across each call to k. In general, it makes sense to share
bound computations captured outside a control e�ect among each invocation
of the continuation. Now consider a term in which bound computations are
captured inside a control e�ect.

Example 2.

let a = callcc(fn k ⇒ (I , fn x ⇒ throw k x)); f = fst a; q = snd a
in f q (I , I)

Are the results of f and q shared among di�erent invocations of continuation k?
It turns out that the answer is not so simple. And even more surprisingly, the
most natural way to answer the question depends on the starting point.

One way is to start with the sequent calculus, a calculus in which control is
already explicit. By de�ning a call-by-need standardization in the most natural
way, all bindings inside of a control e�ect are not shared between separate invo-
cations. So according to the lazy value sequent calculus of Ariola et al. [2], f and
q are recomputed each time k is called. Therefore, the above program produces
(I , I) as a result.

Another approach is to begin with a continuation-passing style (CPS) trans-
formation of minimal call-by-need. Since a program written in CPS form has its
control �ow explicitly rei�ed as a function, it is easy to extend the translation
with control operators. By extending the CPS transformation of Okasaki et al.
[7] with control operators, which translates minimal call-by-need into a call-by-
value calculus with assignment, sharing inside of a control e�ect is much more
complicated. When a control e�ect is forced, only the chain of forced bindings
leading to that e�ect are not shared. According to this de�nition, the computa-
tions bound to a and f will not be shared, whereas the computation bound to q
is shared across every call to k. Using this semantics, the above program instead
loops forever.

The goal of this paper is to clearly illustrate these two di�erent semantics
by deriving an abstract machine and CPS transform for classical call-by-need
using the unity of semantic artifacts, as �rst described by Danvy [3]. For a given
notion of semantics, there is a calculus, abstract machine, and CPS transform
that correspond exactly with one another. Therefore, from any one of the three
semantic artifacts, the others may be systematically derived. We begin with a
small variant of Ariola et al.'s [2] lazy value sequent calculus (Section 2) and
derive the machine that it corresponds to (Section 3). This machine can be rein-
terpreted as a calculus that is interesting in its own right�the multicut calculus.

The multicut calculus does for call-by-need what the sequent calculus does for
call-by-value and call-by-name: the standard reduction is always at the top of
the program so that there is no unbounded search for the next reduction to be
performed. However, the machine generated in Section 3 is not satisfying for
two reasons. First, the machine ine�ciently uses a substitution operation during
evaluation, which must traverse the entire sub-program in a single step. Second,
the evaluation strategy is not context-free. Given a term and its context, both
must be analyzed together in order for the machine to take a step. In other
words, the meaning of a term depends on its context, and vice versa. The so-
lution to both of these problems is the same: store all terms and contexts in
the environment instead of using an early substitution strategy. By applying
this change to the multicut calculus we get a context-free, environment-based
abstract machine (Section 4). Using the context-free machine in Section 4, we
generate an environment-based CPS transform for classical call-by-need (Sec-
tion 5). In order to see the impact of the approach in de�ning a semantics for
classical call-by-need, we extend Okasaki et al.'s [7] CPS transform with control
in a natural way, and illustrate the di�erence. To further re�ect on the unity
of semantic artifacts, we apply the same technique to derive the abstract ma-
chine and associated CPS transformation for an alternative classical call-by-need
calculus, in which variables are not values (Section 6).4

2 Call-by-need sequent calculus (λlv)

We present a small revision of the classical call-by-need sequent calculus, λlv ,
introduced in [2]. The subscript lv stands for � lazy value�, indicating the fact
that focus goes to the term (or producer) in a lazy way. The syntax of λlv is
de�ned as follows:

c ∈ Command ::= 〈t||e〉 e ∈ Context ::= α || F || µ̃x.c
t, u ∈ Term ::= V || µα.c E ∈ CoV alue ::= α || F || µ̃x.C[〈x||F 〉]
V ∈ V alue ::= x || λx.t F ∈ ForcingContext ::= α || t · E

A command connects a producer and a consumer together. A co-value E is an
irreducible context, which is either a co-variable, a forcing context, or a term-
binding context µ̃x.c in which the variable x has been forced. A forcing context,
either a co-constant α or an application t·E, drives computation forward, eagerly
demanding a value. The form of application is restricted so that application
only occurs inside of an irreducible context. For example, t · µ̃x.〈x||α〉 is a valid
application, whereas t · µ̃x.〈y||α〉 is not�it forces the evaluation of its term even
though its value is not needed. The set of contexts e does not directly contain all
co-values, since an occurrence of a strict µ̃ is ambiguous with the general case.

4 The full paper is available online at http://ix.cs.uoregon.edu/~pdownen/

classical-need-artifacts.html, including an appendix with supporting proofs
and derivations, as well as code that implements the derivation presented here.

http://ix.cs.uoregon.edu/~pdownen/classical-need-artifacts.html
http://ix.cs.uoregon.edu/~pdownen/classical-need-artifacts.html

The C in µ̃x.C[〈x||F 〉] is a meta-context, which gives the standard reduction
for a command. In a call-by-need sequent calculus, the next reduction is not
necessarily at the top of the command, but may be buried under several bound
computations µα.c. It is de�ned as:C ∈MetaContext ::= � || 〈µα.c||µ̃x.C〉.

