
Extremal graphs having no matching cuts

Paul Bonsma Arthur M. Farley Andrzej Proskurowski

August 5, 2010

Abstract

A graph G = (V, E) is matching immune if there is no matching cut in G. We show that
for any matching immune graph G, |E| ≥ ⌈3(|V | − 1)/2⌉. This bound is tight, as we define
operations that construct, from a given vertex, exactly the class of matching immune graphs
that attain the bound.
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1 Introduction

For basic graph theoretic definitions we refer to [1]. The order of a graph G = (V,E) is |V |, and
the size of G is |E|. For two disjoint sets of vertices S, T ⊂ V , [S, T ] denotes the set of edges with
exactly one end vertex in S and one end vertex in T . M ⊆ E is an edge cut in G if M = [S, S],
where S denotes V \S, for some S ⊂ V , S 6= ∅, S 6= V . If a set S ⊂ V exists such that M = [S, S]
and u ∈ S and v ∈ S then the edge cut M is said to separate u from v. M ⊆ E is a matching
if no two edges in M share an end vertex. M is called a matching cut if M is an edge cut and a
matching. If a graph has no matching-cut, it is said to be matching immune.

This paper first presents results previously reported in the conference paper [6], namely that
for any matching immune graph (V,E), |E| ≥ ⌈3(|V | − 1)/2⌉ holds, and that this bound is tight
for every value of |V |. This is demonstrated by the class of ABC graphs defined in Section 3, which
are matching immune graphs with minimum size for a given order. The paper then presents a
proof of the conjecture stated in [6], namely that ABC graphs are exactly the class of matching
immune graphs with minimum size. Some details of this proof appear elsewhere [2, Chapter 4].

A related result appears in [11], where a lower bound is established on the size of connected
graphs of given order that cannot be disconnected by removing an independent vertex set. Match-
ing cuts have been studied under other names, including simple cuts, stable cutsets in line graphs,
and disconnecting matchings. Matching immune graphs are also called indecomposable graphs.
In [4] and [7], primitive graphs are studied, which are matching immune graphs that have no
matching immune subgraphs. Graham [7] shows that primitive graphs have applications to the
study of cube numberings. Results regarding the complexity of finding matching cuts for different
graph classes can be found in [3], [5], [8], [9] and [10]. For many graph classes, deciding whether
a member of the class is matching immune is an NP-hard problem.

2 A lower bound on the size of matching immune graphs

In this section, we establish the minimum size for matching immune graphs of a given order. Our
proof subjects a given matching immune graph to a series of reduction operations that preserve
immunity. Each operation eliminates either three edges and two vertices or at least two edges and
one vertex. The operations are expressed in terms of edge contractions and deletions.

1



C3:

P2:C4:

C2:

y

x

y

v u

u v

x w

u v

u w

v

x

u v w w

uu

Figure 1: The four reduction operations

For our proofs it is essential to keep track of edge identities, when applying graph operations
such as edge contractions. Therefore we mention Bondy and Murty’s original definition of a graph,
which contains labeled edges [1]: A multi-graph (graph for short) is a triple G = (V,E, ψ), where
V and E are disjoint sets representing the vertices and edges, and ψ is an incidence function
that associates with each edge of G an unordered pair of (not necessarily distinct) vertices, its
end vertices. The deletion of edge e is simply removing e from the set of edges of a graph. The
contraction of edge e with end vertices u1 and u2 is realized by the following three steps: (i) delete
edge e, (ii) introduce a new vertex u, and for every remaining edge having either u1 or u2 as an end
vertex replace that end vertex by u (in the incidence function ψ), then (iii) delete vertices u1 and
u2 from G. Contraction of an edge in a simple graph may result in parallel edges; edge contraction
in a graph with parallel edges may result in loops. If a graph G′ can be obtained from G by a
series of edge contractions and edge deletions, then all edges of G′ are also edges of G, although
they may have different end vertices in the two graphs. We will often consider one particular edge
set M and study its properties both in G′ and in G. For instance, M can be a matching in G but
not in G′. In the remainder of the paper, we will however use the conventional notations again,
and omit the incidence function ψ from the definition of a graph. In a slight abuse of notation,
edges will be denoted by their end vertices if there is no cause for confusion.

The reduction operations are named after the structure they reduce. Let Cn denote a cycle
on n vertices (n-cycle). So by C2 we denote a loopless (multi-)graph with two vertices and two
edges. Pn denotes a path on n vertices. The four operations are illustrated in Figure 1 and are
defined as follows:

C2 Suppose there are multiple edges between vertices u and v. The C2 operation consists of
deleting all except one of these edges, and contracting the remaining edge.

C3 Let the vertices u, v and w induce a C3. The C3 operation consists of deleting uv and
contracting uw and vw.

C4 Let subgraph C be a 4-cycle with edge set {uv, vw,wx, ux}. The C4 operation consists of
deleting wx and contracting ux and vw. Note that for a C4 subgraph, the C4 operation can
have two different results.

P2 Let the vertices u and v be neighbors with d(u) = 3 and d(v) = 2. Let v have another neighbor
w 6= u, and let u have another neighbor x 6= v (x = w is allowed). The P2 operation consists
of deleting uv and contracting ux and vw.

Lemma 2.1 Suppose G′ can be obtained from G by a C2, C3, C4 or P2 operation. Then:

• If G is matching immune, then G′ is matching immune.

