
Computing minimum distortion embeddings into a path for

bipartite permutation graphs and threshold graphs∗

Pinar Heggernes† Daniel Meister† Andrzej Proskurowski‡

Abstract

The problem of computing minimum distortion embeddings of a given graph into a line
(path) was introduced in 2004 and has quickly attracted significant attention with sub-
sequent results appearing in recent stoc and soda conferences. So far, all such results
concern approximation algorithms or exponential-time exact algorithms. We give the first
polynomial-time algorithms for computing minimum distortion embeddings of graphs into
a path when the input graphs belong to specific graph classes. In particular, we solve this
problem in polynomial time for bipartite permutation graphs and threshold graphs. For
both graph classes, the distortion can be arbitrarily large. The graphs that we consider are
unweighted.

1 Introduction

A metric space is defined by a set of points and a distance function between pairs of points. Given
two metric spaces (U, d) and (U ′, d′), an embedding of the first into the second is a mapping f :
U → U ′. The embedding has distortion k if for all x, y ∈ U , d(x, y) ≤ d′(f(x), f(y)) ≤ k ·d(x, y).
Low distortion embeddings between metric spaces are well-studied and have a long history.
Embeddings of finite metric spaces into low-dimensional geometric spaces have applications in
various areas of computer science, like computer vision [23] and computational chemistry (see
[12, 13] for an introduction and a list of applications). Traditionally, combinatorial problems on
low distortion embeddings have been subject to extensive study. Results in this direction give
bounds on the distortion within which a metric space of a given class can be embedded into a
metric space of another class. The study of algorithmic problems on low distortion embeddings
is more recent, and it concerns computing a minimum (or low) distortion embedding of a given
metric space to another (or a class of) given metric space(s).

Minimum distortion embeddings are difficult to compute. It is NP-hard even to approximate
by a ratio better than 3 a bijective minimum distortion embedding between two given finite 3-
dimensional metric spaces [19].

Every finite metric space can be represented by a matrix whose entries are the distances
between pairs of points, and hence corresponds to a graph. Kenyon et al. [14] initiated the study

∗This work is supported by the Research Council of Norway. A preliminary version was presented at SWAT
2008.

†Department of Informatics, University of Bergen, Norway. Emails: pinar.heggernes@ii.uib.no,

daniel.meister@ii.uib.no
‡Department of Information and Computer Science, University of Oregon, USA. Email:

andrzej@cs.uoregon.edu

1

of computing a minimum distortion embedding of a given graph onto1 another given graph, and
they gave a parametrised algorithm for computing a minimum distortion embedding between
an arbitrary unweighted graph and a bounded-degree tree. Subsequently, Badoiu et al. [3] gave
a constant-factor approximation algorithm for computing minimum distortion embeddings of
arbitrary unweighted graphs into trees.

Since then, computing a minimum distortion embedding for a given graph on n vertices
into a path was identified as a fundamental problem. This is exactly the problem that we
study in this paper. Bădoiu et al. [2] showed that this problem is hard to approximate within a
constant factor. They gave an exponential-time exact algorithm and a polynomial-time O(n1/2)-
approximation algorithm for arbitrary unweighted input graphs, along with a polynomial-time
O(n1/3)-approximation algorithm for unweighted trees. In another paper, Bădoiu et al. [1]
showed that the problem is hard to approximate by a factor polynomial in n, even for weighted
trees. They also gave a better polynomial-time approximation algorithm for general weighted
graphs, along with a polynomial-time algorithm that approximates the minimum distortion
embedding of a weighted tree into a path by a factor that is polynomial in the distortion. Finally,
Fellows et al. [7] showed that whether a general unweighted input graph can be embedded into
a path with distortion at most d is fixed-parameter tractable when parametrised by d. They
also showed that for weighted input graphs, the problem is NP-hard for every fixed d.

We initiate the study of designing polynomial-time algorithms for exact computation of min-
imum distortion embeddings into a path for input graphs of specific graph classes. In particular,
we give polynomial-time algorithms for the solution of this problem on bipartite permutation
graphs and on threshold graphs. Bipartite permutation graphs are bipartite graphs, and thresh-
old graphs are split graphs. Deciding whether a bipartite graph or a split graph can be embedded
into a path with distortion at most d is NP-hard [11]. Thus, the results of this paper complement
the hardness results and narrow the gap between known tractable and intractable cases. Our
input graphs are unweighted, and this restriction is necessary as otherwise the results would
extend to arbitrary weighted complete graphs, which can encode arbitrary finite metric spaces.
It is important to note that the minimum distortion required to embed an unweighted bipartite
permutation or threshold graph into a path is unbounded and it can be Θ(n). All previous algo-
rithms for exact computation of minimum distortion into a path, mentioned above, are practical
only when distortion is bounded.

Minimum distortion into a path is very closely related to the widely known and extensively
studied graph parameter bandwidth. The only difference between the two parameters is that
a minimum distortion embedding has to be non-contractive, meaning that the distance in the
embedding between two vertices of the input graph has to be at least their original distance,
whereas there is no such restriction for bandwidth. Bandwidth is known to be one of the hardest
graph problems; it is NP-hard even for very simple graphs like caterpillars of hair-length at
most 3 [18], and it is hard to approximate by a constant factor even for trees [4]. Polynomial-
time algorithms for the exact computation of bandwidth are known for very few graph classes,
including bipartite permutation graphs [10] and threshold graphs (that are interval graphs)
[15, 22]. However, simple examples exist to show that these bandwidth algorithms cannot be
used to generate minimum distortion embeddings into a path for these graph classes. In fact,
there exist very simple bipartite permutation graphs, like K3,4, for which no optimal bandwidth
layout corresponds to a minimum distortion embedding into a path. It should be noted that
the bandwidth and the minimum distortion into a path of a graph can be very different. For

1They study a more restricted version of the problem where both graphs have the same number of vertices.

2

example, it is common knowledge that a cycle of length n has bandwidth 2, whereas its minimum
distortion into a path is Ω(n). In this paper, we also prove that the latter is exactly n − 1.

The running times of the algorithms we present in this paper are O(n2) for bipartite per-
mutation graphs and O(n) for threshold graphs. We would like to mention that our algorithms
operate significantly different than known (non-trivial) bandwidth algorithms. Most algorithms
for bandwidth take as input a graph and an integer k, and decide whether the bandwidth of the
input graph is at most k. The bandwidth of the graph can afterwards be computed by binary
search on possible values of k. As opposed to this approach, both of the algorithms that we
present in this paper compute the minimum distortion into a path of a graph directly.

This paper is organised as follows. In the next section we give the necessary definitions
and notations. In Section 3 we give the first preliminary results on simple graphs, like cycles.
Sections 4 and 5 present the polynomial-time algorithms for threshold graphs and bipartite
permutation graphs, respectively.

2 Definitions and notations

We study simple finite undirected unweighted graphs that are connected. A graph is denoted by
G = (V, E), where V is the vertex set and E is the edge set of G. Usually we refer to |V | as n.
The set of neighbours of a vertex v is denoted by NG(v), and NG[v] = NG(v) ∪ {v}. Similarly,
for S ⊆ V , NG[S] =

⋃
v∈S NG[v]. A vertex u of G with NG[u] = V is called universal. The

degree of a vertex v is dG(v) = |NG(v)|. We will omit the subscripts when the graph is clear
from the context. Two non-adjacent vertices u and v are called false twins if N(u) = N(v). The
subgraph of G induced by the vertices in S is denoted by G[S]. For any v ∈ V , G−v denotes
G[V \ {v}]. A u, v-path is a path between u and v, including u and v. The distance dG(u, v)
between two vertices u and v in G is the number of edges in a shortest u, v-path in G. For any
mapping f from V to (a subset of) Z, the distance df (u, v) between u and v in f is |f(u)−f(v)|.
We write u ≺f v when f(u) < f(v). For a vertex v of G, every vertex u with u ≺f v is to the
left of v, and every vertex w with v ≺f w is to the right of v in f . We will also informally write
leftmost and rightmost vertex accordingly.