λlv reduction, written as→lv , denotes the compatible closure of the following
rules, called β, µ̃v and µl, respectively:

5

〈λx.t||u · E〉 →lv 〈u||µ̃x.〈t||E〉〉 〈V ||µ̃x.c〉 →lv c[V/x] 〈µα.c||E〉 →lv c[E/α]

For all reductions in the paper, →→ is the re�exive transitive closure, →→+ is the
transitive closure, and →n/m is a reduction sequence of n or m steps.

The β rule binds x to the argument and then proceeds with the evaluation
of t in context E. Once the consumer is a co-value, focus goes to the producer.
So for example, one has: 〈µβ.〈I||I · β〉||v1 · α〉 →lv 〈I||I · v1 · α〉. Notice that con-
text switching also occurs in a command of the form 〈µβ.〈I||I · β〉||µ̃x.〈x||F 〉〉.
Unlike the call-by-need calculus of Ariola and Felleisen [1], values are substi-
tuted eagerly, and variables are values. In the command 〈µα.c||µ̃x.〈x||µ̃z.〈z||F 〉〉〉,
variable x is not demanded, and substituting x for z leads to the command
〈µα.c||µ̃x.〈x||F 〉〉 which now demands x.

The calculus presented here guarantees that a co-value is closed with respect
to substitution. In the original calculus [2], µ̃x.〈x||α〉 is a co-value. However,
if for example the context µ̃z.〈z||δ〉 is substituted for α, as in the reduction:
〈µα.〈µα.t||µ̃x.〈x||α〉〉||µ̃z.〈z||δ〉〉 →lv 〈µα.t||µ̃x.〈x||µ̃z.〈z||δ〉〉〉, then it is no longer
a co-value since variable x is not needed��rst x must be substituted for z. The
solution followed here is to restrict the notion of co-value until we have more
information on the rest of the computation. Thus, a context of the form µ̃x.〈x||α〉
is not a co-value, because we do not know whether or not x will be forced. An
alternative solution is to restrict the notion of a value to λ-abstraction only and
abandoning the distinction between a co-value and a forcing context as described
in Section 6.

The notion of weak head standard reduction is de�ned as C[c] 7→lv C[c′]
if c →lv c

′. A weak head normal form (whnf) for λlv is either C[〈λx.t||α〉] or
C[〈z||F 〉] where z is free in C. The standardization is complete with respect to
reduction: if c→→lv c

′ and c′ is a whnf, then there exists a whnf c′′ such that
c 7→→lv c

′′ and c′′→→lv c.

3 A multicut sequent calculus (λ[lvτ])

We now explore a calculus, which we call the multicut calculus, which keeps
the standard redex at the top of a command and avoids searching through the
meta-context for work to be done. We design the calculus in three steps. First,

5 For simplicity, we do not discuss the issue of explicit hygiene in this paper. For
a discussion on maintaining hygiene in a call-by-need calculus, see [4], and for an
explicitly hygienic implementation of the semantics presented here, see the supple-
mental code.

we introduce a syntactic notation for forced let-expressions (µ̃x.C[〈x||F 〉]) and
the associated reduction rules. Second, we apply Danvy's [4] technique to sys-
tematically derive the associated abstract machine. Third, the multicut calculus
comes out as a generalization of the abstract machine.

We modify the syntax of λlv by writing forced lets as µ̃[x].〈x||F 〉τ so that the
forced command and its surrounding environment of bindings are kept separate,
giving us λ[lv]. The separation between the command and its environment makes
it explicit that the command is brought to the top of a forced let�there is no
unbounded search for the command that was forced. The syntax of λ[lv] is:

e ∈ Context ::= E || µ̃x.c F ∈ ForcingContext ::= α || t · E
E ∈ CoV alue ::= α || F || µ̃[x].〈x||F 〉τ τ ∈ Environment ::= ε || [x = µα.c]τ

where c, t and V are de�ned as before. The relationship between the syntax of
λ[lv] and λlv includes:

µ̃[x].〈x||F 〉τ ≈ µ̃x.τ [〈x||F 〉]
� = ε

〈µα.c||µ̃x.C〉 = C[x = µα.c]

ε = �

τ [x = µα.c] = 〈µα.c||µ̃x.τ〉

where all other identical syntactic forms are related.
The λ[lv] reduction system, in addition to the previous β, µ̃v and µl rules,

contains two new reductions:

(µ̃[]) 〈µα.c||µ̃x.C[〈x||F 〉]〉 →[lv] 〈µα.c||µ̃[x].〈x||F 〉C〉
(µ̃[v]) 〈V ||µ̃[x].〈x||F 〉τ〉 →[lv] (τ [〈V ||F 〉])[V/x]

Note that in a term of the form 〈µα.c||µ̃x.〈µβ.c′||µ̃z.〈x||F 〉〉〉, there is no context
switch, meaning we do not substitute for α. First, the fact that x is needed is
recorded via the rule µ̃[] leading to: 〈µα.c||µ̃[x].〈x||F 〉[x = µβ.c′]〉. Afterward, the
µl rule applies, as in λlv .