• If |E(G)| = ⌈3(|V (G)|− 1)/2⌉, then |E(G′)| ≤ ⌈3(|V (G′)|− 1)/2⌉, with equality preserved by
the C3, C4 and P2 operation.

Proof: We employ the vertex naming conventions established by Figure 1. We prove the first
hypothesis by establishing its contrapositive. Since C2 and C3 collapse cycles to a single vertex, if
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G′ is obtained from G by a C2 or C3 operation, then any matching cut M in G′ is also a matching
cut in G.

If G′ results from an application of C4, then let u be the vertex resulting from the contraction
of ux, and let v be the vertex resulting from the contraction of vw. Any matching cut that does
not include uv in G′ would also be a matching cut in G. Consider a matching cut M in G′ that
includes uv. In G, no edges of M are incident with x or w. M is an edge cut in G − wx that
separates x from w. So adding xw to M yields a matching cut in G.

Finally, let us assume that the applied reduction rule was P2 and that G′ has a matching-cut
M . If M does not separate x from y then M or M + uv is a matching-cut in G. If M separates
x from y then w.l.o.g. x and w are not separated by M . In this case, removing xy from M and
adding uy yields a matching-cut in G.

We have shown that the four operations preserve matching immunity. Applying the C3, C4 or
P2 operation decreases the number of vertices by two and the number of edges by three, so if one
of these operations is applied and |E(G)| = ⌈3(|V (G)| − 1)/2⌉, then |E(G′)| = ⌈3(|V (G′)| − 1)/2⌉.
The C2 operation decreases the number of vertices by one and the number of edges by at least
two, so if |E(G)| = ⌈3(|V (G)| − 1)/2⌉, then |E(G′)| ≤ ⌈3(|V (G′)| − 1)/2⌉. 2

A matching immune graph that does not admit application of any of the four reduction oper-
ations is called irreducible matching immune. Note that an irreducible matching immune graph
has no C2, C3, or C4 as a subgraph. Furthermore, in such a graph, vertices can be adjacent to a
limited number of vertices of degree two.

Lemma 2.2 In an irreducible matching immune graph G, any vertex v can be adjacent to at most
dG(v) − 2 vertices of degree two.

Proof: Suppose in an irreducible matching immune graph G, a vertex v exists that has at least
dG(v)− 1 neighbors of degree two. Let N2 be the set of neighbors of v with degree two. Consider
[S, S] with S = {v} ∪ N2. Since G has no cycles of length less than five, this is a matching and
therefore a matching-cut. 2

Lemma 2.3 In an irreducible matching immune graph G, a vertex of degree two cannot be adja-
cent to a vertex of degree less than four.

Proof: A matching immune graph G has no vertices of degree one. By Lemma 2.2 no degree two
vertices can be adjacent. Finally, a degree two vertex cannot be adjacent to a vertex of degree
three since then reduction P2 could have been applied. 2

The above three lemmas allow us to establish a lower bound on the size-to-order ratio of
irreducible matching immune graphs.

Lemma 2.4 An irreducible matching immune graph G = (V,E) either has only one vertex or has
a size-to-order ratio of at least 3/2.

Proof: Let S be the set of vertices of degree two and F the set of vertices adjacent to vertices in
S. For U ⊆ V (G), let deg(U) be the sum of the degrees of vertices in U . Then, by Lemma 2.3,
deg(F ) ≥ 4|F | and, by Lemma 2.2, deg(F )− 2|F | ≥ deg(S) = 2|S|. These inequalities allow us to
establish that deg(S) + deg(F ) ≥ deg(S) + 2|F | + (|S| + |F |) = 3(|S| + |F |), and thus

deg(V ) = deg(S) + deg(F ) + deg(V \(S ∪ F )) ≥

3(|S| + |F |) + 3(|V | − (|S| + |F |)) = 3|V |.

The size of G is thus at least 3|V |/2, as postulated. 2

Since all of the reduction operations above decrement the size and the order of a graph by a
ratio of at least 3/2, we have obtained a lower bound on the minimum size of matching immune
graphs of a given order.
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Theorem 2.1 If G = (V,E) is matching immune, then

|E| ≥ ⌈3(|V | − 1)/2⌉.

Proof: Let G be a matching immune graph with n vertices and m edges, and let successive
applications of the reduction rules result in an irreducible matching immune graph G′ of order n′

and size m′. If n′ > 1 then

m ≥ m′ +
3(n− n′)

2
≥

3n′

2
+ (

3n

2
−

3n′

2
) =

3n

2
>

⌈

3(n− 1)

2

⌉

Otherwise, n′ = 1,m′ = 0 and m ≥ 3(n−1)
2 . Therefore, we have established that m ≥ ⌈ 3(n−1)

2 ⌉. 2

3 A class of extremal matching immune graphs: ABC graphs

In this section we show that the lower bound for the size of matching immune graphs stated in
the previous section is tight for every value of |V | by defining a class of matching immune graphs
that attain this bound. Such graphs are called extremal matching immune. From the results in
the previous section, we have the following lemma.

Lemma 3.1 Any extremal matching immune graph can be reduced to K1 by a series of C2, C3,
C4 or P2 operations.

Proof: Let G 6= K1 be extremal matching immune and let n = |V (G)| and m = |E(G)|, so
m = ⌈3(n− 1)/2⌉. Since ⌈3(n− 1)/2⌉ < 3n/2 for every n, G is not irreducible matching immune
(Lemma 2.4), thus a C2, C3, C4 or P2 operation can be applied. The resulting graph is again
extremal matching immune (Lemma 2.1, Theorem 2.1), so by induction we can continue until K1

is obtained. 2

We now define three operations, A, B, and C, which are limited forms of inverse operations of
our reduction operations. These operations will be used to construct a class of extremal matching
immune graphs.