An embedding into a path (line) for a graph G = (V, E) is a mapping E : V → Z. In the
rest of this paper we use simply embedding to mean an embedding into a path. An embedding
E is non-contractive if dE(u, v) ≥ dG(u, v) for every pair of vertices u, v ∈ V . Note that this
condition can only be satisfied by connected graphs. The distortion D(G, E) of a non-contractive
embedding E for G is defined to be the smallest k such that dE(u, v) ≤ k ·dG(u, v) for every pair
of vertices u, v ∈ V . Since we consider only unweighted graphs, it is easy to see that D(G, E)
is the smallest k such that dE(u, v) ≤ k for every edge uv of G (see also [14]). A minimum
distortion embedding is a non-contractive embedding for G of smallest possible distortion. In
this paper, the distortion of G, denoted by D(G), is the distortion of a minimum distortion
embedding for G. Hence, our purpose is to compute D(G) when G is a bipartite permutation
graph or a threshold graph.

Each integer (position) between the smallest and the largest integers that are mapped to
in an embedding will be called a slot of that embedding. Exactly n slots of a non-contractive
embedding are occupied by the vertices of G, and the rest are called empty slots. For a given
vertex v, we refer to the rightmost vertex to the left of v of a certain property by the close
vertex to the left of v of that property (close vertex to the right is defined symmetrically). For
two vertices u, v, where u ≺E v, a vertex w is between u and v in E if E(u) ≤ E(w) ≤ E(v). In

3

particular, w can be equal to u or v. The vertex ordering underlying E , denoted by ord(E), is an
ordered list of the n vertices occupying the non-empty slots of E in increasing order of positions.

In general, a vertex ordering for G = (V, E) is a mapping σ : V → {1, 2, . . . , |V |}, thus a
special kind of embedding. Since every ordering can be considered as a permutation of V , we
will also give an ordering as an ordered list of vertices σ = 〈x1, x2, . . . , xn〉. For an integer k ≥ 0,
we call σ a k-ordering for G if for every edge uv of G, dσ(u, v) ≤ k. The bandwidth of G,
bw(G), is the smallest k such that G has a k-ordering. Note that for a minimum distortion
embedding E for G, ord(E) is not necessarily a minimum bandwidth ordering for G. Similarly,
adding a minimum number of empty slots to a minimum bandwidth ordering to achieve a non-
contractive embedding does not necessarily result in a minimum distortion embedding for G. A
simple example is Cn, the cycle on n vertices, for which minimum distortion embeddings are
without empty slots (as we will show in the next section), but no minimum bandwidth ordering
is a minimum distortion embedding.

Each of the graph classes studied in this paper will be introduced in the section that presents
results on it. All graph classes mentioned in this paper can be recognised in linear time [5, 9].

3 Preliminary results on distortion

3.1 Minimum distortion embeddings of arbitrary graphs

In this subsection we present results on minimum distortion embeddings that will be useful for
our proofs later in the paper. We start by showing that in a minimum distortion embedding
we can always assume consecutive vertices to have the same distance in the embedding as they
have in the graph.

Lemma 3.1 Let G be a connected graph, and let E be an embedding for G with ord(E) =
〈x1, . . . , xn〉. If dE(xi, xi+1) ≥ dG(xi, xi+1) for every 1 ≤ i < n then E is non-contractive.

Proof. Assume for a contradiction that dE(xi, xi+1) ≥ dG(xi, xi+1) for every 1 ≤ i < n, but that
E is not non-contractive. Then, there is a pair u, v of vertices of G such that dE(u, v) < dG(u, v).
Among all such pairs we choose u and v with smallest dE(u, v). Without loss of generality, we
can assume that u appears to the left of v in E . If u = xi and v = xi+1 for some 1 ≤ i < n then
dE(xi, xi+1) < dG(xi, xi+1), which is a contradiction to our assumption about E . So, there is a
vertex w between u and v in E , w 6= u, v, and by the choice of u and v, dE(u, w) ≥ dG(u, w) and
dE(w, v) ≥ dG(w, v). However, dE(u, v) = dE(u, w)+dE(w, v) and dG(u, v) ≤ dG(u, w)+dG(w, v)
contradict the choice of u and v.

Corollary 3.2 Every connected graph G has a minimum distortion embedding E with ord(E) =
〈x1, . . . , xn〉 such that dE(xi, xi+1) = dG(xi, xi+1) for every 1 ≤ i < n.

Proof. Let F be a minimum distortion embedding for G, and let ord(F) = 〈x1, . . . , xn〉.
Obtain E by placing x1 in the slot at position 1 and xi+1 at distance dG(xi, xi+1) to the right of
xi for every 1 ≤ i < n. Informally spoken, E is obtained from ord(F) by adding the minimum
number of necessary empty slots between consecutive vertices. Then, E satisfies the condition of
Lemma 3.1, thus is non-contractive. It holds that dE(xi, xi+1) ≤ dF (xi, xi+1), 1 ≤ i < n, so that
dE(u, v) ≤ dF (u, v) for every pair u, v of adjacent vertices. Thus, D(G) ≤ D(G, E) ≤ D(G,F),
and E is a minimum distortion embedding for G.

4

About the above result, note in particular that there are no empty slots between consecutive
vertices in E that are adjacent in G. We say that an embedding does not contain unnecessary
empty slots if it satisfies the distance condition of Corollary 3.2, i.e., consecutive vertices in the
embedding are at distance exactly their distance in the graph.

A bipartite graph is a graph whose vertex set can be partitioned into two independent sets.
We denote such a graph by G = (A, B, E) where A ∪ B is the vertex set of G, and A and B

are independent sets, also called colour classes. If G is a connected bipartite graph, then the
partition of the vertex set into the two colour classes is unique.

Lemma 3.3 The distortion of a connected bipartite graph is an odd integer.

Proof. Let G = (A, B, E) be a connected bipartite graph, and let E be a minimum distortion
embedding for G. Let ord(E) = 〈x1, . . . , xn〉. According to Corollary 3.2, we can choose E such
that dE(xi, xi+1) = dG(xi, xi+1). Then, xi and xi+1 belong to the same colour class if and only
if dE(xi, xi+1) is even. By induction, it can be shown that the vertices at even distance from
xi in E are exactly the vertices from the colour class of xi. Hence, u and v belong to the same
colour class of G if and only if dE(u, v) is even. Since adjacent vertices of G belong to different
colour classes, every edge joins two vertices at odd distance in E . Thus, D(G, E) is odd.

Lemma 3.4 For every connected graph G, D(G) ≥ bw(G).

Proof. Let E be a minimum distortion embedding for G with ord(E) = 〈x1, . . . , xn〉. For every
pair xi, xi+r of adjacent vertices of G, dE(xi, xi+r) ≥ r. Thus, ord(E) is a D(G, E)-ordering and
bw(G) ≤ D(G, E) = D(G).

In some of our proofs, we will identify a subgraph of a given graph and use the distortion of
the subgraph as a lower bound for the distortion of the given graph. For this reason, we need the
following lemmas. We say that a subgraph H of G is distance-preserving if dH(u, v) ≤ dG(u, v)
for all u, v ∈ V (H). It follows directly that distances in H and G are then equal, since every
path in H is a path in G. In particular, distance-preserving subgraphs are induced subgraphs.

Lemma 3.5 Let H be a subgraph of a graph G. If H is a distance-preserving subgraph of G

then D(G) ≥ D(H).

Proof. Let E be a minimum distortion embedding for G, and let F be obtained from E by
removing all vertices that are not in H. Let u and v be vertices of H. Clearly, dF (u, v) = dE(u, v)
and D(H,F) ≤ D(G, E). Since H is distance-preserving and E is non-contractive for G, we obtain
dH(u, v) = dG(u, v) ≤ dE(u, v) = dF (u, v). Hence, F is a non-contractive embedding for H, and
thus D(H) ≤ D(G).

For applying Lemma 3.5, the main task is to identify distance-preserving subgraphs. We
give sufficient conditions for two easy situations.

Lemma 3.6 Let u and v be two false twin vertices of a graph G. Let H be a connected subgraph
of G that contains u and v. If H−v is a distance-preserving subgraph of G then H is a distance-
preserving subgraph of G.

