
Linear-Time Algorithms for Scattering Number

and Hamilton-Connectivity of Interval Graphs�
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Abstract. We show that for all k ≤ −1 an interval graph is −(k + 1)-
Hamilton-connected if and only if its scattering number is at most k.
We also give an O(n +m) time algorithm for computing the scattering
number of an interval graph with n vertices and m edges, which improves
the O(n3) time bound of Kratsch, Kloks and Müller. As a consequence
of our two results the maximum k for which an interval graph is k-
Hamilton-connected can be computed in O(n+m) time.

1 Introduction

The Hamilton Cycle problem is that of testing whether a given graph has
a Hamilton cycle, i.e., a cycle passing through all the vertices. This problem is
one of the most notorious NP-complete problems within Theoretical Computer
Science and remains NP-complete on many graph classes. In contrast, for inter-
val graphs, Keil [19] showed in 1985 that Hamilton Cycle can be solved in
O(n+m) time, thereby strengthening an earlier result of Bertossi [4] for proper
interval graphs. Bertossi and Bonucelli [5] proved that Hamilton Cycle is
NP-complete for undirected path graphs, double interval graphs and rectangle
graphs, all three of which are classes of intersection graphs that contain the class
of interval graphs. We examine whether the linear-time result of Keil [19] can be
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strengthened on interval graphs to hold for other connectivity properties, which
are NP-complete to verify in general.

1.1 Terminology

We only consider undirected finite graphs with no self-loops and no multiple
edges. Throughout the paper we let n and m denote the number of vertices and
edges, respectively, of the input graph.

Let G = (V,E) be a graph. If G has a Hamilton cycle, i.e., a cycle contain-
ing all the vertices of G, then G is hamiltonian. Recall that the correspond-
ing NP-complete decision problem is called Hamilton Cycle. If G contains a
Hamilton path, i.e., a path containing all the vertices of G, then G is traceable.
In this case, the corresponding decision problem is called the Hamilton Path
problem, which is also well known to be NP-complete (cf. [15]). The problems
1-Hamilton Path and 2-Hamilton Path are those of testing whether a given
graph has a Hamilton path that starts in some given vertex u or that is between
two given vertices u and v, respectively. Both problems are NP-complete by a
straightforward reduction from Hamilton Path. The Longest Path problem
is to compute the maximum length of a path in a given graph. This problem is
NP-hard by a reduction from Hamilton Path as well.

Let G = (V,E) be a graph. If for each two distinct vertices s, t ∈ V there
exists a Hamilton path with end-vertices s and t, then G is Hamilton-connected .
If G−S is Hamilton-connected for every set S ⊂ V with |S| ≤ k for some integer
k ≥ 0, then G is k-Hamilton-connected . Note that a graph is Hamilton-connected
if and only if it is 0-Hamilton-connected. The Hamilton Connectivity prob-
lem is that of computing the maximum value of k for which a given graph is
k-Hamilton-connected. Dean [12] showed that already deciding whether k = 0 is
NP-complete. Kužel, Ryjáček and Vrána [21] proved this for k = 1. A straight-
forward generalization of the latter result yields the same for any integer k ≥ 1.
As an aside, the Hamilton Connectivity problem has recently been studied
by Kužel, Ryjáček and Vrána [21], who showed that NP-completeness of the case
k = 1 for line graphs would disprove the conjecture of Thomassen that every
4-connected line graph is hamiltonian, unless P = NP.

A path cover of a graph G is a set of mutually vertex-disjoint paths P1, . . . , Pk

with V (P1)∪· · ·∪V (Pk) = V (G). The size of a smallest path cover is denoted by
π(G). ThePath Cover problem is to compute this number, whereas the 1-Path
Cover problem is to compute the size of a smallest path cover that contains a
path in which some given vertex u is an end-vertex. Because a Hamilton path of
a graph is a path cover of size 1, Path Cover and 1-Path Cover are NP-hard
via a reduction from Hamilton Path and 1-Hamilton Path, respectively.