Definition 3.1 An A operation on a vertex u introduces two new vertices v and w and the edges
uv, uw and vw.

A B operation on the edge uv introduces two new vertices w and x and the edges uw, vw, ux
and vx, and removes the edge uv.

A C operation on the vertices u and v (u = v is allowed) introduces a new vertex w and the
edges uw and vw.

Note that the C operation is the only operation that may introduce parallel edges, when u = v.

Lemma 3.2 A graph G′ obtained from a graph G by application of operation A or B is matching
immune if G is matching immune. If |E(G)| = ⌈3(|V (G)| − 1)/2⌉, then |E(G′)| = ⌈3(|V (G′)| −
1)/2⌉

Proof: Suppose G′ is obtained by applying operation A to G. The new edges are part of a triangle
and therefore cannot be part of a matching-cut, so any matching-cut in G′ is a matching-cut in G.
Suppose G′ is obtained by applying a B operation to edge uv of G, introducing vertices w and x.
If M is a matching-cut in G′ that contains none of the new edges, then M is also a matching-cut
in G that does not contain uv. If M is a matching-cut in G′ that contains some of the new edges,
then w.l.o.g. {uw, vx} ⊆ M and M separates u and v. In this case, M − uw − vx + uv is a
matching-cut in G. These operations add two vertices and three edges, so the relation between
the size and order is preserved. 2

The next lemma can be proved similarly.
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Lemma 3.3 A graph G′ obtained from a graph G by application of operation C is matching
immune if G is matching immune. If |E(G)| = ⌈3(|V (G)| − 1)/2⌉, then |E(G′)| = ⌈3(|V (G′)| −
1)/2⌉ if and only if |V (G)| is odd.

Based on these three operations, we can define AB graphs and ABC graphs, named after the
operations used in their construction.

Definition 3.2 An AB graph is a graph that can be obtained from K1 by a sequence of A and
B operations. An ABC graph is a graph that can be obtained from K1 by a sequence of A and B
operations and at most one C operation.

From the previous two lemmas, the following corollary follows.

Corollary 3.1 If G is an AB graph on n vertices with m edges, then n is odd, m = 3(n− 1)/2
and G is matching immune. If G is an ABC graph on n vertices with m edges but G is not an
AB graph, then n is even, m = (3n− 2)/2 = ⌈3(n− 1)/2⌉ and G is matching immune.

So ABC graphs are extremal matching immune graphs. Now, we prove that all extremal
matching immune graphs are ABC graphs.

4 All extremal matching immune graphs are ABC graphs

4.1 An overview of the proof

In this section, we show that all extremal matching immune graphs are ABC graphs. Our proof
is by contradiction, so first we assume an extremal matching immune graph exists that is not an
ABC graph. Then we consider a graph G with minimum size among all such graphs. This is called
a minimum counterexample.

Theorem 4.1 Every extremal matching immune graph is an ABC graph.

Proof: Suppose this is not true, so there exist counterexamples, which are extremal matching
immune graphs that are not ABC graphs. Let G be a minimum counterexample. G 6= K1, so by
Lemma 3.1, a C2, C3, C4 or P2 operation can be applied to G. Below, we exclude these cases
one by one: Lemma 4.10 shows that G is simple, so no C2 operation can be applied. Lemma 4.13
shows that G does not contain a C4. Using this information, Lemma 4.12 excludes the case that
G contains a C3. Finally, Lemma 4.11 then excludes the case that a P2 operation can be applied
to G. Together, this gives a contradiction, so no counterexample exists. 2

The four remaining lemmas will be proved in Section 4.4. Some details and cases are omit-
ted, these can be found in [2]. The main idea behind the proofs is as follows: apply the
appropriate operation to G. This yields a new extremal matching immune graph G′, with
|E(G′)| ≤ ⌈3(|V (G′)| − 1)/2⌉ (Lemma 2.1), so by Theorem 2.1, |E(G′)| = ⌈3(|V (G′)| − 1)/2⌉,
and the graph is again extremal matching immune. Since G is a minimum counterexample, G′

then is an ABC graph. We show that for every possible way of reversing the reduction operations,
a graph is obtained that either has a matching-cut, or is ABC, which contradicts that G is a
counterexample.

Before we can prove these lemmas, we need to study the structure of ABC graphs in more
detail, which is done in Section 4.2. In addition we show that ABC graphs contain many edge
cuts that are ‘almost’ matching-cuts, in Section 4.3.

4.2 The structure of ABC graphs

If G is an AB(C) graph, a sequence of operations that constructs G is called a derivation of G.
In such a sequence, for every operation it is specified whether it is an A, B or C operation, on
which vertex / edge / vertices it works (for the A, B, or C operation respectively), and how the
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newly introduced vertices are labeled. If k operations are applied, this yields a sequence of graphs
G0, . . . , Gk, with G0 = K1, Gk = G, and where Gi is obtained from Gi−1 by the i-th operation
in the sequence (1 ≤ i ≤ k). The graphs G0, . . . , Gk−1 are called intermediate graphs in this
particular derivation of G. Note that an ABC graph generally has many different derivations. We
say that a vertex v is used in operation x if x is an A or C operation on v, or a B operation on an
edge incident with v.