5

Proof. Let H−v be distance-preserving. Let a and b be two vertices of H. If a 6= v and b 6= v

then dH(a, b) ≤ dH−v(a, b) since adding vertices does not increase distances. Now, let a = v.
If b = u then u and v have a common neighbour in H (since H is connected) and G, and thus
dH(v, u) = dG(v, u) = 2. If b 6= u then dG(u, b) = dG(v, b). Let (w0, w1, . . . , ws) be a shortest
u, b-path in H−v. By H−v being distance-preserving, dG(u, b) = s. Then, (v, w1, . . . , ws) is
a v, b-path in H, so that v and b are at distance at most s = dG(v, b) in H. Hence, H is a
distance-preserving subgraph of G.

Lemma 3.7 Let u and v be two vertices of a graph G such that NG(v) ⊆ NG[u]. Then, G−v

is a distance-preserving subgraph of G.

Proof. Let a, b be vertices of G−v, and let P be a shortest a, b-path in G. If P does not contain
v then dG−v(a, b) = dG(a, b). Otherwise, if P contains v, obtain P ′ by replacing v with u. If
P ′ is a simple path, which means that no vertex appears more than once on P ′, P ′ is a path in
G−v, and we conclude dG−v(a, b) = dG(a, b). Suppose now that P ′ is not a simple path. Then,
u occurs twice on P ′. We obtain P ′′ from P ′ by cutting the piece from the first occurrence of u

on P ′ until before the second occurrence of u. Then, P ′′ is an a, b-path in G of shorter length
than P , which contradicts the choice of P .

3.2 Graph classes with easy minimum distortion embeddings

As a warm-up before we start with the more involved algorithms in the next sections, and as
interesting independent results on their own, we present combinatorial results on the minimum
distortion of proper interval graphs, cycles, complete bipartite graphs and complete split graphs.
The result on complete bipartite graphs is heavily needed for our results on bipartite permutation
graphs.

A graph is an interval graph if sets of consecutive integers (intervals) can be assigned to
its vertices such that two vertices are adjacent if and only if their intervals have a non-empty
intersection. An interval graph is a proper interval graph if intervals can be assigned such that
no interval is a subset of another. Proper interval graphs are equivalent to unit interval graphs
meaning that there is an assignment with all intervals of the same length [20]. The vertex
ordering by the smallest (or equivalently largest) element of the assigned intervals is called a
proper interval ordering.

Theorem 3.8 For every connected proper interval graph G, D(G) = bw(G) .

Proof. Let G = (V, E) be a connected proper interval graph with proper interval order-
ing 〈x1, . . . , xn〉. Let E be the non-contractive embedding without unnecessary empty slots with
underlying vertex ordering 〈x1, . . . , xn〉. Since G is connected, xixi+1 ∈ E for every 1 ≤ i < n,
so that there are no empty slots between the vertices in E . For every pair xi, xj of adjacent ver-
tices, where i < j, the set {xi, xi+1, . . . , xj} is a clique in G [16, 9]. Consequently, the maximum
distance of two adjacent vertices is ω(G) − 1 = bw(G), which shows D(G) ≤ bw(G). Equality
then follows with Lemma 3.4.

The following three theorems show that the distortion of cycles, complete bipartite graphs
and complete split graphs only depend on the number of vertices in these graphs. The chordless
cycle on n vertices for n ≥ 3 is denoted by Cn.

6

Theorem 3.9 D(Cn) = n − 1 for n ≥ 3.

Proof. Let (v1, v2, . . . , vn) be a cycle in Cn. Vertex ordering σ = 〈v1, v2, . . . , vn〉 is a non-
contractive embedding for Cn of distortion dσ(v1, vn) = n − 1. Thus, D(Cn) ≤ n − 1.

For the lower bound, let E be a minimum distortion embedding for Cn with the smallest
number of pairs of non-adjacent consecutive vertices. Let ord(E) = 〈x1, . . . , xn〉. For 1 ≤ i < n,
we call position E(xi) a gap position if xixi+1 6∈ E. If E has no gap positions then xixi+1 ∈ E

for all 1 ≤ i < n, and (x1, . . . , xn) is a path in Cn. Then, x1xn ∈ E and D(Cn) = D(Cn, E) =
dE(x1, xn) = n−1. Now, assume that there is a gap position in E . We construct a non-contractive
embedding for Cn with a smaller number of gap positions and without increasing the distortion.
Let E(xj) be a gap position of E . The number of empty slots between xj and xj+1 in E can
be assumed to be dCn

(xj , xj+1) − 1. Let P be a shortest xj , xj+1-path in Cn. We obtain F
from E by moving the vertices in P that are different from xj and xj+1 into the empty slots
between xj and xj+1 respecting their order in P . Clearly, F is non-contractive. We determine
the distortion of F . Moved vertices are at distance 1 to their two neighbours, so that it holds
for every pair u, v of adjacent vertices at distance more than 1 in F that F(u) = E(u) and
F(v) = E(v), thus dF (u, v) = dE(u, v). Hence, D(G,F) ≤ D(G, E). We consider the number
of pairs of non-adjacent consecutive vertices in F . Let xi and xi+1 be adjacent in E . Note
that xi is moved if and only if xi+1 is moved. Then, xi and xi+1 appear consecutively in F .
Thus, the number of pairs of non-adjacent consecutive vertices in F is at most the number in E .
However, since xj and the close vertex to the right of xj in F are adjacent, the number of pairs
of consecutive non-adjacent vertices in F is smaller than the number in E , which contradicts the
choice of E . Consequently, E does not contain a gap position.

A bipartite graph G = (A, B, E) is a complete bipartite graph if every vertex in A is adjacent
to every vertex in B. Such a graph is denoted by Kn,m, where n = |A| and m = |B|.

Theorem 3.10 Let n and m be integers satisfying 1 ≤ n ≤ m. If n+m is odd then D(Kn,m) =
n + m − 2, and if n + m is even then D(Kn,m) = n + m − 1.

Proof. Let A and B be the two colour classes of Kn,m with |A| = n and |B| = m.
First we prove a lower bound on the distortion of Kn,m. Clearly, D(K1,1) = 1. Assume

in the following that m ≥ 2. Let E be a non-contractive embedding for Kn,m. The distance
between consecutive vertices from the same colour class is at least 2. Denote by a and a′ the
respectively leftmost and rightmost vertex in E , and denote by b and b′ the respectively leftmost
and rightmost vertex from B. It holds that dE(a, a′) ≥ 2n − 2 and dE(b, b′) ≥ 2m − 2, and
D(Kn,m, E) = max{dE(a, b′), dE(b, a′)}. We distinguish two cases. If there is a vertex from A

to the left of b or to the right of b′ then the distortion of E is at least 2m − 1 ≥ m + n − 1.
Now, let all vertices from A be between b and b′. Note that dE(b, a′) = dE(b, a) + dE(a, a′). So,
dE(b, a′)+dE(a, b′) = dE(b, a′)+dE(a, a′)+dE(a′, b′) = dE(a, a′)+dE(b, b′). A lower bound on this
sum is 2n−2+2m−2 = 2(n+m−2). Hence, D(Kn,m, E) ≥ n+m−2, which already gives the lower
bound in the case n+m odd. Let n+m be even. If dE(b, a′) ≤ n+m−2 then there are at most
1

2
(n+m−2) vertices from B to the left of a′, and at least m− 1

2
(n+m−2) = 1

2
(m−n+2) vertices

from B are to the right of a′. Hence, dE(a, b′) = dE(a, a′)+dE(a′, b′) ≥ 2n−2+(m−n+2)−1 =
n + m − 1. This completes the proof of the lower bound.

We prove an upper bound on the distortion by defining an embedding E . Lay out the
vertices from B in any order with exactly one empty slot between consecutive vertices. Denote
by b and b′ the respectively leftmost and rightmost vertex in E . Let p =def E(b′)− (n+m−2) or

7

p =def E(b′) − (n + m − 1) depending on whether n + m is odd or even, respectively. Note that
the slot at position p is empty in E . Starting in the slot at position p and continuing towards the
right, place the vertices from A in any order with one slot between consecutive vertices. This
completes the definition of E . Observe that E is a proper embedding. Furthermore, E is non-
contractive, since vertices of the same colour class are at distance at least 2 from each other, and
vertices from different colour classes are adjacent. Denote by a and a′ the respectively leftmost
and rightmost vertex from A in E . It holds that dE(a, a′) = 2n−2 and dE(b, b′) = 2m−2. Then,
dE(b, a′) = dE(b, b′) − dE(a, b′) + dE(a, a′) ≤ 2m − 2 − (n + m − 2) + 2n − 2 = n + m − 2. Thus,
if n + m is odd then D(Kn,m, E) = n + m − 2, if n + m is even then D(Kn,m, E) = n + m − 1.