We denote the number of connected components of a graph G = (V,E) by
c(G). A subset S ⊂ V is a vertex cut of G if c(G − S) ≥ 2, and G is called
k-connected if the size of a smallest vertex cut of G is at least k. We say that G
is t-tough if |S| ≥ t · c(G−S) for every vertex cut S of G. The toughness τ(G) of

a graph G = (V,E) was defined by Chvátal [10] as τ(G) = min
{ |S|
c(G−S) : S ⊂
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V and c(G − S) ≥ 2
}
, where we set τ(G) = ∞ if G is a complete graph. Note

that τ(G) ≥ 1 if G is hamiltonian.
The scattering number of a graph G = (V,E) was defined by Jung [18] as

sc(G) = max{c(G − S) − |S| : S ⊂ V and c(G − S) ≥ 2}, where we set
sc(G) = −∞ ifG is a complete graph. We call a set S on which sc(G) is attained a
scattering set. Note that sc(G) ≤ 0 if G is hamiltonian. Shih, Chern and Hsu [25]
show that sc(G) ≤ π(G) for all graphs G. Hence, sc(G) ≤ 1 if G is traceable. The
Scattering Number problem is to compute sc(G) for a graph G.

A set of p internally vertex-disjoint paths P1, . . . , Pp, all of which have the
same end-vertices u and v of a graph G, is called a stave or p-stave of G, which
is spanning if V (P1)∪· · ·∪V (Pp) = V (G). Given an integer p ≥ 1 and two vertices
u and v of a general input graph G, deciding whether there exists a spanning p-
stave between u and v is clearly an NP-complete problem: for p = 1 the problem
is equivalent to 2-Hamilton Path; for p = 2 the problem is equivalent to the
NP-complete problem of deciding whether a graph is hamiltonian; for p ≥ 3,
the NP-completeness follows easily by induction and by considering the graph
obtained after adding one vertex adjacent to u and v. We call a spanning stave
between two vertices u and v of a graph optimal if it is a p-stave and there does
not exist a spanning (p+ 1)-stave between u and v.

A graph G is an interval graph if it is the intersection graph of a set of closed
intervals on the real line, i.e., the vertices of G correspond to the intervals and
two vertices are adjacent in G if and only if their intervals have at least one point
in common. An interval graph is proper if it has a closed interval representation
in which no interval is properly contained in some other interval.

1.2 Known Results

We first discuss the results on testing hamiltonicity properties for proper interval
graphs. Besides giving a linear-time algorithm for solving Hamilton Cycle on
proper interval graphs, Bertossi [4] also showed that a proper interval graph is
traceable if and only if it is connected. His work was extended by Chen, Chang
and Chang [9] who showed that a proper interval graph is hamiltonian if and
only if it is 2-connected, and that a proper interval graph is Hamilton-connected
if and only if it is 3-connected. In addition, Chen and Chang [8] showed that a
proper interval graph has scattering number at most 2 − k if and only if it is
k-connected.

Below we survey the results on testing hamiltonicity properties for interval
graphs that appeared after Keil [19] solved the Hamilton Cycle problem on
interval graphs.

Testing for Hamilton cycles and Hamilton paths. The O(n+m) time algorithm
of Keil [19] makes use of an interval representation. One can find such a rep-
resentation by executing the O(n + m) time interval recognition algorithm of
Booth and Lueker [6]. If an interval representation is already given, Manacher,
Mankus and Smith [24] showed that Hamilton Cycle and Hamilton Path
can be solved in O(n log n) time. In the same paper, they ask whether the time
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bound for these two problems can be improved to O(n) time if a so-called sorted
interval representation is given. Chang, Peng and Liaw [7] answered this question
in the affirmative. They showed that this even holds for Path Cover.