Definition 4.1 A graph G that can be obtained from a (labeled copy of) graph H by applying B
operations is called an H-component.

For an H-component G, the sequence of B operations that constructs G from H is called a
derivation of G from H (or starting with H). Note that G does not have to be an ABC graph,
but it is an ABC graph if H is an ABC graph. K2, C2, C3, and P3 will often be used for H in
the context of H-components. A K2-component is also called an edge component. If we consider
a derivation starting with a K2 on vertices u and v, then this is called an edge component between
u and v. A C3-component is also called a triangle component. If we consider a derivation starting
with a specific labeled copy of C3, then the vertices of this C3 are called the triangle vertices of this
triangle component. Note that triangle components are AB graphs. Both C2 and P3-components
are associated with the C operation in a derivation. The end vertices of the P3 are called the end
vertices of the P3-component. Observe that the edges of ABC graphs can be partitioned into edge
induced subgraphs that are all H-components for H = C3, C2 or P3: A operations introduce C3-
components, the C operation introduces a C2 or P3-component, and B operations extend existing
H-components.

Observation 4.1 For any derivation of an ABC graph G, we can partition the edges of G into
sets A1, . . . , Ak and at most one set C such that for every i, G[Ai] is a triangle component, and
G[C] is a C2 or P3-component.

Triangle components that correspond to a derivation of G in this way are called A-components,
and the C2 or P3-component that corresponds to the C operation is called the C-component.
Similar to Observation 4.1, if we have a derivation of G from H , then the edges of G can be
partitioned into edges components corresponding to the edges of H .

Observation 4.2 For any derivation of an H-component G from H, we can partition E(G) into
sets {Euv : uv ∈ E(H)} such that G[Euv ] is an edge component between u and v.

When a particular derivation is chosen, the edge components G[Euv] from this observation will
be denoted as EC(uv). For instance, for a triangle component G with triangle vertices a, b and c
(so a particular derivation is chosen), we will often consider the subgraphs EC(ab), EC(ac) and
EC(bc). Observe that EC(ab) is an edge component that only shares vertices a and b with other
edges in the graph. Such vertices which will be called terminals:

Definition 4.2 Let H be a subgraph of G, and v ∈ V (H). If dH(v) < dG(v) then v is called a
terminal of H. H is called an i-terminal subgraph of G if H has at most i terminals.

This definition will be used often for 4-cycles and edge components. Note that if G is matching
immune and an induced C4 is a 2-terminal subgraph of G with terminals u and v, then u and v
cannot be neighbors, lest the two edges of the C4 incident with exactly one of u and v be in a
matching-cut. In this case the C4 is called a 2-terminal 4-cycle between u and v.

We now show that triangle components have many different derivations. In particular, if edge
uv is an edge in triangle component T , then T has a derivation that starts with a triangle that
contains edge uv. This is shown in Lemma 4.3.

Lemma 4.1 If T is a triangle component and contains a 2-terminal 4-cycle C, then a C4 operation
on C yields again a triangle component.
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Proof: Observe that a triangle component T only contains a triangle if it is a triangle. We argue
that all edges of the 2-terminal 4-cycle C are introduced by the same B operation, unless T = K2,3.
Consider the first intermediate graph Gi in the derivation that contains all edges of C. Let the B
operation that yields Gi be on edge uv, introducing w and x. Suppose C is not equal to the newly
introduced C4. Since it contains some edges of it, it contains exactly two of those, and w.l.o.g.
E(C) = {ux, vx, uy, vy} for some vertex y. But then Gi−1 contains a triangle on vertices u, v, y,
and hence is equal to this triangle. In that case Gi is a K2,3.

Summarizing, G = C3, G = K2,3, or all edges of a 2-terminal 4-cycle in G are introduced the
same B operation. If G = C3, no C4 operation can be applied. If G = K2,3, the statement is clear.
In the final case, observe that we may obtain an alternative derivation of G by swapping the order
of two consecutive B operations, as long as the second B operation does not use vertices that are
introduced in the first. Vertices with degree 2 in G are not used in any B operation. Hence we
may consider a derivation of G where all edges of C are introduced by the last B operation. Now
we see that a C4 operation on C yields the intermediate graph right before this B operation is
applied, which is also a triangle component. 2

Lemma 4.2 If T is a triangle component with at least 5 vertices, then for every edge e ∈ E(T ),
T contains a 2-terminal 4-cycle that does not contain e.

Proof: Observe that every triangle component on 5 vertices is a K2,3, and for this graph the
property holds. Now consider a triangle component T with at least 7 vertices, and a derivation of
T . For an edge e that is not one of the edges introduced by the last B operation, the statement
is obvious. Otherwise, consider the triangle component T ′ from which T was constructed by a B
operation on an edge e′ (so T ′ does not contain e). By induction, T ′ contains a 2-terminal 4-cycle
C that does not contain e′. After the B operation on e′, C still is a 2-terminal 4-cycle in T , which
proves the statement for T . Since triangle components have an odd number of vertices, this proves
the claim by induction. 2

By combining the previous two claims, we obtain a useful Lemma.

Lemma 4.3 If u is a vertex in a triangle component T , then a derivation of T exists that starts
with the single vertex u. If uv is an edge in a triangle component T , then a derivation of T exists
where u and v are triangle vertices.