A graph is a split graph if its vertices can be partitioned into a clique X and an independent
set I. We call such a partition a split partition and denote it by (X, I). Generally, a split graph
can have more than one split partition. A split graph G = (V, E) with split partition (X, I)
is also denoted by (X, I, E). We refer to the vertices in X and I as X-vertices and I-vertices,
respectively. We call a split graph a complete split graph if it has a split partition (X, I) such
that all X-vertices are adjacent to all I-vertices, and we denote it by Sn,m, where n is the number
of X-vertices and m is the number of I-vertices. Note that S1,m coincides with K1,m and that
Sn,1 is a complete graph.

Theorem 3.11 Let n and m be natural numbers where n ≥ 2 and m ≥ 2. Then, D(Sn,m) =
n + m − 2.

Proof. Let (X, I) be a split partition of Sn,m with |X| = n and |I| = m. Note that each of the
X-vertices is adjacent to each of the I-vertices.

First we prove a lower bound on the distortion of Sn,m. Let E be a minimum distortion
embedding for Sn,m with the smallest number of I-vertices between X-vertices. The leftmost
and rightmost vertex in E are at distance at least n + m − 1. If one of these two vertices is an
X-vertex then the two vertices are adjacent and the distortion of E is at least n + m − 1. Now,
let the leftmost and rightmost vertex be I-vertices, denoted as b and b′, respectively. Denote
by a and a′ the respectively leftmost and rightmost X-vertex in E . It holds that D(Sn,m, E) =
max{dE(b, a′), dE(a, b′)}. Furthermore, with s =def dE(b, a′) + dE(a, b′) = dE(b, b′) + dE(a, a′), it
holds that D(Sn,m, E) ≥ 1

2
s. We distinguish three cases. First, let there be no I-vertex between

X-vertices in E . Then, dE(b, b′) ≥ 2m − 2 + n − 1 and dE(a, a′) ≥ n − 1. For the second case,
let there be exactly one I-vertex between a and a′ in E . Then, dE(b, b′) ≥ 2m − 2 + n − 2 and
dE(a, a′) ≥ n. In both cases, we obtain s ≥ 2m − 2 + 2n − 2, thus D(Sn,m, E) ≥ n + m − 2. For
the third case, assume that there are at least two I-vertices between a and a′ in E . Let c and
c′ be the close I-vertex to the right of a and to the left of a′, respectively. We obtain F from
E by removing c and c′, moving all vertices to the left of c one position further to the right, all
vertices to the right of c′ one position further to the left, placing c at distance 2 to the left of
b and c′ at distance 2 to the right of b′. Since I-vertices are at distance at least 2 from each
other in F , F is a non-contractive embedding for Sn,m. Furthermore, dF (c, a′) = dE(b, a′) and
dF (a, c′) = dE(a, b′), so that D(Sn,m,F) = D(Sn,m, E). Since the number of I-vertices between
X-vertices in F is smaller than the number in E , we obtain a contradiction to the choice of E .
This completes the proof of the lower bound.

We prove the upper bound on the distortion by defining an embedding. We distinguish
two cases. Let m be even. Let E be a non-contractive embedding without unnecessary empty
slots with underlying vertex ordering of the following form: first m

2
I-vertices, then all X-

vertices, then the remaining m
2

I-vertices. It clearly holds that D(Sn,2, E) = n and D(Sn,m, E) =

8

2 · (m
2
−1)+1+n−1 for m ≥ 4. In the case where m is odd, we define embedding E as: take the

above defined embedding for Sn,m−1 and place the last I-vertex between two X-vertices. Then,
E is a non-contractive embedding for Sn,m of distortion D(Sn,m−1) + 1 = n + m − 2.

4 Distortion of threshold graphs

Threshold graphs are split graphs, and they have various characterisations [5, 9]. For our
purposes, the following characterisation will serve as a definition. A graph is a threshold graph
if and only if it is split and the vertices of the independent set can be ordered by neighbourhood
inclusion, for any split partition for it [17]. Equivalently, the vertices of the clique can be ordered
by neighbourhood inclusion [17]. Hence, for any split partition (X, I) for a threshold graph G,
the X-vertices can be ordered as a1, a2, . . . , an such that N(a1) ⊇ N(a2) ⊇ · · · ⊇ N(an), and the
I-vertices can be ordered as b1, b2, . . . , bm such that N(b1) ⊆ N(b2) ⊆ · · · ⊆ N(bm). In particular,
this means that I-vertices of the same degree have exactly the same neighbourhood, and the
same for X-vertices. Therefore, the given orderings correspond to a non-increasing degree order
for the X-vertices and a non-decreasing degree order for the I-vertices. For simplicity, we say
decreasing instead of non-increasing and increasing instead of non-decreasing. Every connected
threshold graph has a universal vertex, which is a vertex that is adjacent to every other vertex
of the graph. Thus, every pair of vertices in a connected threshold graph is at distance at most
2. In threshold graph G = (X, I, E), if there is no X-vertex without a neighbour in I, there is
an I-vertex b that is adjacent to all X-vertices. Then, (X ∪ {b}, I \ {b}) is also a split partition
for G. In the following, we assume for split partitions that an X-vertex of smallest degree has
no neighbours outside X. In particular, the threshold graphs that we consider here contain at
least three vertices and at least two X-vertices.

In this section, we give an efficient algorithm for computing the distortion of threshold
graphs. The algorithm is based on a structural result about minimum distortion embeddings
for threshold graphs that we prove first. We show that a minimum distortion embedding can
be assumed to list the X-vertices in decreasing degree order. When we say in the following that
we “remove a vertex from the embedding” we mean that the slot containing the vertex becomes
an empty slot. Note that every embedding for a threshold graph can be partitioned into three
sections: I-vertices to the left of all X-vertices, I-vertices to the right of all X-vertices and all
other vertices in between, that are between X-vertices.

Lemma 4.1 Let G = (X, I, E) be a connected threshold graph. There is a minimum distortion
embedding for G without empty slots between X-vertices.

Proof. Let E be a minimum distortion embedding for G without unnecessary empty slots and
with the smallest number of empty slots between X-vertices. In particular, pairs of consecutive
vertices are at distance at most 2 in E . We show that E satisfies the lemma. Let a and b be
the respectively leftmost and rightmost X-vertex in E . Assume for a contradiction that there
is an empty slot at position p between a and b in E . Let x and y be the vertices occupying the
slots at position p − 1 and p + 1, respectively. Since dE(x, y) = 2 = dG(x, y), it follows that at
least one of these two vertices is an I-vertex. Assume that y is an I-vertex, and if x is also an
I-vertex then assume that dG(x) ≥ dG(y); otherwise, we repeat the arguments on the reverse
of E . Obtain embedding F from E by removing y and moving all vertices to the left of y two
positions to the right. Observe that the slot at position F(x)+1 = E(y)+1 in F is either empty

9

or occupied by an X-vertex that is adjacent to x. Note that the latter is particularly true for x

and y both I-vertices, since every neighbour of y is a neighbour of x. Thus, F is non-contractive
for G−y. Let u be a universal vertex in G, and let a∗ and b∗ be the respectively leftmost and
rightmost vertex in F (and thus in E because of y ≺E b). We obtain F ′ from F as follows:

– if y ≺E u then place y at distance 2 to the left of a∗

– if u ≺E y then place y at distance 2 to the right of b∗ .

Then, F ′ is a non-contractive embedding for G. Furthermore, D(G,F ′) ≤ D(G, E), since
max{dF ′(y, u), dF ′(a∗, u), dF ′(b∗, u)} ≤ max{dE(a∗, u), dE(b∗, u)}. Thus, F ′ is a minimum dis-
tortion embedding for G with fewer empty slots between a and b than E , contradicting the choice
of E .

Note that non-contractive embeddings for threshold graphs that have no empty slots between
X-vertices do not contain two or more consecutive I-vertices between two X-vertices.

Lemma 4.2 Let G = (X, I, E) be a connected threshold graph. There is a minimum distortion
embedding for G without empty slots between X-vertices such that the X-vertices appear in
decreasing degree order.