The weak head standard reduction of λ[lv] is de�ned as before. It simulates

the weak head standardization of λlv .

Theorem 1. Given c1 from λ[lv] and c2 from λlv such that c1 ≈ c2:
- If c2 7→lv c

′
2 then there exists c′1 such that c1 7→1/2

[lv] c
′
1 and c′1 ≈ c′2;

- If c1 7→[lv] c
′
1 then there exists c′2 such that c2 7→0/1

lv c′2 and c′1 ≈ c′2
We use Danvy's technique for inter-deriving semantic artifacts in order to

generate an abstract machine for λ[lv]. The �rst step in deriving an abstract
machine from its calculus is to represent the operational semantics for that cal-
culus as a small-step interpreter. To begin, we capture the standardization of
reduction in a search function that, given a program, identi�es the next redex to
contract. By CPS transforming and then defunctionalizing the search function,
the call stack of the searching procedure is rei�ed as a data structure, which cor-
responds with the inside-out (meta-)context de�ning the standardization. The

defunctionalized search function is extended into a decomposition function that
splits a program into a meta-context and redex. Decomposition, contraction, and
recomposition together de�ne an iterative small-step interpreter and an opera-
tional semantics for the calculus. The next step in the process is to transform
the iterative small-step interpreter into a mutually recursive big-step interpreter,
which represents the abstract machine. First, the recomposition-decomposition
step is deforested into a refocusing step. Rather than take the contracted redex
and recompose it into the full program, only to immediately decompose that pro-
gram again, the search for the next redex starts from the current sub-program in
focus via refocusing. Next, the iterative interpreter is fused to form a mutually
recursive, tail-call interpreter. To �nish the process, we compress corridor transi-
tions, eliminate dead code, �atten program states, and convert the meta-context
into a sequence of frames. The resulting big-step interpreter de�nes the abstract
machine for the calculus. Applying this technique to the λ[lv]-calculus results in
the following abstract machine (a state of the abstract machine is a command
paired with an environment τ):

〈λx.t||u · E〉τ [lv] 〈u||µ̃x.〈t||E〉〉τ
〈µα.c1||µ̃x.c2〉τ [lv] c2[x = µα.c1]τ

〈µα.c||E〉τ [lv] (c[E/α])τ

〈V ||µ̃x.c〉τ [lv] (c[V/x])τ

〈V ||µ̃[x].〈x||F 〉τ ′〉τ [lv] 〈V ||F [V/x]〉(τ ′[V/x])τ
〈x||F 〉τ ′[x = µα.c]τ [lv] 〈µα.c||µ̃[x].〈x||F 〉τ ′〉τ

Since the abstract machine was derived from the standardization of λ[lv]
through correctness-preserving transformations, the two correspond directly.

Theorem 2. Given a λ[lv] command c,

- If c 7→[lv] c
′ where c = C[c1] and τ = C, then there exists c′1, τ

′ such that

c1τ
+
[lv] c

′
1τ
′ and τ ′[c′1] = c′.

- If cτ [lv] c
′τ ′ then τ [c] 7→0/1

[lv] τ
′[c′].

We generalize the abstract machine for λ[lv] into a variant of the original cal-

culus, which we call λ[lvτ]. The λ[lvτ]-calculus can express call-by-need reduction
without the use of a meta-context. Each command is coupled with an environ-
ment of unevaluated computations, bringing the standard redex back to the top
of the command. The syntax of λ[lvτ] contains the new syntactic category of
Closures (ranged over the meta-variable l) and is de�ned as:

l ::= cτ t ::= V || µα.l e ::= E || µ̃x.l F ::= α || t · E
c ::= 〈t||e〉 V ::= x || λx.t E ::= α || F || µ̃[x].〈x||F 〉τ τ ::= ε || [x = µα.l]τ

Reductions in λ[lvτ] are generalizations of the steps in the abstract machine

for λ[lv], with the ability to apply reductions anywhere in a closure.

(β) 〈λx.t||u · E〉τ →[lvτ] 〈u||µ̃x.〈t||E〉ε〉τ
(µ̃τ) 〈µα.l||µ̃x.cτ ′〉τ →[lvτ] cτ

′[x = µα.l]τ

(µl) 〈µα.l||E〉τ →[lvτ] l[E/α]τ

(µ̃v) 〈V ||µ̃x.l〉τ →[lvτ] l[V/x]τ

(µ̃[v]) 〈V ||µ̃[x].l〉τ →[lvτ] l[V/x]τ

(µ̃[]) 〈x||F 〉τ ′[x = µα.l]τ →[lvτ] 〈µα.l||µ̃[x].〈x||F 〉τ ′〉τ

Note that lτ , for l = cτ ′, is de�ned as cτ1 where τ1 is the concatenation of τ ′

and τ .