When no Hamilton path exists. In this case, Longest Path and Path Cover
are natural problems to consider. Ioannidou, Mertzios and Nikolopoulos [17] gave
an O(n4) algorithm for solving Longest Path on interval graphs. Arikati and
Pandu Rangan [1] and also Damaschke [11] showed that Path Cover can be
solved in O(n+m) time on interval graphs. Damaschke [11] posed the complex-
ity status of 1-Hamilton Path and 2-Hamilton Path on interval graphs as
open questions. The latter question is still open, but Asdre and Nikolopoulos [3]
answered the former question by presenting an O(n3) time algorithm that solves
1-Path Cover, and hence 1-Hamilton Path. Li and Wu [22] announced an
O(n+m) time algorithm for 1-Path Cover on interval graphs. Deogun, Kratsch
and Steiner [13] show that for all k ≥ 1 any cocomparability graph, and hence
also any interval graph, has a path cover of size at most k if and only if its
scattering number is at most k. 1 They also prove that a cocomparability graph
G is hamiltonian if and only if sc(G) ≤ 0. Recall that the latter condition is
equivalent to τ(G) ≥ 1. Hung and Chang [16] gave an O(n+m) time algorithm
that finds a scattering set of an interval graph G with sc(G) ≥ 0.

1.3 Our Results

When a Hamilton path does exist. In this case, Hamilton Connectivity is
a natural problem to consider. However, the results of Deogun, Kratsch and
Steiner [13] suggest that trying to characterize k-Hamilton-connectivity in terms
of the scattering number of an interval graph may be more appropriate than
doing this in terms of its toughness. We confirm this by showing that for all
k ≥ 0 an interval graph is k-Hamilton-connected if and only if its scattering
number is at most −(k + 1). Together with the results of Deogun, Kratsch and
Steiner [13] this leads to the following theorem.

Theorem 1. Let G be an interval graph. Then sc(G) ≤ k if and only if

(i) G has a path cover of size at most k when k ≥ 1
(ii) G has a Hamilton cycle when k = 0
(iii) G is −(k + 1)-Hamilton-connected when k ≤ −1.

Moreover, we give an O(n+m) time algorithm for solving Scattering Number
that also produces a scattering set. This improves the O(n3) time bound of a
previous algorithm due to Kratsch, Kloks and Müller [20]. Combining this result
with Theorem 1 yields thatHamilton Connectivity can be solved in O(n+m)
time on interval graphs. For proper interval graphs we combine Theorem 1 with
the result of Chen and Chang [8] to state that for all k ≥ 0, a proper interval
graph is k-Hamilton-connected if and only if it is (k + 3)-connected.

1 This has also been shown by Lehel in an unpublished manuscript [23].
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Damaschke’s algorithm [11] for solving Path Cover on interval graphs, which
is based on the approach of Keil [19], actually solves the following problem in
O(n + m) time: given an interval graph G and an integer p, does G have a
spanning p-stave between the vertex u1 corresponding to the leftmost interval of
an interval model of G and the vertex un corresponding to the rightmost one? We
extend Damaschke’s algorithm in Section 2 to an O(n+m) time algorithm that
takes as input only an interval graph G and finds an optimal stave of G between
u1 and un, unless it detects that it is not hamiltonian. Hence, sc(G) ≥ 1 as shown
by Deogun, Kratsch and Steiner [13]. Therefore, the O(n + m) time algorithm
by Hung and Chang [16] for computing a scattering set may be applied. If there
is an optimal stave between u1 and un, we show how this enables us to compute
a scattering set of G in O(n + m) time. We then conclude that G contains a
spanning p-stave between u1 and un if and only if sc(G) ≤ 2− p.

In Section 3 we prove Theorem 1 (iii), i.e., the case when k ≤ −1. In particular,
for proving the subcase k = −1, we show that an interval graph G is Hamilton-
connected if it contains a spanning 3-stave between the vertex corresponding to
the leftmost interval of an interval model of G and the vertex corresponding to
the rightmost one.

