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GROW: Graph classes, Optimization, 
and Width parameters 

Andrzej Proskurowski 
(with a little help from my friends) 
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Overview 

  Ancient history 

  Why GROW? 
  Parsing structure of graphs 
  Width parameters of graphs 
  Algorithms: Dynamic Programming 

  Concise description of graph classes: Obstructions 
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(Ancient) History 

A series of meetings on the subject resulted in 
Special Issues of Discrete Applied Mathematics: 

  1988 meeting in Eugene DAM 54(2-3): Efficient Algorithms 
and Partial k-trees, Arnborg, Hedetniemi, Proskurowski, Eds. 

  2001 meeting in Barcelona DAM 145(2): Structural 
decompositions, width parameters and graph labelings, 
Kratochvil, Proskurowski, Serra, Eds. 

  2005 meeting in Prague DAM 157(12), Second Workshop on 
Graph Classes, Optimization, and Width Parameters, 
Kratochvil, Proskurowski, Serra, Eds. 
 



GROW! October 2013! 4!

Past GROW meetings 

  2007 3rd GROW in Eugene: DAM 158(7), Third Workshop on 
Graph Classes, Optimization, and Width Parameters, 
Heggernes, Kratochvil, Proskurowski, Eds. 

  2009 4th GROW in Bergen: DAM 160(6) Heggernes, 
Kratochvil, Proskurowski, Eds. 

  2011 5th GROW in Daejon (in press) 

  2013 6th GROW in Santorini  
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Participants in Santorini 
GROW’13 
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Planned conferences:  
 

  2015 7th GROW in Banff 

  2017 8th GROW in Montpellier 

  … 
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 Parsing structure of graphs 

  Structure of graphs: 
  Graph grammars 
  Hierarchical graphs 
  2-structures 
  Modular decomposition 

  Parsing of graphs (construction - recognition) 
  Series-parallel graphs 
  Complement-reducible graphs aka. Cographs 
  ABC-graphs 
  Partial k-trees 
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An example  

  Series-parallel (sp-)graphs: 
  Start with an edge 
  Assume an sp-graph 
  Combine it with another sp-graph 

– In series!

– Or parallel !
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Width Parameters of Graphs 

  Tree- (path-) Decompositions  

  Treewidth: partial k-trees 
  Pathwidth: partial k-paths 

  Branchwidth,  

  Cliquewidth 

  Rankwidth 
  Linear rankwidth 
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(Cubic) Tree Decomposition TD 

  A cubic tree (internal nodes of degree 3) with 
leaf nodes labeled by elements of the graph 

  Each tree branch partitions the graph 
elements into two blocks defined by the sets 
of disconnected leaves; evaluate the width 
function on this partition 

  Maximum valuation (over all branches) 
determines the width of the decomposition 

  The width of the graph is a minimum width 
over all decompositions. 
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Rankwidth 

  Leaves of the TD tree are labeled by vertices 
of the graph 

  Width of a branch is the rank of the adjacency 
matrix of the partition 

1!
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(linear width) 

  tree of TD has linear structure: a caterpillar 
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(example of width) 

0 1 0 1

0 0 0 0

2! 1! 6! 5!

4! 3

1!

2! 3! 4! 5!

6!

1 0 1
0 0 0
1 0 1

0 1 
0 0 
0 1 
0 1 



GROW! October 2013! 14!

Obstructions: 
Concise Description of Graph Classes  

  Classes closed under embedding operation 
  Induced subgraph 
  Topological 
  Minor 

  Minimal graphs outside the class of interest 
  Examples of (minor) obstructions 

  Planar graphs: {K5, K3,3} 
  Treewidth 3 graphs: {K5, 2W4, M8, P10} 
  Linear rankwidth 1: {C5, N, Q} 
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Embeddings: Guest into Host 

  Mapping of elements of G into elements of H 
  Embeddings of a graph G in H 

  Topological: edges of G into internal 
vertex-disjoint paths of H 

  Minor: vertices of G into connected subsets 
of vertices of H 

  Vertex minor: vertices of G into vertices of 
H, modulo local equivalence 
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Obstructions to Linear Rankwidth 1 

  (half) cube graph Q 

  net graph N 

  cycle C5 
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Vertex Minors 

  Vertex minor: vertices of G into vertices of H, 
modulo local equivalence 

  Local equivalence, G~G*v, where *v denotes 
  Local complementation at vertex v of G: 

complementing adjacencies of the 
neighborhood of v in G. 
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Local complementation 

  Locally equivalent graphs 
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Graphs locally equivalent to N 
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Graphs locally equivalent to Q 
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(Optimization) 
Algorithms  

  Recursive structure of solutions: 
 Optimal solution is a function of optimal solutions 

to smaller (sub-) problems 
  Dynamic Programming 

 A bottom-up traversal of the tree of sub-problems 
 Representative solutions to be used recursively 

  Tree Decomposition guides DP algorithm 
  The width of the input graph determines size of 

sub-problem solutions that need to be kept 
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Stages of complexity 

Everybody knows that NP-completeness most 
probably implies exponential complexity 
(some say that it stands for “not polynomial”, 
a subtle joke) 

A recent hierarchy of complexity classes is     
W-hierarchy which includes “fixed parameter 
tractable” (FPT) problems on the lowest level 
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Fixed Parameter Tractability 

In general, the time complexity of an algorithm 
acting on input with length n and a parameter 
(say, treewidth) k is O(f(n,k)) 

For a fixed k, this may be polynomial (in n) even 
though k may be in the exponent, ng(k) 

Of course, we would prefer k not in the 
exponent, as in f(n,k)=h(k)nc 

While h(k) is often hyper-exponential, width-
based algorithms are often linear (c=1) 



GROW! October 2013! 24!

That’s all folks! 