Proposition 1. λ[lvτ] is con�uent.

We trivially have a weak head standard reduction for λ[lvτ] in which closures
are reduced in the empty meta-context: l 7→[lvτ] l

′ if l →[lvτ] l
′. A whnf for

λ[lvτ] is either 〈λx.t||α〉τ or 〈z||F 〉τ where z is free in τ . The standardization of

λ[lvτ] operates in lock-step with the abstract machine for λ[lv], and so it is also
complete with respect to reduction, where closures and commands are related
by cτ ≈ τ [c] and environments are related if they bind the same variables in the
same order to related terms.

Theorem 3. Given c1, τ1 from λ[lvτ] and c2, τ2 from λ[lv] such that c1 ≈ c2 and

τ1 ≈ τ2:
- If c1τ1 7→lvτ l

′
1τ
′
1 then there exists c′2, τ

′
2 such that c2τ2 [lv] c

′
2τ
′
2, l
′
1 ≈ c′2,

and τ ′1 ≈ τ ′2 .

- If c2τ2 [lv] c
′
2τ
′
2 then there exists l′1, τ

′
1 such that c1τ1 7→lvτ l

′
1τ
′
1, l
′
1 ≈ c′2,

and τ ′1 ≈ τ ′2.

Remark 1. Using a special syntactic form to remember that a variable is needed
makes the connection to the �nal abstract machine and continuation-passing
style transformation more direct. However, if one is interested in the multicut per
se then the calculus can be simpli�ed by abandoning the special syntax for forced
lets and performing a context switch when a co-variable and a forcing context F
is encountered. We call the resulting calculus λlvτ�its reduction theory contains
β, µ̃v, and µ̃τ . The µl and µ̃[] rules are replaced with:

〈µα.l||F 〉τ →lvτ l[F/α]τ 〈µα.l||β〉τ →lvτ l[β/α]τ

〈x||F 〉τ ′[x = µα.l]τ →lvτ l[µ̃x.〈x||F 〉τ ′/α]τ

A context switch would now require two steps:

〈µα.l||µ̃x.〈x||F 〉τ ′〉τ →lvτ 〈x||F 〉τ ′[x = µα.l]τ →lvτ l[µ̃[x].〈x||F 〉τ ′/α]τ

To illustrate the usefulness of a multicut calculus (either λlvτ or λ[lvτ]) we
show that Example 2 terminates and produces (I, I) as a result, where the
reductions do not need an unbounded search for the standard redex.

〈µα.〈(I, λx.µ .〈x||α〉)||α〉||µ̃a.〈µβ.〈a||fst · β〉||µ̃f.〈µδ.〈a||snd · δ〉||µ̃q.〈f ||q · (I, I) · tp〉〉〉〉
7→→ 〈f ||q · (I, I) · tp〉[q = µδ.〈a||snd · δ〉][f = µβ.〈a||fst · β〉][a = µα.〈(I, λx.µ .〈x||α〉)||α〉]
7→→ 〈(I, λx.µ .〈x||α〉)||α〉 whereα = µ̃[a].〈a||fst · µ̃[f].〈f ||q · (I, I) · tp〉[q = µδ.〈a||snd · δ〉]〉
7→→ 〈q||(I, I) · tp〉[q = µδ.〈(I, λx.µ .〈x||α〉)||snd · δ〉]
7→→ 〈(I, I)||α〉 whereα = µ̃[a].〈a||fst · µ̃[f].〈f ||q · (I, I) · tp〉[q = µδ.〈a||snd · δ〉]〉
7→→ 〈q||(I, I) · tp〉[q = µδ.〈(I, I)||snd · δ〉]
7→→ 〈(I, I)||tp〉

Notice that the second time α is reduced, q starts fresh from its initial un-
evaluated computation and can see the change in a.

4 Environment-based abstract machine (λ[lvτ∗])

In order to construct a more e�cient abstract machine, we need to avoid per-
forming the costly substitution operation. To this end, we modify λ[lvτ] so that

all substitutions are instead stored in the environment τ , giving λ[lvτ∗]:

l ::= cτ t ::= V || µα.l e ::= E || µ̃x.l F ::= α || u · E
c ::= 〈t||e〉 V ::= x || λx.t E ::= α || F || µ̃[x].〈x||F 〉τ τ ::= ε || [x = t]τ || [α = E]τ

The modi�ed reductions for λ[lvτ∗] are:

(β) 〈λx.t||u · E〉 →[lvτ∗] 〈u||µ̃x.〈t||E〉ε〉
(µ̃τ) 〈t||µ̃x.cτ ′〉τ →[lvτ∗] cτ

′[x = t]τ

(µl) 〈µα.cτ ′||E〉τ →[lvτ∗] cτ
′[α = E]τ

(µ̃[v]) 〈V ||µ̃[x].〈x||F 〉τ ′〉τ →[lvτ∗] 〈V ||F 〉τ ′[x = V]τ

(µ̃[]) 〈x||F 〉τ ′[x = t]τ →[lvτ∗] 〈t||µ̃[x].〈x||F 〉τ ′〉τ
(τα) 〈V ||α〉τ ′[α = E]τ →[lvτ∗] 〈V ||E〉τ ′[α = E]τ

The standard reduction of λ[lvτ∗] is performed in the empty meta-context, as in

λ[lvτ]. Closures in λ[lvτ∗] relate to closures in λ[lvτ] by performing substitution
on values and co-values stored in the environment.

l[α = E] ≈ l[E/α] l[x = V] ≈ l[V/x] l[x = µα.c] ≈ l[x = µα.c]

Theorem 4. Given a λlvτ∗ closure l1 and a λ[lvτ] closure l2 such that l1 ≈ l2:
- If l2 7→[lvτ] l

′
2 then l1 7→→+

[lvτ∗] l
′
1.

- If l1 7→[lvτ∗] l
′
1 then there exists l′′1 , l

′
2 such that l2 7→0/1

[lvτ] l
′
2 and l′1 7→

0/1
[lvτ∗] l

′′
1

and l′′1 ≈ l′2.

c [lv∗] ceε

〈t||µ̃x.c〉eτ [lv∗] ce[x = t]τ

〈t||E〉eτ [lv∗] 〈t||E〉tτ

〈µα.c||E〉tτ [lv∗] ce[α = E]τ

〈V ||E〉tτ [lv∗] 〈V ||E〉Eτ

〈V ||α〉Eτ ′[α = E]τ [lv∗] 〈V ||E〉Eτ ′[α = E]τ

〈V ||µ̃[x].〈x||F 〉τ ′〉Eτ [lv∗] 〈V ||F 〉V τ ′[x = V]τ

〈V ||F 〉Eτ [lv∗] 〈V ||F 〉V τ

〈x||F 〉V τ ′[x = t]τ [lv∗] 〈t||µ̃[x].〈x||F 〉τ ′〉tτ
〈λx.t||F 〉V τ [lv∗] 〈λx.t||F 〉F

〈λx.t||u · E〉F τ [lv∗] 〈u||µ̃x.〈t||E〉〉eτ

Fig. 1. Abstract machine for the classical call-by-need sequent calculus λ[lvτ∗].

The standardization of λ[lvτ∗] gives rise to the following abstract machine.

〈t||µ̃x.c〉τ [lv∗] c[x = t]τ

〈µα.c||E〉τ [lv∗] c[α = E]τ

〈V ||α〉τ ′[α = E]τ [lv∗] 〈V ||E〉τ ′[α = E]τ

〈V ||µ̃[x].〈x||F 〉τ ′〉τ [lv∗] 〈V ||F 〉τ ′[x = V]τ

〈x||F 〉τ ′[x = t]τ [lv∗] 〈t||µ̃[x].〈x||F 〉τ ′〉τ
〈λx.t||u · E〉τ [lv∗] 〈u||µ̃x.〈t||E〉〉τ

Theorem 5. Given c1, τ1 from λlvτ∗ and c2, τ2 from λ[lvτ] such that c1 ≈ c2
and t1 ≈ t2:

- If c1τ1 7→[lvτ∗] l
′
1τ
′
1 then there exists c′2τ

′
2 such that c2τ2 [lv∗] c

′
2τ
′
2, l1 ≈ c′2

and τ ′1 ≈ τ ′2.
- If c2τ2 [lv∗] c

′
2τ
′
2 then there exists l′1, τ

′
1 such that c1τ1 7→[lvτ∗] l

′
1τ
′
1, l
′
1 ≈ c′2,

and τ ′1 ≈ τ ′2.

Unlike the abstract machine for λ[lv], the above abstract machine is context-
free, since at each step a decision can be made by examining either the term
or the context in isolation. To make this structure more apparent, we divide
the machine into a number of context-free phases in Figure 1. Each phase only
analyzes one component of the command, the �active� term or context, and is

J〈t||e〉Kc = JeKe JtKt

Jµ̃x.cKe t = λτ.JcKc ([x = t]τ)

JEKe t = t JEKE

Jµα.cKt E = JcKc[E/α]
JV Kt E = E JV KV

JαKE V = α V

Jµ̃[x].〈x||F 〉τ ′KE V = λτ.Jτ ′Kτ V JF KF ([x = (λE.E V)]τ)

JF KE V = V JF KF

JxKV F = λτ.τ(x) F

Jλx.tKV F = F (λu.λE.λτ.JtKt E ([x = u]τ))

JαKF v = α v

Ju · EKF v = v JuKt JEKE

JεKτ V F = λτ.V F τ

Jτ ′[x = t]Kτ V F = λτ.Jτ ′Kτ V F ([x = JtKt]τ)
Jτ ′[α = E]Kτ V F = λτ.(Jτ ′Kτ V F) [JEKE/α]τ

(τ ′[x = t]τ)(x) = λF.t (λV.λτ.V F (τ ′[x = λE.E V]τ)) τ

Fig. 2. Continuation and environment passing style transform for λ[lvτ∗].

parametric in the other �passive� component. In essence, for each phase of the
machine, either the term or the context is fully in control and independent,
regardless of what the other half happens to be.