2 Spanning Staves and the Scattering Number

In order to present our algorithm we start by giving the necessary terminology
and notations.

A set D ⊆ V dominates a graph G = (V,E) if each vertex of G belongs to D
or has a neighbor in D. We will usually denote a path in a graph by its sequence
of distinct vertices such that consecutive vertices are adjacent. If P = u1 . . . un is
a path, then we denote its reverse by P−1 = un . . . u1. We may concatenate two
paths P and P ′ whenever they are vertex-disjoint except for the last vertex of P
coinciding with the first vertex of P ′. The resulting path is then denoted by P ◦P ′.

A clique path of an interval graphGwith vertices u1, . . . , un is a sequenceC1, . . . ,
Cs of all maximal cliques of G, such that each edge of G is present in some clique
Ci and each vertex of G appears in consecutive cliques only. This yields a specific
intervalmodel forG that wewill use throughout the remainder of this paper: a ver-
tex ui ofG is represented by the interval Iui = [�i, ri], where �i = min{j : ui ∈ Cj}
and ri = max{j : ui ∈ Cj}, which are referred to as the start point and the end
point of ui, respectively. By definition, C1 andCs are maximal cliques. Hence both
C1 and Cs contain at least one vertex that does not occur in any other clique. We
assume that u1 is such a vertex in C1 and that un is such a vertex in Cs. Note that
Iu1 = [1, 1] and Iun = [s, s] are single points.

Damaschke made the useful observation that any Hamilton path in an interval
graph can be reordered into a monotone one, in the following sense.

Lemma 1 ([11]). If the interval graph G contains a Hamilton path, then it
contains a Hamilton path from u1 to un.

We use Lemma 1 to rearrange certain path systems in G into a single path
as follows. Let P be a path between u1 and un and let Q = (Q1, . . . , Qk) be a
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collection of paths, each of which contains u1 or un as an end-vertex. Further-
more, P and all the paths of Q are assumed to be vertex-disjoint except for
possible intersections at u1 or un. Consider the path Q1. By symmetry, it may
be assumed to contain u1. We apply Lemma 1 to P ◦ (Q1 − un) and obtain a
path P ′ between u1 and un containing all the vertices of P ∪ Q1. Proceeding
in a similar way for the paths Q2, . . . , Qk, we obtain a path between u1 and
un on the same vertex set as P ∪ ⋃k

j=1 Qj . We denote the resulting path by
merge(P,Q1, . . . , Qk) or simply by merge(P,Q).

Let G be an interval graph with all the notation as introduced above. In
particular, the vertices of G are u1, . . . , un, we consider a clique path C1, . . . , Cs,
and the start point and the end point of each ui are �i = min{j : ui ∈ Cj} and
ri = max{j : ui ∈ Cj}, respectively, where Iu1 = [1, 1] and Iun = [s, s]. We can
obtain this representation of G by first executing the O(n+m) time recognition
algorithm of interval graphs due to Booth and Lueker [6] as their algorithm also
produces a clique path C1, . . . , Cs for input interval graphs.

Algorithm 1 is our O(n+m) time algorithm for finding an optimal spanning
stave between u1 and un if it exists. It gradually builds up a set P of internally
disjoint paths starting at u1 and passing through vertices of Ct \ Ct+1 before
moving to Ct ∩ Ct+1 for t = 1, . . . , s − 1. It is convenient to consider all these
paths ordered from u1 to their (temporary) end-vertices that we call terminals ,
and to use the terms predecessor, successor, and descendant of a fixed vertex
v in one of the paths with the usual meaning of a vertex immediately before,
immediately after, and somewhere after v in one of these paths, respectively.

We note that the path system P provided by Algorithm 1 is a valid stave. A
routine check confirms that the following loop invariant holds at line 6: the last
vertices of paths from P all belongs to the clique Ct. This is guaranteed by the
computations at lines 10–18. At line 20 it also holds that all vertices of Ct \Ct+1

appear in the current P ∪ Q, as they have been included at line 8. When the
loop terminates, the remaining vertices are incorporated at line 22. Thus the
resulting path system P is a spanning stave.