Proof: We first prove the statement for the edge uv by induction. For T = C3, the statement
is clearly true. Otherwise, T contains a 2-terminal 4-cycle K that does not contain edge uv
(Lemma 4.2). A C4 operation on K gives another triangle component T ′ (Lemma 4.1), from
which T can be constructed (assuming proper vertex labeling in T ′). By induction, T ′ has a
derivation where u and v are triangle vertices. The statement for the single vertex u follows
immediately. 2

The following lemma describes the block structure of ABC graphs. A block of a graph is a
maximal connected subgraph without cut vertices. The edge sets of blocks of G partition E(G),
therefore we will also view blocks as edge sets. Considering blocks is useful for our purposes since
if H is a block of G, then any edge cut of H is also an edge cut of G. For basic properties of
blocks, see [1].

A operations introduce new blocks, which have odd order. B operations add more edges to
existing blocks. That is, for a B operation on uv, the four new edges become part of the same
block that included uv before. B operations do not change the parity of the block order. For a
C operation on vertices x and y in an AB graph G, that introduces z, every path from x to y
in G contains edges of the same set of blocks of G. The C operation joins these blocks into one
block, together with the new edges xz and yz. If all blocks that are joined have odd order, the
result is an even order block. These observations show that ABC graphs have the following block
structure. (For a detailed proof see [2].)
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Lemma 4.4 An ABC graph G is connected and consists of odd order blocks and at most one even
order block. For every derivation of G, the odd order blocks are A-components, and the even order
block B has the following structure: it contains the C-component C, and either B = C and C is
a C2-component, or C is a P3-component with (distinct) end vertices x and y such that

1. There are k ≥ 1 A-components T1, . . . , Tk such that E(B) = E(C) ∪ E(T1) ∪ . . . ∪E(Tk).

2. There are k − 1 vertices v1, . . . , vk−1 such that V (Ti) ∩ V (Ti+1) = {vi}, and no other A-
components in B share vertices.

3. If k = 1 then V (T1)∩V (C) = {x, y}. If k ≥ 2 then V (T1)∩V (C) = {x} and V (Tk)∩V (C) =
{y}. No no other A-components in B share vertices with C.

Note that there is an even order block in an ABC graph G if and only if G has even order.

Lemma 4.5 If an ABC graph G is simple, then a derivation of G exists such that every interme-
diate graph is simple.

Proof: Consider a derivation of a simple ABC graph G. The only way that parallel edges can
be introduced is with a C operation on x = y, introducing z. Since G is simple, one of the edges
between x and z must be used in a B operation, that introduces v and w. Now instead of the C
operation, use an A operation on x that introduces v and z. Instead of the B operation, use a C
operation on x and z that introduces w. This gives the desired derivation of G. 2

4.3 Edge cuts in ABC graphs that are almost matching-cuts

In this section we show various ways to find matching-cuts for edge components, and for graphs
deduced from edge components, triangle components and P3-components by an expansion oper-
ation. A vertex expansion can be seen as the reverse of a contraction. When viewing graphs as
tuples (V,E, ψ) where ψ is the incidence function on the edges E (see Section 2), then a vertex
expansion of u into u1u2 consists of these steps: introducing vertices u1 and u2, introducing an
edge e with ψ(e) = u1u2, replacing every occurrence of u in ψ by u1 or u2, and deleting u. Note
that there is only one way to contract a particular edge of a graph (apart from the resulting vertex
label), but in general there are many ways to expand a vertex into an edge. A vertex expansion
of u into u1u2 is called a non-trivial vertex expansion if d(u1) ≥ 2 and d(u2) ≥ 2 in the resulting
graph. Suppose G′ can be obtained from G by a series of edge contractions and edge deletions.
Then G can be constructed from G′ by a series of vertex expansions and edge additions, which
motivates the following definition.

Definition 4.3 Suppose G can be obtained from G′ be a series of vertex expansions and edge
additions. Then we say that an edge set M ⊆ E(G′) is split if G′[M ] and G[M ] are not isomorphic.
In this case, the subgraph G′[M ] is also said to be split. Similarly, we say that two edges e, f ∈
E(G′) are split if G′[{e, f}] and G[{e, f}] are not isomorphic.

Throughout this section, we use Guv to denote an edge component with which we associate a
derivation from a copy of K2 with vertex labels u and v.

Lemma 4.6 For every edge component Guv and every edge e ∈ E(Guv), there is a matching-cut
M that separates u from v with e ∈M .

Proof: If Guv consists only of the edge uv then the statement is clearly true. Otherwise, consider
a derivation of Guv, where the last operation is a B operation on an edge xy in the intermediate
graph G′

uv, introducing a 2-terminal 4-cycle C between x and y. G′

uv is also an edge component,
so if e ∈ E(G′

uv), then by induction it has a matching-cut M that contains e and separates u
from v. M can be turned into a matching-cut in Guv with the desired properties. If xy ∈M then
this requires replacing xy by two edges of C. On the other hand, if e 6∈ E(G′

uv), then e ∈ E(C).
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Figure 2: Matching-cuts in split K2- and P3-components.

Consider a matching-cut M for G′

uv that separates u from v with xy ∈M , which again exists by
induction. M can be turned into a matching-cut M ′ in Guv that separates u from v with e ∈M ′.
2

The proof of the following claim is illustrated in Figure 2(a). In the claim we consider the
same edge set M in two different graphs, that can be obtained from each other by contractions
resp. vertex expansions.