5 Environment-based CPS (λ[lvτ∗])

Having an abstract machine in context-free form is good for more than just aes-
thetic reasons. Having both the term and context behave independently of each
other makes the machine amendable to conversion into a nice CPS transform.
Since a CPS transform is a compilation from the source language into the λ-
calculus, each expression must have meaning independent of its surroundings.
During translation, an expression may take a continuation as a parameter, but
it cannot directly examine it�the continuation is a black box that can only be

JxK k = x k

Jλx.tK k = k (λx.JtK)
Jt1 t2K k = Jt1K (λf. let r = delayJt2K in f (λk.!r k) k)

Jµα.JK k = JJK[k/α]
J[α]tK = JtK α

delay t = new r in r := (λk. forcer t k); r

forcer t k = t (λv.r := (λk′.k′ v); k v)

Fig. 3. Okasaki's CPS transformation extended with control.

entered by yielding all control to it. The parametric nature of the steps in Fig.
1, and the fact that each syntactic form is analyzed exactly once in the machine,
means that we can directly derive a CPS transform that corresponds exactly
with the machine.

Deriving a CPS translation from a context-free abstract machine is more
straightforward than deriving a machine from a calculus. Starting from the big-
step interpreter, in each phase, the case analysis is lifted out so that the in-
terpreter becomes a set of one-argument functions on the active expression that
produce a function accepting the passive expression as an extra parameter. Then,
the syntax is refunctionalized : rather than pass the syntactic forms as-is to fu-
ture stages of the interpreter, each syntactic form is immediately given to the
interpreter as they become available. The partial evaluation of the interpreter
with only the active argument becomes a continuation waiting for the passive
counterpart. Finally, since co-variables in the environment are treated as ordi-
nary static bindings, we convert context bindings back to implicit substitution.
With all syntactic forms interpreted on-site, the resulting interpreter is a CPS
transformation from the calculus into the host language.

From the abstract machine in Figure 1, we derive an environment-based
CPS transformation for λ[lvτ∗], given in Figure 2. The environment used in the
transform is left abstract�we assume that environments can be extended, joined,
and split on a variable. The three-way split is the same one that appears in the
abstract machine: for a given variable x, the environment is partitioned into all
bindings before the �rst occurrence of x, the binding of x itself, and all remaining
bindings.

Since the CPS transform in Fig. 2 was derived from the abstract machine in
Fig. 1 by correctness-preserving transformations, the two correspond directly.

Theorem 6. If cτ [lv∗] c
′τ ′ then JcKJτK =βη Jc′KJτ ′K.

Another approach to deriving a CPS for a classical call-by-need calculus is to
extend the CPS given by Okasaki et al. [7] with control operators. We do so by
adding the µ-abstraction and the notion of a jump J from Parigot's λµ-calculus
[8]. This extension corresponds to applying a store passing transformation to the

transformation given in Figure 3. The natural extension of the delay and force
CPS results in a di�erent semantics than the one in Figure 2. In particular, going
back to Example 2 and using the store-based semantics in Figure 3, we get the
following reduction (where a program is a term t and a store s written t || s):

let a = µα.[α](I, λx.µ .[α]x) in let f = fst p in let q = snd p in f q (I, I) || ε
→→ f q (I, I) || [q = forceq snd p][f = forcep fst p][a = forcea µα.[α](I, λx.µ .[α]x)]

→→ (forcef fst(forcea µα.[α](I, λx.µ .[α]x))) q (I, I)
||[q = forceq snd p][f = forcef fst p][a = forcea µα.[α](I, λx.µ .[α]x)]

→→ (forcef fst(forcea(I, λx.µ .(forcef fst(forcea x)) q (I, I)))) q (I, I)
||[q = forceq snd p][f = forcef fst p][a = forcea µα.[α](I, λx.µ .[α]x)]

→→ q (I, I) || [q = forceq snd p][f = I][a = (I, λx.µ .(forcef fst(forcea x)) q (I, I))]

→→ (λx.µ .(forcef fst(forcea x)) q (I, I)) (I, I)
||[q = λx.(forcef fst(forcea x)) q (I, I)][f = I][a = (I, λx.µ .(forcef fst(forcea x)) q (I, I))]

→→ q (I, I) || [q = λx.µ .(forcef fst(forcea x)) q (I, I)][f = I][a = (I, I)]

→→ . . .