In Theorem 2 we show that no spanning stave may consist of more than
2− sc(G) paths. On the other hand, we will also show that the k-stave found by
Algorithm 1 can be supplied with a scattering set witnessing that k ≥ 2− sc(G).
In other words this is an optimal scattering set whose existence also proves the
optimality of the spanning stave. For this goal, we first develop some auxiliary
terminology related to our algorithm.

We say that a vertex v has been added to a path, if, at some point in the
execution of Algorithm 1, some path R ∈ P such that v /∈ V (R) has been ex-
tended to a longer path containing v (and possibly some other new vertices). If
ui has been processed by the algorithm and added to a path at lines 8 or 11
of Algorithm 1, we say that ui has been activated at time ai, and we assign ai
the current value of the variable t. Thus, we think of time steps t = 1, . . . , t = s
during the execution of the algorithm. When at the same or a later stage a
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Input: A clique-path C1, . . . , Cs in an interval graph G.
Output: An optimal spanning stave P between u1 and un, if it exists.

1 begin
2 let p = deg(u1);
3 let Ri = u1 for all i = 1, . . . , p;
4 let P = {R1, . . . , Rp};
5 let Q = ∅;
6 for t := 1 to s− 1 do
7 choose a P ∈ P whose terminal has the smallest end point among all

terminals;
8 if Ct \ (Ct+1 ∪⋃

(P ∪Q)) �= ∅ then extend P by attaching vertices of
Ct \ (Ct+1 ∪⋃

(P ∪Q)) in an arbitrary order
9 for every path R ∈ P do

10 if the terminal of R is not in Ct+1 then
11 try to extend R by a new vertex u from (Ct ∩ Ct+1) \⋃(P ∪Q)

with the smallest end point;
12 if such u does not exist then
13 remove R from P ;
14 insert R into Q;
15 decrement p;
16 if p = 0 then report that G has no spanning 1-stave

between u1 and un and quit
17 end

18 end

19 end

20 end
21 choose any P ∈ P ;
22 extend P by attaching vertices of Cs \⋃(P ∪Q) in an arbitrary order;
23 let P = merge(P,Q);
24 for every path R ∈ P \ P do extend R by un;
25 report the optimal spanning p-stave P .

26 end
Algorithm 1. Finding an optimal spanning stave

vertex uj has been added as a successor of ui to a path, we say that ui has been
deactivated at time di, and assign di = aj. Hence, as soon as ai and di have
assigned values, we have �i ≤ ai ≤ di ≤ ri. Furthermore, any of the implied
inequalities holds whenever both of its sides are defined. Note that any of these
inequalities may be an equality; in particular, a vertex can be activated and
deactivated at the same time.

If the involved parameters have assigned values, we consider the open (time)
intervals (�i, ai), (ai, di) and (di, ri), and we say that ui is free during (�i, ai) if
this interval is nonempty, active during (ai, di) if this interval is nonempty, and
depleted during (di, ri) if this interval is nonempty. In particular, note that the
vertices that are added to a path at line 8 (if any) are from Ct \ Ct+1, so they
satisfy ri = t and ai = t. Such vertices will not be active or depleted during any
(nonempty) time interval, but they are free during the time interval (�i, ri) if
this interval is nonempty.
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For 1 ≤ j ≤ k ≤ s, we define Cj,k =
(⋃k

i=j Ci

)
.

The following lemma is crucial. (Its proof is omitted due to space restrictions.)