Lemma 4.7 If a graph G′ can be constructed from an edge component Guv by a non-trivial vertex
expansion of u, then there is an edge cut M in Guv that separates u from v, is not incident with
v, and is a matching-cut in G′.

Proof: Since G′ is obtained by a non-trivial vertex expansion, in Guv we have d(u) ≥ 2. So
in a derivation of Guv at least one B operation is applied. Let the first B operation introduce
two vertices w and x. So the edges of Guv can be partitioned into 2-terminal edge components
EC(uw), EC(ux), EC(vw) and EC(vx). Since the vertex expansion is non-trivial, we can find
e ∈ E(EC(uw)) and f ∈ E(EC(ux)) such that e and f are split by the vertex expansion. Let
M1 = [S1, T1] be a matching-cut for EC(uw) with u ∈ S1, w ∈ T1 and e ∈ M1 (Lemma 4.6). Let
M2 = [S2, T2] be a matching-cut for EC(ux) with u ∈ S2, x ∈ T2 and f ∈M2. The only adjacent
edges in M1 ∪M2 are e and f , so M1 ∪M2 becomes a matching in G′. Considering the vertices
that the four edge components have in common, we see that M1 ∪M2 is an edge cut in Guv and
therefore also an edge cut in G′. 2

The following two lemmas are useful for determining matching-cuts in graphs made from ABC
graphs by an expansion operation.

Lemma 4.8 Let T ′ be a graph that can be made from a triangle component T with triangle vertices
u, v and w by a non-trivial vertex expansion of v. There is an edge cut M in T that is not incident
with any vertex in V (EC(uw))\{u,w} and that is a matching-cut in T ′.

Proof: The edges of T can be partitioned into 2-terminal edge components EC(uv), EC(uw) and
EC(vw) (Observation 4.2). Since the vertex expansion is non-trivial, we can find e ∈ E(EC(uv))
and f ∈ E(EC(vw)) such that e and f are split by the expansion. Using these two edges, we can
find the desired matching-cut similar to the previous proof. 2

Lemma 4.9 is illustrated in Figure 2(b). Recall that if {x, y} ∈ S, we say that the edge cut
M = [S, S] does not separate x and y, even though there may not be an (x, y)-path in G−M .

Lemma 4.9 Let P ′ be a graph that can be made from a P3-component P with end vertices x and
y by a non-trivial vertex expansion of x. In P an edge cut M exists that does not separate x and
y and that is a matching-cut in P ′.

Proof: The edges of P can be partitioned into 1-terminal edge components EC(xz) and EC(yz)
that only have z in common. Since x is only incident with edges from EC(xz), the vertex expansion
of P corresponds to a non-trivial vertex expansion of EC(xz) into F ′. Now let M1 be an edge cut
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for EC(xz) that separates x from z, contains no edges incident with z, and that is a matching
in F ′ (Lemma 4.7). Let M2 be any matching-cut for EC(yz) that separates y from z. M1 ∪M2

forms the desired edge cut. Since M1 is a matching in F ′ and contains no edges incident with z,
this is a matching-cut in P ′. 2

4.4 Excluding minimum counterexamples

Recall that a graph G is a minimum counterexample if it is extremal matching immune, it is not an
ABC graph, and has minimum order among all such graphs. Using the properties of ABC graphs
deduced in the previous sections, the next four lemmas respectively show that no C2, P2, C3 or
C4 operation can be applied to minimum counterexamples, which together shows that minimum
counterexamples do not exist.

Lemma 4.10 A minimum counterexample G is simple.

Proof: If G has vertices v1 and v2 with at least three parallel edges between them, then one
of these edges can be deleted and the resulting graph is still matching immune, contradicting
Theorem 2.1. Now suppose there are two parallel edges between v1 and v2. A C2 operation
gives an ABC graph G′. Let v ∈ V (G′) be the vertex resulting from the contraction. Since a C2
operation decreases the order and size by one and two respectively, and both graphs are extremal
matching immune, it follows that G′ has odd order and thus is an AB graph. If we reverse the C2
operation, G can be constructed from G′ with one vertex expansion and an edge addition. So we
can use the terminology of Section 4.3 and consider whether components of G′ are split or not by
the expansion operation.

First assume some A-component T is split. Then a matching-cut for G can be obtained: Since
a derivation of T exists such that v is a triangle vertex (Lemma 4.3), Lemma 4.8 shows that an
edge cut M exists in T that becomes a matching after the first vertex expansion. Since T is a
block in G′ (Lemma 4.4), M is also an edge cut in G′, and therefore an edge cut and matching-cut
in G.

So now we may assume that no A-component is split. We complete the proof by showing how
an ABC derivation of G can be obtained from the derivation of G′. Let Gi be the first intermediate
graph in the the derivation of G′ that contains v. In Gi, all edges incident with v are part of the
same A-component T of G′. (Or, in the trivial case, v is the initial vertex and has degree 0 at this
point.) Since this triangle component T is not split, in G it is incident with exactly one vertex of
v1 and v2, say v1. (More precisely: in G, no edge of E(T ) is incident with v2.) Now change the
derivation as follows: instead of introducing v at this point in the derivation, introduce v1, and
immediately after v1 is introduced, apply a C operation on v1 introducing v2, and two parallel
edges between them. Continue with the derivation as before, except when the derivation calls for
an A operation on v. In this case, the A-component of G′ that corresponds to this operation is
not split, and therefore in G is incident with exactly one of v1, v2. Apply the A operation on this
vertex instead. This gives an ABC derivation of G, a contradiction. 2

Lemma 4.11 If a minimum counterexample G contains no C3 or C4, then no P2 operation can
be applied to G.