Proof. Let E be a minimum distortion embedding for G without empty slots between X-vertices
and without unnecessary empty slots; such an embedding exists due to Lemma 4.1. Let u be
the leftmost universal vertex in E . Without loss of generality, we can assume that there is an
X-vertex of smallest degree to the right of u in E ; otherwise we use the reverse of E instead of
E . Let v be the rightmost vertex in E among the X-vertices of smallest degree. Remember that
v has no neighbour in I. Denote by a and b the respectively leftmost and rightmost X-vertex in
E . Note that D(G, E) ≥ dE(a, b). Without loss of generality, we can assume that all I-vertices
to the left of a appear in increasing degree order and all I-vertices to the right of b appear in
decreasing degree order (ordering the I-vertices in this way does not increase D(G, E)). This
assumption is of importance only for making later arguments shorter. Based on E , we will
define a new embedding that satisfies the conditions of the lemma. Before, we collect helpful
properties.

Let M be the set of I-vertices to the right of b that are at distance more than D(G, E) to
a in E . Note that no vertex in M is adjacent to a. Furthermore, the vertices in M appear
consecutively in E , and if M is non-empty then the rightmost vertex in E is contained in M .
Let M be non-empty and let w′ be the leftmost vertex in M ; clearly D(G, E) + 1 ≤ dE(a, w′) ≤
D(G, E) + 2. In the following, we distinguish between the two cases dE(a, w′) = D(G, E) + 1 and
dE(a, w′) = D(G, E) + 2 as the “short” and the “long” case, respectively. The working interval
is the interval of slots between positions E(a) and E(b), potentially extended by the positions:

– E(b) + 1 if the slot at this position is non-empty and not occupied by w′

– E(a) − 1 if the slot at this position is non-empty and M is non-empty and we are in the
short case and there are two X-vertices between a and u at distance 1 from each other.

Denote by a∗ and b∗ the respectively leftmost and rightmost vertex in the working interval in E .
We show the following auxiliary result. Let M be non-empty, let y′ ∈ M , let d′ be the leftmost
neighbour of y′ in E and let l be the number of vertices between w′ and y′ in E . Then, the
following holds:

10

1) dE(a∗, d′) ≥ dE(w′, y′) + 1 = 2l − 1

2) if the slot at position E(a) − 1 in E is non-empty then
dE(a∗, d′) ≥ dE(w′, y′) + 2 = 2l .

Note that dE(w′, y′) = 2l − 2, since pairs of consecutive vertices between w′ and y′ in E are at
distance 2. Hence, the first statement directly follows with the definition of M :

dE(a∗, d′) = dE(a∗, w′) + dE(w′, y′) − dE(d′, y′) ≥ D(G, E) + 1 + dE(w′, y′) − D(G, E) .

The second statement holds with similar arguments in the long case and in case a∗ ≺E a. So,
consider the short case where a∗ = a. By the definition of the working interval, all pairs of
consecutive X-vertices between a and u are at distance 2. In particular, there is an I-vertex
between every pair of consecutive X-vertices between a and u. Thus, dE(d′, y′) ≤ D(G, E) − 1,
since the slot at distance D(G, E) to the left of y′ is occupied by an I-vertex, and the correctness
of the second statement follows.

Let A be the set of I-vertices in the working interval. For S ⊆ A, an ordering for X ∪ S

is good if the X-vertices are ordered by decreasing degree and each I-vertex is between two
neighbours. Note that the two neighbours of an I-vertex naturally are X-vertices. Let B ⊆ A

be of largest cardinality among all subsets of A such that X ∪B has a good ordering; let β be a
good ordering for X ∪ B such that no I-vertex in β can appear further right without changing
the order of the I-vertices. Without loss of generality, we can assume that u and v are the
respectively leftmost and rightmost vertex in β. Denote by n(x) the number of I-vertices to the
right of X-vertex x in β. We determine a lower bound on the value of n(x). Assign I-vertices
to X-vertices in the following way. For y ∈ A:

– if v ≺E y then assign y to the close vertex to the left

– if u ≺E y ≺E v then assign y to the close vertex to the right

– if a∗ = a: if y ≺E u then assign y to the close vertex to the left

– if a∗ ≺E a: let z be the leftmost X-vertex such that the close vertex to the right is an
X-vertex: if y ≺E z then assign y to the close vertex to the right, if z ≺E y ≺E u then
assign y to the close vertex to the left.

Note that every vertex from A is assigned to an X-vertex, u and v have no assigned I-vertex
(particularly since v has no I-vertex neighbours) and no X-vertex has two assigned I-vertices
(particularly since the close vertex to the right of z is an X-vertex). Let x be an X-vertex
satisfying u ≺β x ≺β v, and let x be assigned an I-vertex y. If the close vertex to the left of x in
β is an X-vertex then y is to the right of x in β; otherwise y could be placed between x and the
close vertex to the left, thus obtaining an ordering of the desired form with another I-vertex in
the ordering or an I-vertex further to the right. Hence, n(x) for an arbitrary X-vertex x is at
least the number of X-vertices to the right of x in β that are assigned an I-vertex. In particular,
n(u) is equal to |A|, which shows that B = A and β is an ordering for X ∪A, i.e., for all vertices
in the working interval.

Denote by Il and Ir the set of I-vertices respectively to the left and right of the working
interval in E . Note that M ⊆ Ir. We define an embedding F for G. We specify the underlying
vertex ordering of the embedding; the actual embedding is obtained by adding the necessary

11

(but no unnecessary) empty slots: place the vertices in Il ∪ M ordered increasingly by degree
where, for convenience reasons, vertices in Il preserve their E-order and vertices in M appear
in their reverse E-order, then place the vertices from the working interval in order according to
β, then place the vertices in Ir \ M in their E-order. By definition, F is non-contractive, and
there are no empty slots between u and v in F due to the definition of β. In the following, we
determine the distortion of F . Since the working interval in E does not contain empty slots,
dF (u, v) = dE(a∗, b∗). Furthermore, the slot at position F(u)− 1 in F is non-empty if Il ∪M is
non-empty, and the slot at position F(v) + 1 in F is empty. As the first case, we consider the
vertices to the right of u in F . Since u is universal, thus the leftmost neighbour of every vertex, it
suffices to consider the distance between u and the rightmost vertex in F . Let w be the rightmost
vertex in E that is not contained in M . Let dE(b, w) ≥ 2. Then, w is the rightmost vertex in
F . It holds either D(G, E) = dE(a, w) (which also means a∗ = a) or D(G, E) ≥ dE(a, w) + 1.
Thus, dF (u, w) ≤ D(G, E). Let dE(b, w) ≤ 1. Then, E(w) belongs to the working interval
and v is the rightmost vertex in F . If D(G, E) ≥ dE(a, w) + 1 then dF (u, v) ≤ D(G, E). Let
D(G, E) = dE(a, w). If dE(w, w′) = 2 then a∗ = a and dF (u, v) ≤ D(G, E). Let dE(w, w′) = 1.
Then, w = b = b∗ and bw′ ∈ E and aw′ 6∈ E and therefore dG(a) < dG(b) and therefore the slot
at position E(a) − 1 is empty. Consequently, a∗ = a, and thus dF (u, v) = dE(a, b).

As the second case, we consider the vertices to the left of u in F . We define a “correction
value” s. If a∗ = a then s =def 0, if a∗ ≺E a then s =def −1. Let y ∈ Il ∪ M , and let ℓ be the
number of vertices from M between y and u in F . Suppose there is no vertex from Il between
y and u in F . In particular, y ∈ M and dF (y, u) = 2ℓ − 1. Let d be the rightmost neighbour of
y in F , and let d′ be the leftmost neighbour of y in E . We determine dF (d, v). All X-vertices
to the left of d′ in E have degree smaller than dG(d′) and dG(d) and thus are to the right of d in
F . By the result about the value of n(d) it holds that n(d) + s is not smaller than the number
of I-vertices to the left of d′ in the working interval in E . Remember that s = 0 implies that no
I-vertex to the left of d′ in E is assigned to d′. Thus, dF (d, v) ≥ dE(a∗, d′) + s ≥ 2ℓ − 1 due to
the auxiliary result, and hence

dF (y, d) = dF (y, u) + dF (u, v) − dF (d, v) ≤ 2ℓ − 1 + dF (u, v) − 2ℓ + 1 = dF (u, v) .