We saw that using the multicut calculus λ[lvτ], the program produces (I , I) as
a result�every time the continuation k is invoked, both f and q are reverted to
their unevaluated states. However, with the semantics in Figure 3, the continu-
ation bound to k captures only the forcing of f and a. Since q was not involved
in the dereference chain that triggered evaluation of callcc , the thunk bound
to q is completely ignored in k. This means that once the thunk bound to q
is reduced to fn x ⇒ throw k x, it retains that value for every invocation of k.
Since the value of q never changes, the program will loop forever.

The discrepancy witnessed between our semantics and a store-based seman-
tics raises the concern that our call-by-need sequent calculus does not accurately
model sharing, even in the minimal restriction (λmlv). However, that is not the
case. In [2], we have presented the natural deduction counterpart of λmlv , (λneed)
and showed that it is sound and complete for evaluation to answers6 with respect
to the standard reduction of Ariola and Felleisen calculus (λlet) [1].

6 On variables as values (λ[lvd])

We now consider an alternative call-by-need calculus in which variables are not
values. This would seem to entail that a context of the form µ̃x.〈y||µ̃z.〈x||E〉〉
is a co-value demanding x. However, if we substitute values for variables, we
run into the problem of having co-values not closed with respect to substitution.
If one substitutes a λ-abstraction for y, obtaining µ̃x.〈V ||µ̃z.〈x||E〉〉, then that
is no longer a co-value since it contains a redex. In Section 2, we introduced a
distinction between an evaluation context and a forcing context. We could apply
the same idea here by distinguishing variables from computations. Intuitively,
µ̃x.〈y||µ̃z.〈x||E〉〉 is not a co-value because one needs to know more about y. How-
ever, we adopt a di�erent solution: we do not perform the substitution eagerly

6 An answer is a λ-abstraction or a let expression whose body is an answer.

〈t||µ̃x.c〉eτ [lvd] c[x = t]τ

〈t||E〉eτ [lvd] 〈t||E〉tτ

〈µα.c||E〉tτ [lvd] c[E/α]τ

〈x||E〉tτ ′[x = t]τ [lvd] 〈t||µ̃[x].〈x||E〉τ ′〉tτ
〈V ||E〉tτ [lvd] 〈V ||E〉Eτ

〈λx.t||u · E〉Eτ [lvd] 〈u||µ̃x.〈t||E〉〉eτ
〈V ||µ̃[x].〈x||E〉τ ′〉Eτ [lvd] 〈V ||E〉Eτ ′[x = V]τ

Fig. 4. Abstract machine for the classical call-by-need sequent calculus λ[lvd].

but instead dereference values on a need-basis. We call the resulting calculus
λ[lvd], which has the following syntax:

V ∈ V alue ::= λx.t e ∈ Context ::= E || µ̃x.c c ∈ Command ::= 〈t||e〉
t ∈ Term ::= V || x || µα.c E ∈ CoV alue ::= α || t · E || µ̃[x].〈x||E〉τ

C ∈MetaContext ::= � || 〈t||µ̃x.C〉 τ ∈ Environment ::= ε || [x = t]τ

The reduction relation of λ[lvd] is:

(β) 〈λx.t||s · E〉 →[lvd] 〈s||µ̃x.〈t||E〉〉
(µl) 〈µα.c||E〉 →[lvd] c[E/α]

(µ̃[vd]) 〈V ||µ̃[x].〈x||E〉τ〉 →[lvd] 〈V ||µ̃x.τ [〈V ||E〉]〉
(µ̃[]) 〈t||µ̃x.C[〈x||E〉]〉 →[lvd] 〈t||µ̃[x].〈x||E〉C〉

Deriving the abstract machine and CPS transformation for λ[lvd] follows the

same basic procedure used with λ[lv].
7 One di�erence to note, however, is that

since λ[lvd] uses a delayed by-need substitution, the derived abstract machine in
Figure 4 is already context free. By starting with a calculus that uses delayed,
dereference-based substitution, generating the CPS transformation is simpler
and more direct. The environment-based CPS transformation for λ[lvd] is given
in Figure 5. The more direct derivation gives a closer relationship between the
λ[lvd] calculus and the �nal CPS transformation.

Theorem 7. If c 7→[lvd] c
′ then JcK =βη Jc′K.

It is interesting to note that the decision of whether or not variables are
considered values has a non-trivial impact on the resulting abstract machine and

7 The full derivation for λ[lvd] is available at http://ix.cs.uoregon.edu/~pdownen/
classical-need-artifacts.html.

http://ix.cs.uoregon.edu/~pdownen/classical-need-artifacts.html
http://ix.cs.uoregon.edu/~pdownen/classical-need-artifacts.html

J〈t||e〉Kc = JeKe JtKt
JEKe t = t JEKE

Jµ̃x.cKe t = λτ.JcKc([x = t]τ)

JV Kt E = E JV KV
JxKt E = λτ.τ(x) E

Jµα.cKt E = c[E/α]

JαKE V = α V

Ju · EKE V = V JuKt JEKE
Jµ̃[x].〈x||E〉τ ′KE V = Jτ ′Kτ JEKE V ([x = (λE.E V)]τ)

Jλx.tKV = λu.λE.λτ.JtKt E ([x = u]τ)

JεKτ E V = E V

Jτ ′[x = t]Kτ E V = λτ.Jτ ′Kτ E V ([x = JtKt]τ)
Jτ ′[α = E]Kτ E V = λτ.Jτ ′Kτ E V ([α = JEKE]τ)

(τ ′[x = t]τ)(x) = λE.t (λV.λτ.E V (τ ′[x = λE.E V]τ)) τ

Fig. 5. Continuation and environment passing style transform for the classical call-by-
need sequent calculus λ[lvd].