Lemma 2. Suppose that Algorithm 1 terminates at line 16 or finishes an iter-
ation of the loop at lines 6–20. Let the current value of the variable t be also
denoted by t. If there is at least one depleted vertex during the interval (t, t+1),
then there exists an integer t′ < t with the following properties:

(i) Ct′+1,t \ (Ct′ ∪ Ct+1) �= ∅,
(ii) a unique vertex ui ∈ Ct′ ∩Ct+1 is active during (t′, t′+1) and is depleted

during (t, t+ 1),
(iii) all vertices that are active during (t, t+1) are also active during (t′, t′+1),

with the only possible exception of the last descendant of ui (which we
denote by v) that can be free during (t′, t′ + 1),

(iv) all vertices that are depleted during (t, t + 1) and distinct from ui are
also depleted during (t′, t′ + 1),

(v) all vertices that are active during (t′, t′+1) are also active during (t, t+1),
with the only exception of ui, and

(vi) all vertices that are free during (t′, t′ + 1) are also free during (t, t+ 1),
with the only possible exception of v if it is active during (t, t+ 1).

Now we are ready to state and prove the main structural result.

Theorem 2. An interval non-complete graph G contains a spanning p-stave
between u1 and un if and only if sc(G) ≤ 2− p.

Proof. Let us first assume that P = (R1 . . . , Rp) is a spanning p-stave between
u1 and un. If G is complete, then the claim is trivial. Otherwise, let S ⊂ V (G) be
a scattering set. We claim that u1, un /∈ S. Suppose the contrary. Since the vertex
u1 is simplicial, i.e. its neighborhood induces a clique, we get that c(G − S) ≤
c(G− (S−{u1})) and therefore c(G−S)− |S| < c(G− (S−{u1}))− |S−{u1}|,
a contradiction with the choice of S. The argument for un is symmetric.

Since each path in P connects u1 and un, the union of intervals corresponding
to the internal vertices of such a path is the interval [1, s]. In other words, the
internal vertices of each path in P dominate G. Hence, the vertex cut S contains
an internal vertex from each path of P . From each path Ri of P , we choose a
vertex si ∈ S and set S′ = {s1, . . . , sp}.

Consider the spanning subgraph G′ of G induced by the edges of P . Observe
that G′ − S′ has two components. If we remove the remaining vertices of S \ S′

one by one, then with each vertex we remove, the number of components of the
remaining graph can increase by at most one as u1, un /∈ S. Hence c(G − S) ≤
c(G′ − S) ≤ 2 + |S| − p and sc(G) ≤ 2 − p, proving the forward implication of
the statement.

For the other direction, let us assume that G does not have a spanning p-
stave between u1 and un. If deg(u1) < p, then let S be the set of neighbors
of u1. Because G is not a complete graph, un /∈ S, i.e., S is a vertex cut and
c(G − S) ≥ 2. Then sc(G) ≥ c(G − S) − |S| ≥ 2 − |S| > 2 − p. Otherwise, if
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deg(u1) ≥ p, then during the execution of Algorithm 1, at some stage the value
set at line 15 becomes smaller than p. Suppose t1 is the value of the variable t
at this moment. We will complete the proof by constructing a scattering set S
and showing that for this set c(G− S)− |S| > 2− p.

We repeatedly use Lemma 2 and find a finite sequence t1, t2, . . . , tk, such that
ti+1 = (ti)

′ as long as there are depleted vertices during (ti, ti + 1) for i < k.
Notice that there are no depleted vertices during (1, 2), i.e., this process stops and

we have no depleted vertices during (tk, tk+1). We choose S =
⋃k

i=1(Cti ∩Cti+1)
and prove that G− S has at least |S| − p+ 3 components.

The subgraphsG[C1,tk ]−S and G[Ct1+1,s]−S contain u1 and un, respectively;
in particular, they have at least one component each. By property (i) in Lemma 2,
G[Cti+1+1,ti ] − S has at least one component for each i ∈ {1, . . . , k − 1}. Since
all these components are distinct components of G− S, the graph G− S has at
least k + 1 components.

