GROW: Graph classes, Optimization, and Width parameters

Andrzej Proskurowski
(with a little help from my friends)
Overview

- Ancient history

- Why GROW?
 - Parsing structure of graphs
 - Width parameters of graphs
 - Algorithms: Dynamic Programming

- Concise description of graph classes: Obstructions
(Ancient) History

A series of meetings on the subject resulted in Special Issues of *Discrete Applied Mathematics*:

- 2005 meeting in Prague *DAM* 157(12), Second Workshop on *Graph Classes, Optimization, and Width Parameters*, Kratochvil, Proskurowski, Serra, Eds.
Past GROW meetings

- 2007 3rd GROW in Eugene: *DAM 158*(7), Third Workshop on Graph Classes, Optimization, and Width Parameters, Heggernes, Kratochvil, Proskurowski, Eds.

- 2011 5th GROW in Daejon (in press)

- 2013 6th GROW in Santorini
Participants in Santorini GROW’13
Planned conferences:

- 2015 7th GROW in Banff
- 2017 8th GROW in Montpellier
- ...
Parsing structure of graphs

- Structure of graphs:
 - Graph grammars
 - Hierarchical graphs
 - 2-structures
 - Modular decomposition

- Parsing of graphs (construction - recognition)
 - Series-parallel graphs
 - Complement-reducible graphs aka. Cographs
 - ABC-graphs
 - Partial k-trees
An example

- Series-parallel (sp-)graphs:
 - Start with an edge
 - Assume an sp-graph
 - Combine it with another sp-graph
 - In series
 - Or parallel
Width Parameters of Graphs

- Tree- (path-) Decompositions
 - Treewidth: partial k-trees
 - Pathwidth: partial k-paths
 - Branchwidth,
 - Cliquewidth
 - Rankwidth
 - Linear rankwidth
(Cubic) Tree Decomposition TD

- A cubic tree (internal nodes of degree 3) with leaf nodes labeled by elements of the graph.
- Each tree branch partitions the graph elements into two blocks defined by the sets of disconnected leaves; evaluate the width function on this partition.
- Maximum valuation (over all branches) determines the width of the decomposition.
- The width of the graph is a minimum width over all decompositions.
Rankwidth

- Leaves of the TD tree are labeled by vertices of the graph
- Width of a branch is the rank of the adjacency matrix of the partition
(linear width)

- tree of TD has linear structure: a caterpillar
(example of width)
Obstructions:
Concise Description of Graph Classes

- Classes closed under embedding operation
 - Induced subgraph
 - Topological
 - Minor
- Minimal graphs outside the class of interest
- Examples of (minor) obstructions
 - Planar graphs: \{K_5, K_{3,3}\}
 - Treewidth 3 graphs: \{K_5, 2W_4, M_8, P_{10}\}
 - Linear rankwidth 1: \{C_5, N, Q\}
Embeddings: Guest into Host

- Mapping of elements of G into elements of H
- Embeddings of a graph G in H
 - Topological: edges of G into internal vertex-disjoint paths of H
 - Minor: vertices of G into connected subsets of vertices of H
 - Vertex minor: vertices of G into vertices of H, modulo local equivalence
Obstructions to Linear Rankwidth 1

- (half) cube graph Q
- net graph N
- cycle C_5
Vertex Minors

- Vertex minor: vertices of G into vertices of H, modulo local equivalence
- Local equivalence, $G \sim G \cdot v$, where $\cdot v$ denotes
 - Local complementation at vertex v of G: complementing adjacencies of the neighborhood of v in G.
Local complementation

- Locally equivalent graphs
Graphs locally equivalent to N
Graphs locally equivalent to Q
(Optimization)
Algorithms

- Recursive structure of solutions:
 - Optimal solution is a function of optimal solutions to smaller (sub-) problems

- Dynamic Programming
 - A bottom-up traversal of the tree of sub-problems
 - Representative solutions to be used recursively

- Tree Decomposition guides DP algorithm
 - The width of the input graph determines size of sub-problem solutions that need to be kept
Stages of complexity

Everybody knows that NP-completeness most probably implies exponential complexity (some say that it stands for “not polynomial”, a subtle joke)

A recent hierarchy of complexity classes is W-hierarchy which includes “fixed parameter tractable” (FPT) problems on the lowest level
Fixed Parameter Tractability

In general, the time complexity of an algorithm acting on input with length n and a parameter (say, treewidth) k is $O(f(n,k))$

For a fixed k, this may be polynomial (in n) even though k may be in the exponent, $n^{g(k)}$

Of course, we would prefer k not in the exponent, as in $f(n,k)=h(k)n^c$

While $h(k)$ is often hyper-exponential, width-based algorithms are often linear ($c=1$)
That’s all folks!