Now, let there be a vertex from Il between y and u in F ; let y∗ be the leftmost vertex from
Il between y and u in F . It holds that dF (y, u) ≤ dE(y∗, a∗) + 2ℓ + s. Let c be the rightmost
neighbour of y in F . We determine dF (c, v). Let c∗ be the rightmost neighbour of y∗ in F , and
let c′ be the rightmost neighbour of y∗ in E . Note that y∗ is adjacent to c. All X-vertices to
the right of c′ in E have degree smaller than dG(c′) and dG(c∗) and thus are to the right of c∗

in F . If v ≺E c′ and the close vertex to the right of c′ in E is an I-vertex then n(c∗) is at least
the number of I-vertices to the right of c′ in the working interval in E minus 1. Since v is to
the right of c in F it follows that dF (c∗, v) ≥ dE(c′, b∗). If c′ ≺E v then dF (c∗, v) ≥ dE(c′, b∗)
due to the result about the value of n(c∗). Thus, if ℓ = 0 then y = y∗ and c = c∗ and
dF (y, c) = dF (y, v) − dF (c, v) ≤ dE(y, b∗) − dE(c′, b∗) = dE(y, c′). So, let ℓ ≥ 1. Let y∗∗ be the
leftmost vertex from M between y and u in F . With the results shown above it follows that
dF (c, v) ≥ dE(c∗, b∗) + 2ℓ + s. Here, it is important to note that the X-vertices that contribute
to this number are to the left of u for y∗∗ and to the right of u for y∗ in E , thus disjoint sets.
Therefore, we obtain:

dF (y, c) = dF (y, u) + dF (u, v) − dF (c, v)

≤ dE(y∗, a∗) + 2ℓ + s + dE(a∗, b∗) − dE(c∗, b∗) − 2ℓ − s = dE(y∗, c∗) .

12

Hence, D(G,F) ≤ D(G, E), and F is a minimum distortion embedding for G of the desired form.
This completes the proof.

The structural result of Lemma 4.2 leads to a simple algorithm for computing the distortion
of threshold graphs. The algorithm finds an embedding of smallest distortion among all non-
contractive embeddings where the X-vertices appear in decreasing degree order. Lemma 4.2 then
shows that this actually is a minimum distortion embedding. Let G = (X, I, E) be a connected
threshold graph and let E be an embedding for G where the X-vertices appear in decreasing
degree order. Let u be the leftmost X-vertex in E . Note that u is universal. Denote by R(E)
the distance in E between u and the rightmost vertex, and denote by L(E) the maximum taken
over all distances between a vertex to the left of u and its rightmost neighbour in E . If u is the
leftmost vertex in E then L(E) = 0. It holds that D(G, E) = max{L(E), R(E)}. The following
algorithm computes the distortion of connected threshold graphs. It iteratively decreases the
distortion of an initial embedding by moving vertices.

Algorithm thrg-distortion

Input connected threshold graph G = (X, I, E) and
increasing degree ordering 〈y1, . . . , y|I|〉 of the I-vertices, i.e., such that dG(y1) ≤ · · · ≤ dG(y|I|)

begin

let E0 = start-embedding; let u be the leftmost vertex in E0; let i = 0;

while R(Ei) ≥ L(Ei) + 2 and i < |I| do

set i = i + 1; let Ei = moveleft(Ei−1, yi)
end while;

let v be the close I-vertex to the right of u; let E = moveright(Ei, v);
return min{D(G, E), D(G, Ei)} and the corresponding embedding

end.

To complete the definition of thrg-distortion, we explain three operations. These operations
define embeddings. For ease of description, we only define the underlying vertex orderings; the
actual embeddings are non-contractive and without unnecessary empty slots.

start-embedding

The X-vertices appear in decreasing degree order, and the I-vertices are added as follows,
iteratively processed in order y|I|, . . . , y1: yi is placed rightmost between two neighbours
if possible, and if not possible it is placed at the right end, particularly to the right of the
rightmost X-vertex. The result for a sample graph is depicted in Figure 1.

moveleft(Ei−1, yi)

The result is obtained from Ei−1 by moving yi and making it the close vertex to the left
of u.

moveright(Ei, v)

If v is undefined then E = Ei; otherwise move v to the right and place it as the rightmost
vertex, particularly to the right of the rightmost X-vertex.

For the correctness of the algorithm, the following observations are important. There are no
empty slots between X-vertices in the start embedding. The start embedding has smallest dis-
tortion among all non-contractive embeddings with the leftmost vertex a universal vertex. After
application of operation moveleft, the distance between u and the rightmost vertex decreases
by 1 or 2 depending on whether yi is between neighbours in Ei−1 or to the right of the rightmost
X-vertex.

13

b1 b2 b3 b4 b5 b6

a1 a2 a3 a4 a5 a6

b1b2b3

a6a5

b6

a4a3

b5

a2

b4

a1

Figure 1: The left hand side shows a threshold graph. The X-vertices are represented by full
circles and the I-vertices are represented by empty circles. The edges between X-vertices are
omitted. The right hand side shows the result of the start-embedding procedure when applied to
the graph.

A succinct representation of a threshold graph lists the vertices and their degrees. This
representation is unique for a threshold graph.

Theorem 4.3 There is an O(n)-time algorithm that computes the distortion of a connected
threshold graph on n vertices and outputs a minimum distortion embedding. The graph is given
in succinct representation.

Proof. We prove that Algorithm thrg-distortion satisfies the theorem. Let G = (X, I, E)
be a connected threshold graph where y1, . . . , y|I| are the I-vertices in increasing degree or-
der. Apply thrg-distortion to G. Let r be the number of while loop executions and let
embeddings E0, . . . , Er, E and vertex u be defined according to thrg-distortion. Note that
r ≥ 1 since L(E0) = 0 and R(E0) ≥ 2. We show that E or Er has smallest distortion among
all non-contractive embeddings for G with the X-vertices appearing in decreasing degree order.
Lemma 4.2 then shows that E or Er is a minimum distortion embedding for G.

We begin by studying E0, . . . , Er. Let 1 ≤ i ≤ r. It clearly holds that L(Ei−1)+1 ≤ L(Ei) and
R(Ei−1) − 2 ≤ R(Ei) ≤ R(Ei−1) − 1. Furthermore, the rightmost neighbour of yi is at distance
at most R(Ei) in Ei since the rightmost X-vertex has no I-vertex neighbour, so that L(Ei) ≤
max {L(Ei−1) + 2, R(Ei)}. Together with the while loop condition, we obtain L(Ei) ≤ R(Ei−1).
Thus, D(G, Ei) ≤ D(G, Ei−1) and L(Ei) − R(Ei) ≤ 2. We distinguish between two cases with
respect to the value of r.

Case A: r = |I|

This means that there is no I-vertex to the right of u in Er. Note that for every non-contractive
embedding F for G with the X-vertices appearing in decreasing degree order and an I-vertex
to the right of some X-vertex, it holds that R(F) ≥ R(Er−1) ≥ R(Er) + 1 = |X|. Since
L(Er−1) < R(Er−1), the above shown inequalities prove that D(G,F) ≥ R(F) ≥ R(Er−1) =
D(G, Er−1) ≥ D(G, Er). Thus, Er is of minimum distortion among all non-contractive embeddings
for G with the X-vertices appearing in decreasing degree order.

Case B: r < |I|

This means that there is at least one I-vertex to the right of u in Er. By the inequalities from the
second paragraph and the while loop condition, it holds that −1 ≤ L(Er)−R(Er) ≤ 2. Assume
there is a non-contractive embedding for G with the X-vertices appearing in decreasing degree
order without empty slots between X-vertices and of distortion smaller than D(G, Er). Choose
F to be such an embedding with the smallest number of I-vertices to the left of all X-vertices.
Without loss of generality, we can assume that u is the leftmost X-vertex in F , and I-vertices to

14

the left of u in F appear in increasing degree order and have degree not larger than any I-vertex
to the right of u. We will show that D(G,F) = D(G, E).