By properties (ii), (v) and (vi) in Lemma 2, (Cti+1 ∩ Cti+1+1) \ (Cti ∩ Cti+1)
contains only vertices that are depleted during (ti+1, ti+1 + 1) for each i ∈
{1, . . . , k− 1}. Further, Ct1 ∩Ct1+1 has no vertices that are free during (t, t+1),
because at least one path is not extendable at time t1. Also this set has at most
p− 1 vertices that are active during (t, t+1). Hence, the remaining vertices are
depleted. By properties (ii) and (iv) in Lemma 2, for each i ∈ {1, . . . , k − 1},
exactly one vertex that is depleted during (ti, ti+1) has a different status during
(ti+1, ti+1 + 1) and is active. It follows that |S| ≤ (p− 1) + (k − 1) = k + p− 2
as required. �

Recall that the scattering number can be determined in O(n+m) time by an
algorithm of Hung and Chang [16] if the scattering number is positive. Then, by
analyzing Algorithm 1, we get the following result:

Corollary 1. The scattering number as well as a scattering set of an interval
graph can be computed in O(n+m) time.

The only operation whose time complexity has not been discussed is merge(P,Q)
at line 23. We refer to Damaschke’s proof of Lemma 1 to verify that this can be
implemented in O(n+m) time. Our proof of Theorem 2 provides a construction
of a scattering set that can be straightforwardly implemented in linear time.

3 Hamilton-Connectivity

In this section we prove our contribution to Theorem 1, which is the following.

Theorem 3. For all k ≥ 0, an interval graph G is k-Hamilton-connected if and
only if sc(G) ≤ −(k + 1).

Proof. Let k ≥ 0 and G be an interval graph with leftmost and rightmost vertices
u1 and un as defined before. The statement of Theorem 3 is readily seen to hold
when G is a complete graph. Hence we may assume without loss of generality
that G is not complete.
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First suppose that G is k-Hamilton-connected. Then G has at least k + 3
vertices. We claim that G − R is traceable for every subset R ⊂ V (G) with
|R| ≤ k + 2. In order to see this, suppose that R ⊆ V (G) with |R| ≤ k + 2.
We may assume without loss of generality that |R| = k + 2. Let s and t be two
vertices of R. By definition, G∗ = G − (R \ {s, t}) has a Hamilton path with
end-vertices s and t. Hence G − R = G∗ − {s, t} is traceable. Below we apply
this claim twice.

Because G is not complete, G has a scattering set S. By definition, S is a
vertex cut. Hence S = {s1, . . . , s�} for some � ≥ k+3, as otherwise G−S would
be traceable, and thus connected, due to our claim. Let T = {s1, . . . , sk+2} and
let U = {sk+3, . . . , s�}. By our claim, G′ = G − T is traceable implying that
sc(G′) ≤ 1 [25]. Because c(G′ − U) = c(G − S) ≥ 2, we find that U is a vertex
cut of G′. We use these two facts to derive that 1 ≥ sc(G′) ≥ c(G′ −U)− |U | =
c(G−T −U)−|T |−|U |+ |T | = c(G−S)−|S|+ |T | = sc(G)+ |T | = sc(G)+k+2,
implying that sc(G) ≤ 1− (k + 2) = −(k + 1), as required.

Now suppose that sc(G) ≤ −(k+1). First let k = 0. By Theorem 2, there exists
a spanning 3-stave P = (P,Q,R) between u1 and un. Let v, w be an arbitrary
pair of vertices of G. We distinguish four cases in order to find a Hamilton path
between v and w.

Case 1: v = u1 and w = un. In this case, merge(P,Q,R) is the desired Hamilton
path.

Case 2: v = u1 and w �= un. Assume without loss of generality that w ∈ R. We
split R before w into the subpaths R1 and R2, i.e., w becomes the first vertex
of R2 and it does not belong to R1. Then merge(P,Q,R1) ◦ R−1

2 is the desired
path. The case with v �= u1 and w = un is symmetric.