Proof: Suppose a P2 operation can be applied to G. Then in G there are neighbors u and v,
with d(u) = 3 and d(v) = 2. x and y are the other neighbors of u, and z is the other neighbor
of v. If z = x or z = y then G contains a C3, a contradiction. If z is adjacent to x or y, then G
contains a C4, also a contradiction. So after the P2 operation is applied, a graph G′ is obtained
that contains edge xy and vertex z, and z is not equal to or adjacent to x or y. G′ is an ABC
graph. Clearly, G′ cannot be a K1, a C2 or a C3. For every ABC graph G′ other than these three
graphs and every choice of edge xy ∈ E(G′), it is easily checked that there is a C3 or C4 that does
not contain xy (using Lemma 4.2). This corresponds to a C3 or C4 in G, a contradiction. 2
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Lemma 4.12 If a minimum counterexample G contains no C4, then G contains no C3.

Proof: Suppose G is a minimum counterexample that does not contain a C4, and let K be a
triangle in G on vertices v1, v2 and v3. Applying operation C3 on K such that the resulting vertex
is vertex v gives an ABC graph G′. Consider a derivation of G′ with A-components T1, . . . , Tk,
and if the order of G′ is even, C-component P . The edge sets of these components induce the
components T ′

1, . . . , T
′

k resp. P ′ in G. If the order of G′ is even, one C operation is used in every
derivation of G′. In the derivation we consider, x and y will denote the vertices in G′ on which
the C operation is applied, and z will denote the vertex introduced by the C operation. So the
C-component P consists of edge components EC(xz) and EC(yz). We choose a derivation of G′

such that if G′ is simple, then x 6= y, which is possible by Lemma 4.5.

CASE 1: no A-component or C-component of G′ is split.
The proof is analog to the same case in the proof of Lemma 4.10: we change the derivation

of G′ by, instead of introducing vertex v at some point, introducing the appropriate vertex of K,
say v1, and immediately afterwards introducing v2 and v3 using an A operation on v1. Because
no A-components or C-components are split, later A operations or C operations on v can be
replaced by the same operation on the appropriate vi instead. This gives an ABC derivation of
G, a contradiction.

CASE 2: An A-component Ti is split, which does not contain both x and y with x 6= y.
Let Ti be an A-component that is split, so v ∈ V (Ti). Analog to the proof of Lemma 4.10, an

edge cut M in Ti can be constructed that is a matching-cut in T ′

i (Lemma 4.8). Observe that M
is a matching-cut in G if and only if it is an edge cut in G′. If G′ is odd, then Ti is a block of
G′ (Lemma 4.4), so M is also an edge cut in G′. So G′ is even, and Ti is not a block of G′ and
therefore x 6= y in G′. Suppose that in G′, x is not incident with edges from M . Consider any
matching-cut M ′ in EC(xz) that separates x from z. Since edges from M and M ′ share no end
vertices, either M or M ∪M ′ is an edge cut in G′ (Lemma 4.4), and therefore a matching-cut in
G. A similar matching-cut can be constructed if y is not incident with edges from M . We have
now found a matching-cut in all cases, except when M separates x and y and is incident with
both x and y, which concludes case 2.

CASE 3: The C-component P is split.
Case 3.1: x = y. Note that no A-component is split: since x = y, this case would be covered

by Case 2. Recall that we chose the derivation such that x = y only holds if G is not simple, so
since x = y the C-component P consists only of two parallel edges between x = y and a vertex z.
Since P is split, this means that v = x or v = z.

If v = x then v is introduced before the C operation is applied. At this point v is part of a
unique A-component T , which is incident with only one of the vertices v1, v2, v3 in G, say v1, since
T is not split. Now instead of introducing v, introduce v1, and immediately apply an A operation
introducing v2 and v3. Continue with the derivation, where A operations on v are replaced with
A operations on the appropriate vertex vk. The C operation is now applied on the appropriate
two vertices vi and vj (introducing a P3) instead of only on v (introducing a C2). Because no A-
component is split, this ABC derivation constructs G, a contradiction. If v = z then we similarly
obtain a derivation of G by replacing the C operation by an A operation introducing vi and vj ,
and immediately afterwards applying a C operation on vi and vj .

Case 3.2: v 6= x, v 6= y and x 6= y. Consider the operation that introduces v in the derivation
of G′. If v = z this is the C operation, otherwise a B operation on an edge of the C-component. In
both cases, after this operation, v is incident with exactly two edges av and bv, with a 6= b (since
x 6= y). We consider the edge components EC(av) and EC(bv) of G′, and the even order block B
of G′ that contains these. EC(av) and EC(bv) together form a P3-component Q, which only has
terminals a and b when viewed as a subgraph of B. Since P is split we can find edges e ∈ EC(av)
and f ∈ EC(bv) both incident with v, that are not adjacent in G. Let M1 be a matching-cut
in EC(av) that contains e and separates a and v, and let M2 be a matching-cut in EC(bv) that
contains f and separates b and v (Lemma 4.6). Together these form an edge cut M1 ∪M2 for Q
that does not separate a and b. Since a and b are the only terminals of Q in B, this is also an edge
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Figure 3: Triangle component T , and the three matching-cuts from Case 4.

cut in the block B, and therefore in G′. So by choice of the edges e and f , this is a matching-cut
in G.