There are at most |I| − r I-vertices to the right of u in F , as can be seen as follows:
L(Er−1) < R(Er−1) by the while loop condition and R(G) ≥ R(Er−1) for all non-contractive
embeddings G with X-vertices appearing in decreasing degree order, starting with u, and at
least |I| − r + 1 I-vertices to the right of u. The second property directly follows from the
definition of the start embedding. Thus, by the assumption about the I-vertices in F , we can
assume that y1, . . . , yr are to the left of u in F .

Let y be the leftmost I-vertex in Er such that dEr
(y, b) = L(Er) for b the rightmost neighbour

of y. Then, y is the leftmost neighbour of b in Er. With exchanging vertices of the same degree, if
necessary, we can assume that b is the rightmost neighbour of y and y is the leftmost neighbour
of b also in F . If L(F) > L(Er) then D(G,F) ≥ L(Er) + 1 ≥ R(Er), i.e., D(G,F) ≥ D(G, Er) as
a contradiction to the choice of F . Thus, L(F) ≤ L(Er), and in particular, dF (y, b) ≤ dEr

(y, b).
We consider the number of I-vertices between y and b in Er and F . Suppose for a contradiction
that there are at least as many I-vertices between y and b in F as in Er. Since the number of
X-vertices between y and b is equal in Er and F , the partition of the I-vertices between y and
b in Er into vertices to the left of u and vertices to the right of u is uniquely defined. For this
argument, it is important to remember that there are no empty slots between X-vertices, to
that every I-vertex to the left of u contributes 2 to dEr

(u, b) and every I-vertex to the right of u

contributes 1. It therefore follows the same for F , so that dF (y, b) = dEr
(y, b) and L(F) = L(Er).

Now, observe that the same number of I-vertices to the left of b in Er and F directly implies the
same number of I-vertices to the right of b in Er and F . Since R(F) < R(Er) must hold due to
the choice of F , there is an I-vertex between two neighbours to the right of b in F that is to the
right of all X-vertices in Er. This, however, contradicts the definition of the start embedding.
Hence, we conclude that the number of I-vertices between y and b in F is smaller than between
y and b in Er. And since there are exactly r I-vertices to the left of u in Er and at least r

I-vertices to the left of u in F , the number of I-vertices between u and b in F is smaller than
the number in Er.

We have seen that there are I-vertices between u and b in Er that are not between u and
b in F . In particular, u 6= b. Let M be the set of I-vertices between u and b in Er that are
not between u and b in F . Without loss of generality, we can assume that no vertex in M is
between X-vertices in F . This follows from the definition of the start embedding (otherwise,
there would be an empty slot between X-vertices). Note that |M | ≥ 1. As a first case, assume
that |M | ≥ 2. Observe that the definition of M implies the existence of (at least) two pairs of
consecutive X-vertices in F . Let a and a′ be two vertices from M where at least one of them,
say a, is to the right of u in F . Obtain F ′ from F as follows, where unnecessary empty slots
are deleted and necessary empty slots are inserted:

– if a′ is to the left of u in F then move a and a′ between two pairs of consecutive X-vertices
between u and b

– if a′ is to the right of u in F then move a and a′ as in the previous case and additionally
move the close vertex to the left of u in F to the right end.

For an illustration of the two cases, see Figure 2. It holds that L(F ′) = L(F) and R(F ′) = R(F).
Since F ′ contains fewer vertices to the left of u than F , this is a contradiction to the choice of
F . We conclude for the case |M | ≥ 2 that all vertices in M are to the left of u in F .

15

abua’ u b a a’

Figure 2: The two figures show modifications of embeddings, that are used in the proof of
Theorem 4.3. In both figures, the arrows describe the places where the vertices are moved to.
Necessary slots are inserted implicitly.

Let p be the number of vertices to the left of u in F . Suppose that p ≥ r+1. Without loss of
generality, we can assume that y1, . . . , yp are the vertices to the left of u in F , and yr+1, . . . , yp

are to the right of y in F . Thus, dF (y, u) = dEr
(y, u) + 2(p − r). From dF (y, b) ≤ dEr

(y, b),
it follows that |M | ≥ 2(p − r), which particularly means |M | ≥ 2. Then, all vertices in M are
between y and u in F , so that p− r ≥ |M |. Thus, |M | ≥ 2|M |, which yields a contradiction for
|M | ≥ 1. We conclude that p = r and |M | = 1. Consider E , that is obtained from Er by moving
the close vertex to the right of u to the right end. Note that the moved vertex is between u and
b, since |M | = 1. Then, dE(y, b) = dF (y, b) = L(Er)−1 and R(E) = R(Er)+1. By minimality of
R(Er), R(F) = R(E). Consequently, D(G,F) = D(G, E). We conclude that thrg-distortion

correctly computes the distortion of G and outputs a minimum distortion embedding.

For the running time of thrg-distortion, observe first that the leftmost and rightmost
neighbour of every I-vertex in a decreasing degree order of the X-vertices can be computed in
O(n) time from the succinct representation. Therefore, it is sufficient to describe how L- and
R-values are computed efficiently. Clearly, R-values are obtained by simple subtraction, since
it suffices to remember whether an I-vertex to the right of u is between two neighbours (whose
moving results in decreasing the value by 1) or at the end (whose moving results in decreasing
the value by 2). For I-vertices, we have to distinguish two cases. If the moved I-vertex is at
the right end then the L-value increases by at least 2 and is the maximum over the distance of
the moved vertex to its rightmost neighbour and the increased previous L-value. If the moved
I-vertex is between neighbours then some distances increase by 2 and some distances increase by
1. Here, we have to find the leftmost I-vertex with rightmost neighbour at maximum distance.
This information can be computed in a preprocessing step, when there is no I-vertex between
X-vertices and this is only a neighbourhood cardinality problem. Hence, thrg-distortion has
an O(n)-time implementation.

The main structural result about minimum distortion embeddings in this section is given
in Lemma 4.2. A natural question is whether a similar result holds also for I-vertices. As a
complementary result, we show that this is indeed the case. Note, however, that this may require
empty slots between X-vertices, since I-vertices may appear consecutively between X-vertices.

Proposition 4.4 Let G = (X, I, E) be a connected threshold graph. There is a minimum
distortion embedding for G such that the X-vertices appear in decreasing degree order and the
I-vertices appear in increasing degree order.

Proof. Let E be a minimum distortion embedding for G without empty slots between X-vertices
such that the X-vertices appear in decreasing degree order; E exists due to Lemma 4.2. Denote
by a and b the respectively leftmost and rightmost X-vertex in E . Since the vertex degree
corresponds to neighbourhood inclusion, a simple vertex exchange argument shows that we can

16

bdada b

Figure 3: An illustration of the central embedding modification in the proof of Proposition 4.4 for
obtaining a minimum distortion embedding where X-vertices are ordered by decreasing degree
and I-vertices are ordered by increasing degree.

assume without loss of generality that no I-vertex to the left of a has degree larger than any
I-vertex to the right of a in E . Assume that there is an I-vertex to the right of b in E . Let d

be the rightmost neighbour of the close I-vertex to the left of a. Then, every I-vertex to the
right of a is also adjacent to d, particularly the close I-vertex to the right of b. Let F be the
non-contractive embedding without unnecessary empty slots with underlying vertex ordering
the following: modify ord(E) by moving the I-vertices to the right of b between d and the close
vertex to the right of d. See Figure 3 for an illustration of the construction. By the construction
it is clear that L(F) = L(E) and R(F) ≤ R(E). Thus, F is a minimum distortion embedding for
G without I-vertices to the right of b. To obtain an embedding that satisfies the statement, it
remains to exchange pairs of I-vertices to make them appear in increasing degree order. Here,
it is important to note that no new empty slots are required between a and b since the close
X-vertex to the left of an I-vertex between a and b is a neighbour.

Note that Proposition 4.4 does not result in a straightforward algorithm for computing the
distortion. The main reason is that it does not speak about the positions of the I-vertices that
are placed between X-vertices in the initial minimum distortion embedding E .

5 Distortion of bipartite permutation graphs

Bipartite permutation graphs are permutation graphs that are bipartite. For the definition and
properties of permutation graphs, we refer to [5]. Let G = (A, B, E) be a bipartite graph. A
strong ordering for G is a pair of orderings (σA, σB) on respectively A and B such that for every
pair of edges ab and a′b′ in E with a, a′ ∈ A and b, b′ ∈ B, a ≺σA

a′ and b′ ≺σB
b implies that ab′

and a′b are in E. If we denote by (σA, σB)R the pair of the reverse of σA and σB then (σA, σB)R

is also a strong ordering for G. The following characterisation of bipartite permutation graphs
is the only property that we will need in this section, and thus we use it as a definition.