Case 3: v �= u1 and w �= un belong to different paths, say v ∈ Q and w ∈ R.
We split Q after v into Q1 and Q2, and we also split R before w, as above. Then
Q−1

1 ◦merge(P,Q2, R1) ◦R−1
2 is the desired path.

Case 4: v �= u1 and w �= un belong to the same path, say Q. Without loss of
generality, assume that both v �= u1 and w �= un appear in this order on Q.
We split Q after v and before w into three subpaths Q1, Q2, Q3. If v and w are
consecutive on Q, i.e., when Q2 is empty, then Q−1

1 ◦merge(P,R) ◦Q−1
3 is the

desired path. Otherwise, let z be any vertex on R that is a neighbor of the first
vertex of Q2. Such z exists since the path R dominates G. We split R after z
into R1 and R2. By the choice of z, R1 and Q2 can be combined through z into
a valid path R′ containing exactly the same vertices as R1 and Q2 and starting
at u1. Then we choose Q−1

1 ◦merge(P,R′, R2) ◦Q−1
3 .

Now let k ≥ 1. Let S be a set of vertices with |S| ≤ k. We need to show that G−S
is Hamilton-connected. Let T be a scattering set of G − S and let S∗ = S ∪ T .
Because T is a scattering set of G−S, we find that S∗ is a vertex cut of G. We use
this to derive that sc(G−S) = c(G−S−T )−|T | = c(G−S∗)−|S∗|+|S∗|−|T | ≤
sc(G) + k− 0 ≤ −1. Then, by returning to the case k = 0 with G− S instead of
G, we find that G − S is Hamilton-connected, as required. This completes the
proof of Theorem 3. �
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4 Future Work

We conclude our paper by posing a number of open problems. We start with
recalling two open problems posed in the literature. First of all, Damaschke’s
question [11] on the complexity status of the 2-Hamilton Path problem is still
open. Our results imply that we may restrict ourselves to interval graphs with
scattering number equal to 0 or 1. This can be seen as follows. Let G be an
interval graph that together with two of its vertices u and v forms an instance of
2-Hamilton Path. We apply Corollary 1 to compute sc(G) in O(n +m) time.
If sc(G) < 0, then G is Hamilton-connected by Theorem 1. Then, by definition,
there exists a Hamilton path between u and v. If sc(G) > 1, then G is not
traceable, also due to Theorem 1. Hence, there exists no Hamilton path between
u and v.

Second, Asdre and Nikolopoulos [3] asked about the complexity status of the
�-Path Cover problem on interval graphs. This problem generalizes 1-Path
Cover and is to determine the size of a smallest path cover of a graph G
subject to the additional condition that every vertex of a given set T of size � is
an end-vertex of a path in the path cover. The same authors show that both �-
Path Cover and 2-Hamilton Path can be solved in O(n+m) time on proper
interval graphs [2].

The Spanning Stave problem is that of computing the minimum value of p
for which a given graph has a spanning p-stave. Because a Hamilton path of a
graph is a spanning 1-stave andHamilton Path is NP-complete, this problem is
NP-hard. What is the computational complexity of Spanning Stave on interval
graphs?

Kratsch, Kloks and Müller [20] gave an O(n3) time algorithm for solving
Toughness on interval graphs. Is it possible to improve this bound to linear on
interval graphs just as we did for Scattering Number?

Finally, can we extend our O(n + m) time algorithms for Hamilton Con-
nectivity and Scattering Number to superclasses of interval graphs such
as circular-arc graphs and cocomparability graphs? The complexity status of
Hamilton Connectivity is still open for both graph classes, although Hamil-
ton Cycle can be solved in O(n2 logn) time on circular-arc graphs [25] and in
O(n3) time on cocomparability graphs [14]. It is known [20] that Scattering
Number can be solved in O(n4) time on circular-arc graphs and in polynomial
time on cocomparability graphs of bounded dimension.

Acknowledgement. We thank referees for valuable references to related works.
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