Case 3.3: v = x and x 6= y. Since x 6= y and P is split, EC(xz) is split. Now Lemma 4.9 shows
there is an edge cut in P that does not separate x from y, that is a matching-cut in P ′. By the
block structure of ABC graphs (Lemma 4.4), this is a matching-cut in G, a contradiction.

Observe that Case 3.1, 3.2 and 3.3 w.l.o.g. cover all possibilities when the C-component is
split, so this concludes Case 3.

Summarizing these three cases, we know that some component is split, by the argument in
Case 1. Case 3 shows that this is not the C-component, so an A-component Ti is split, which then
contains both x and y, and x 6= y by Case 2. This is handled in the final case. Here we will use
the assumption that G contains no C4 for the first time.

CASE 4: An A-component Ti is split, which contains x and y with x 6= y, and the C-
component is not split.

Let T = Ti. If the C-component contains a C4, then since it is not split, G contains a C4 as
well. But we assumed this is not the case, so the C-component consists only of the edges xz and yz.
Similarly, every C4 in G′ is split and therefore incident with v. In addition, it follows that T is not
a triangle, since then the three edges of T together with one edge from E(K) = {v1v2, v1v3, v2v3}
would form a C4 in G. Consider T ′ = G[E(K) ∪ E(T )]. We will describe three matching-cuts
for T ′, and show that no matter how x and y are chosen, one of these matching-cuts is also a
matching-cut in G. The proof is illustrated in Figure 3.

Since T is not a triangle, in a derivation of T , at least one B operation is used. Consider the
last B operation. The 2-terminal 4-cycle corresponding to this operation is split so it has terminals
v and another vertex u. Let a1 and a2 be the other vertices of this 2-terminal 4-cycle. There is a
derivation of T with triangle vertices u and v (Lemma 4.3). Let w be the third triangle vertex.

W.l.o.g. we assume that a1 is adjacent to v1 in T ′, and a2 is adjacent to v2 in T ′. Now we can
define the first matching-cut in T ′: EC(uw) must be a single edge (otherwise T ′ contains a C4).
So in T ′, edge set M1 = {uw, a1v1, a2v2} is a matching-cut (see Figure 3(b)).

Next, we argue that EC(vw) contains an edge e that is incident with v in T , but not with v2 in
T ′. If EC(vw) is a single edge, this is true since otherwise T ′ contains a C4 (recall that EC(uw)
is also a single edge). Otherwise, EC(vw) must be split, and the statement is clear. Similarly,
EC(vw) contains an edge f that is incident with v in T , but not with v1 in T ′.

Using e and f we can find matching-cuts M ′

1 and M ′

2 of EC(vw) (Lemma 4.6) such that
M1 = M ′

1 ∪ {ua1, v2a2} and M2 = M ′

2 ∪ {ua2, v1a1} are matching-cuts in T ′ (see Figure 3(c) and
(d)).

If M is a matching-cut in T ′, then at least one of M , M ∪ {xz} or M ∪ {yz} is a matching-cut
in G unless M separates x from y and x and y are both incident with edges from M . Since T
contains no C4, it is not possible that x = u and y = v (or vice versa). In all other cases, it can
be seen that at least one of M1, M2 or M3 yields a matching-cut in G this way, which concludes
the proof of this case.

Now we have considered all cases, so we have shown that it is not possible that a minimum
counterexample contains a C3 but not a C4, which proves the lemma. 2
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Lemma 4.13 A minimum counterexample G contains no C4.

Proof: The proof is very similar to that of Lemma 4.12. The C4 operation yields an ABC
graph G′. We consider all possible results of applying a reversed C4 operation to an ABC graph
G′. If this reversed C4 operation on edge uv corresponds to a B operation in the A-component
or C-component that contains uv, and no other A-component or C-component is split, an ABC
derivation of G is easily obtained. Otherwise, we can identify a matching-cut in G by considering
matching-cuts in split components, or give a derivation of G. For details see [2]. 2

5 Discussion

We showed that for all matching immune graphs G = (V,E), |E| ≥ ⌈3(|V | − 1)/2⌉ holds. In
addition, we proved that all matching immune graphs with |E| = ⌈3(|V | − 1)/2⌉ are ABC graphs.
To prove this, we first deduced a number of properties of ABC graphs, related to derivations,
block structure and matching-cuts in subgraphs of ABC graphs (Sections 4.2 and 4.3).

ABC graphs can be recognized in polynomial time (see [2] for details). Since we showed that
these are exactly the matching immune graphs with |E| = ⌈3(|V | − 1)/2⌉, the class of graphs
with this relation between order and size is another class for which immunity can be determined
efficiently, in addition to e.g. graphs with maximum degree 3 [5], claw-free graphs and graphs of
bounded treewidth [3].

Graham [7] has investigated a class of matching immune graphs which have no matching
immune subgraphs, called primitive graphs. He gave a construction procedure defining an infinite
class of primitive graphs. In this procedure, two primitive graphs are combined into a new, larger
primitive graph. This procedure is related to ABC graphs in the following way. All triangle
components can be constructed using this procedure, and therefore are primitive graphs. If only
the triangle is taken as a basic primitive graph, all primitive graphs that can be constructed with
the procedure are triangle components. In [7], a number of interesting questions on primitive
graphs are stated. Some were answered in [4], and the others are still open to our knowledge.
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