
GROW! October 2013! 1!

GROW: Graph classes, Optimization,
and Width parameters

Andrzej Proskurowski
(with a little help from my friends)

GROW! October 2013! 2!

Overview

  Ancient history

  Why GROW?
  Parsing structure of graphs
  Width parameters of graphs
  Algorithms: Dynamic Programming

  Concise description of graph classes: Obstructions

GROW! October 2013! 3!

(Ancient) History

A series of meetings on the subject resulted in
Special Issues of Discrete Applied Mathematics:

  1988 meeting in Eugene DAM 54(2-3): Efficient Algorithms
and Partial k-trees, Arnborg, Hedetniemi, Proskurowski, Eds.

  2001 meeting in Barcelona DAM 145(2): Structural
decompositions, width parameters and graph labelings,
Kratochvil, Proskurowski, Serra, Eds.

  2005 meeting in Prague DAM 157(12), Second Workshop on
Graph Classes, Optimization, and Width Parameters,
Kratochvil, Proskurowski, Serra, Eds.

GROW! October 2013! 4!

Past GROW meetings

  2007 3rd GROW in Eugene: DAM 158(7), Third Workshop on
Graph Classes, Optimization, and Width Parameters,
Heggernes, Kratochvil, Proskurowski, Eds.

  2009 4th GROW in Bergen: DAM 160(6) Heggernes,
Kratochvil, Proskurowski, Eds.

  2011 5th GROW in Daejon (in press)

  2013 6th GROW in Santorini

GROW! October 2013! 5!

Participants in Santorini
GROW’13

GROW! October 2013! 6!

Planned conferences:

  2015 7th GROW in Banff

  2017 8th GROW in Montpellier

  …

GROW! October 2013! 7!

 Parsing structure of graphs

  Structure of graphs:
  Graph grammars
  Hierarchical graphs
  2-structures
  Modular decomposition

  Parsing of graphs (construction - recognition)
  Series-parallel graphs
  Complement-reducible graphs aka. Cographs
  ABC-graphs
  Partial k-trees

GROW! October 2013! 8!

An example

  Series-parallel (sp-)graphs:
  Start with an edge
  Assume an sp-graph
  Combine it with another sp-graph

– In series!

– Or parallel !

GROW! October 2013! 9!

Width Parameters of Graphs

  Tree- (path-) Decompositions

  Treewidth: partial k-trees
  Pathwidth: partial k-paths

  Branchwidth,

  Cliquewidth

  Rankwidth
  Linear rankwidth

GROW! October 2013! 10!

(Cubic) Tree Decomposition TD

  A cubic tree (internal nodes of degree 3) with
leaf nodes labeled by elements of the graph

  Each tree branch partitions the graph
elements into two blocks defined by the sets
of disconnected leaves; evaluate the width
function on this partition

  Maximum valuation (over all branches)
determines the width of the decomposition

  The width of the graph is a minimum width
over all decompositions.

GROW! October 2013! 11!

Rankwidth

  Leaves of the TD tree are labeled by vertices
of the graph

  Width of a branch is the rank of the adjacency
matrix of the partition

1!

GROW! October 2013! 12!

(linear width)

  tree of TD has linear structure: a caterpillar

GROW! October 2013! 13!

(example of width)

0 1 0 1

0 0 0 0

2! 1! 6! 5!

4! 3

1!

2! 3! 4! 5!

6!

1 0 1
0 0 0
1 0 1

0 1
0 0
0 1
0 1

GROW! October 2013! 14!

Obstructions:
Concise Description of Graph Classes

  Classes closed under embedding operation
  Induced subgraph
  Topological
  Minor

  Minimal graphs outside the class of interest
  Examples of (minor) obstructions

  Planar graphs: {K5, K3,3}
  Treewidth 3 graphs: {K5, 2W4, M8, P10}
  Linear rankwidth 1: {C5, N, Q}

GROW! October 2013! 15!

Embeddings: Guest into Host

  Mapping of elements of G into elements of H
  Embeddings of a graph G in H

  Topological: edges of G into internal
vertex-disjoint paths of H

  Minor: vertices of G into connected subsets
of vertices of H

  Vertex minor: vertices of G into vertices of
H, modulo local equivalence

GROW! October 2013! 16!

Obstructions to Linear Rankwidth 1

  (half) cube graph Q

  net graph N

  cycle C5

GROW! October 2013! 17!

Vertex Minors

  Vertex minor: vertices of G into vertices of H,
modulo local equivalence

  Local equivalence, G~G*v, where *v denotes
  Local complementation at vertex v of G:

complementing adjacencies of the
neighborhood of v in G.

GROW! October 2013! 18!

Local complementation

  Locally equivalent graphs

GROW! October 2013! 19!

Graphs locally equivalent to N

GROW! October 2013! 20!

Graphs locally equivalent to Q

GROW! October 2013! 21!

(Optimization)
Algorithms

  Recursive structure of solutions:
 Optimal solution is a function of optimal solutions

to smaller (sub-) problems
  Dynamic Programming

 A bottom-up traversal of the tree of sub-problems
 Representative solutions to be used recursively

  Tree Decomposition guides DP algorithm
  The width of the input graph determines size of

sub-problem solutions that need to be kept

GROW! October 2013! 22!

Stages of complexity

Everybody knows that NP-completeness most
probably implies exponential complexity
(some say that it stands for “not polynomial”,
a subtle joke)

A recent hierarchy of complexity classes is
W-hierarchy which includes “fixed parameter
tractable” (FPT) problems on the lowest level

GROW! October 2013! 23!

Fixed Parameter Tractability

In general, the time complexity of an algorithm
acting on input with length n and a parameter
(say, treewidth) k is O(f(n,k))

For a fixed k, this may be polynomial (in n) even
though k may be in the exponent, ng(k)

Of course, we would prefer k not in the
exponent, as in f(n,k)=h(k)nc

While h(k) is often hyper-exponential, width-
based algorithms are often linear (c=1)

GROW! October 2013! 24!

That’s all folks!