CPS transformation. The de�nition of variables in a call-by-need language has
an inherent tension�both formulations have their own complications. Variables
can be thought of as values, since they stand in for values that may or may not
have been computed yet and can be safely copied throughout a program without
duplicating work. However, treating variables as values complicates the notion of
�forcing� a computation, which shows up in the grammar of contexts. This also
requires an extra push to drive computation forward, which was given in the form
of co-constants α. A program like 〈µβ.c||µ̃x.〈x||α〉〉 does not reduce any further
since x is a value, even though x is bound to a delayed computation. On the other
hand, variables can be thought of as non-values, since they represent a reference
to a potentially delayed computation. In this case, driving computation forward
is trivial since any non-µ̃ context demands a value. When x is not considered a
value, the program 〈µβ.c||µ̃x.〈x||α〉〉 will demand a value for x regardless of what
may be substituted for α. Instead, the complication shows up during substitution
of values. When a value is substituted for a variable, suddenly a non-value term
replaced with a value. This has intricate interactions with the evaluation context
of a program and makes substitution for values a non-trivial operation.

7 Conclusion

In this paper, we demonstrate the usefulness of having a systematic approach for
dealing with syntactic theories. Semantics for a language can be presented in dif-

ferent ways, and the semantic artifact that comes from a particular presentation
carries with it certain strengths and weaknesses. A standard reduction is useful
for reasoning directly about the language, an abstract machine is well-suited
as a basis for an e�cient implementation, and a CPS transformation provides a
theory in terms of the λ-calculus. Since these three forms of semantics are closely
intertwined, de�ning any one of them inherently de�nes the others�generating
the remaining artifacts becomes a straightforward exercise. A systematic ap-
proach liberates the language designer from the burden of hand-crafting each
semantic artifact from the ground up. As an example of the robustness of this
approach, we have derived the alternative classical call-by-need sequent calculus
where variables are not values. The alternative derivation only requires a small
change in the initial calculus, and from there the procedure is the same.

It is interesting to �nd that the most �natural� extension of call-by-need
with control changes depending on how the problem is approached. This devel-
opment shows an interesting case of the tension between theory and practice.
By approaching the problem with the sequent calculus as a reference point and
taking the path of least resistance, we arrive at the theory developed in this
paper. The resulting semantics comes with an elegant reduction theory, but it
is not obvious how to e�ciently map the abstract machine to modern computer
hardware. On the other hand, call-by-need is generally implemented with delay
and force in practice, and performing the obvious extension leads to a di�erent
semantics. The abstract machine that comes from this alternate semantics is
easy to e�ciently implement in hardware, but the semantics is harder to reason
about. As future work, it will be interesting to explore a reduction theory for the
store-based semantics and an e�cient implementation for the environment-based
semantics.

References

1. Z. M. Ariola and M. Felleisen. The call-by-need lambda calculus. J. Funct. Program.,
7(3):265�301, 1997.

2. Z. M. Ariola, H. Herbelin, and A. Saurin. Classical call-by-need and duality. In
Typed Lambda Calculi and Applications, volume 6690 of lncs, 2011.

3. O. Danvy. From reduction-based to reduction-free normalization. In Proceedings of

AFP'08, Berlin, Heidelberg, 2009. Springer-Verlag.
4. O. Danvy, K. Millikin, J. Munk, and I. Zerny. Defunctionalized interpreters for

call-by-need evaluation. In Functional and Logic Programming, FLOPS2010, 2010.
5. R. Garcia, A. Lumsdaine, and A. Sabry. Lazy evaluation and delimited control. In

Proceedings of POPL '09, pages 153�164, New York, NY, USA, 2009. ACM.
6. J. Maraist, M. Odersky, and P. Wadler. The call-by-need λ-calculus. J. Funct.

Program., 8(3):275�317, 1998.
7. C. Okasaki, P. Lee, and D. Tarditi. Call-by-need and continuation-passing style. In

Lisp and Symbolic Computation, pages 57�81. Kluwer Academic Publishers, 1993.
8. M. Parigot. Lambda-mu-calculus: An algorithmic interpretation of classical natural

deduction. In LPAR 92, pages 190�201. Springer-Verlag, 1992.

	 Classical call-by-need sequent calculi: The unity of semantic artifacts