Theorem 5.1 ([21]) A bipartite graph is a bipartite permutation graph if and only if it has a
strong ordering.

Spinrad et al. give a linear-time recognition algorithm for bipartite permutation graphs that
produces a strong ordering if the input graph is bipartite permutation [21]. It follows from the
definition of a strong ordering that if G = (A, B, E) is a connected bipartite permutation graph
then any strong ordering (σA, σB) satisfies the following. For every vertex a in A, the neighbours
of a appear consecutively in σB. Furthermore, if N(a) ⊆ N(a′) for two vertices a, a′ ∈ A then a

is adjacent to the leftmost or rightmost neighbour of a′ in σB.
We show two main results about distortion of bipartite permutation graphs. We give a fast

algorithm for computing the distortion of bipartite permutation graphs and we give a complete
characterisation of bipartite permutation graphs of bounded distortion by forbidden induced
subgraphs. Before that, we consider the relationship of bandwidth and distortion for bipartite

17

permutation graphs. For each vertex u of a bipartite permutation graph, we denote by cc(u)
the colour class of u and by cc(u) the other colour class, i.e., A and B.

5.1 Relationship to bandwidth

As already mentioned, bandwidth and distortion do not always coincide on bipartite permuta-
tion graphs, not even on the restricted subclass of complete bipartite graphs. As an example,
bw(K3,4) = 4 (two vertices of the second colour class are placed first, followed by all three
vertices of the first colour class, followed by the last two vertices of the second colour class)
and D(K3,4) = 5. The question arises whether the difference between bandwidth and distortion
can be arbitrarily large, like for cycles. We answer this question completely in this subsection.
We show that distortion is an approximation by ratio 2 of bandwidth of connected bipartite
permutation graphs.

Let G = (A, B, E) be a connected bipartite permutation graph with strong ordering (σA, σB).
We say that a vertex ordering β for G is normalised (with respect to (σA, σB)) if it satisfies the
following two conditions:

(C1) for every pair a, a′ of vertices in A: a ≺σA
a′ implies a ≺β a′,

for every pair b, b′ of vertices in B: b ≺σB
b′ implies b ≺β b′

(C2) for every triple u, v, w of vertices of G where u ≺β v ≺β w and uw ∈ E:
uv ∈ E or vw ∈ E.

Condition (C1) requires that β respects the two given orderings. Orderings that respect condi-
tion (C2) are called cocomparability orderings; hence, condition (C2) requires β to be a cocompa-
rability ordering for G.

As a corollary of a theorem by Fishburn et al. [8], the following normalisation result for
optimal bandwidth orderings can be obtained.

Theorem 5.2 ([10]) Let G = (A, B, E) be a connected bipartite permutation graph with strong
ordering (σA, σB), and let k ≥ 0 be an integer. If G has a k-ordering then G has a k-ordering
that is normalised with respect to (σA, σB).

Theorem 5.3 Let G be a connected bipartite permutation graph. Then, D(G) ≤ 2 · bw(G) − 1.

Proof. Let (σA, σB) be a strong ordering for G = (A, B, E). Let β be a bw(G)-ordering for
G. By Theorem 5.2 we can assume that β is normalised with respect to (σA, σB). Let E be
the non-contractive embedding for G without unnecessary empty slots and underlying vertex
ordering β. We determine D(G, E) by showing for every pair u, v of adjacent vertices of G that
dE(u, v) ≤ 2 · dβ(u, v) − 1. We prove the claim by induction over the distances in β between
adjacent vertices. Let u, v be a pair of adjacent vertices such that dβ(u, v) = 1; then dE(u, v) = 1.
Suppose that the claim holds for each pair of adjacent vertices at distance at most s in β. Let
u, v be a pair of adjacent vertices such that u ≺β v and dβ(u, v) = s + 1. From condition (C2),
it follows for the vertices between u and v that all vertices from cc(u) are adjacent to v and all
vertices from cc(v) are adjacent to u. Hence, vertices of the same colour class are at distance 2 in
G and vertices from different colour classes are at distance 1 or 3 in G. We distinguish two cases.
First, let there be no pair of consecutive vertices between u and v in E at distance 3 in G. Then,
pairs of consecutive vertices between u and v are at distance at most 2 in E . Furthermore, since
u and v are from different colour classes, there is a pair of consecutive vertices from different

18

colour classes between u and v, that are adjacent due to the normalisation conditions and the
properties of strong orderings. Thus, dE(u, v) ≤ 2 · dβ(u, v) − 1. For the other case, let x, y be
a pair of consecutive vertices between u and v such that x ≺β y and dE(x, y) = 3. Note that
x 6= u and y 6= v by the above observation and x and y are from different colour classes. Since
cc(u) = cc(x) and condition (C2) imply xy ∈ E and therefore a contradiction to dE(x, y) > 1,
it holds that cc(u) = cc(x) = cc(y) = cc(v). By condition (C2), ux ∈ E and yv ∈ E, and since
dβ(u, x) ≤ dβ(u, v) − 2 and dβ(y, v) ≤ dβ(u, v) − 2, we know dE(u, x) ≤ 2 · dβ(u, x) − 1 and
dE(y, v) ≤ 2 · dβ(y, v) − 1 by induction hypothesis. Consequently,

dE(u, v) = dE(u, x) + 3 + dE(y, v) ≤ 2 · dβ(u, x) − 1 + 2 · dβ(x, y) + 1 + 2 · dβ(y, v) − 1
= 2 · dβ(u, v) − 1 .

Thus, D(G) ≤ D(G, E) ≤ 2 · bw(G) − 1.

The bandwidth upper bound on the distortion of connected bipartite permutation graphs
in Theorem 5.3 is tight. The star graphs K1,m for m ≥ 2 and m even have bandwidth m

2
:

a minimum bandwidth ordering is obtained by placing the centre vertex in the middle of the
ordering; the distortion of K1,m is m − 1 due to Theorem 3.10. Note that the bandwidth of
bipartite permutation graphs can be computed in polynomial time [10].

5.2 Lower bound on the distortion of bipartite permutation graphs

Our main results on distortion of bipartite permutation graphs are an efficient computation
algorithm and a forbidden induced subgraph characterisation of bipartite permutation graphs
of bounded distortion. Both results are obtained simultaneously and presented in the next
subsection. Both results rely on the properties of special bipartite permutation graphs, that we
study in this subsection. We identify a class of bipartite permutation graphs that are distance-
preserving as subgraphs and for which we can give a highly non-trivial lower bound on the
distortion.

A clawpath is a tree that is obtained from a chordless path by attaching a leaf to every vertex
of the path. Thus, clawpaths have even number of vertices and every vertex of the path has
degree 3 except the end vertices of the path, that have degree 2. The number of edges on the
path is called the length of the clawpath. Note that the smallest clawpath is K1,1, of length 0,
and one of the two vertices is chosen to form the path. (Clawpaths are thus caterpillars where
every vertex that is not a leaf has exactly one neighbour that is a leaf.)

Definition 5.4 A thick clawpath is a graph obtained from a clawpath by replacing each vertex
by a (non-empty) independent set of new vertices.

When replacing a vertex v by a set of new vertices v1, . . . , vℓ with ℓ ≥ 1, we give each vi the
same neighbourhood as v had. Thus we can view this process as iteratively adding to the graph
new false twins of chosen vertices. The underlying clawpath of a thick clawpath is the clawpath
from which the graph was obtained according to Definition 5.4. The length of a thick clawpath
is the length of its underlying clawpath. An example is given in Figure 4.

Thick clawpaths are both bipartite and permutation. Thus, they form a subclass of bipartite
permutation graphs. Furthermore, they are connected and contain at least one edge. Following
Definition 5.4, any thick clawpath of length r can be represented by a pair (x0, . . . , xr) and

19

Figure 4: A clawpath G of length 2 on the left, and a thick clawpath of length 2 that has G as
its underlying clawpath on the right.

((C0, D0), . . . , (Cr, Dr)) where x0, . . . , xr are the path vertices of the underlying clawpath, Ci is
the set of vertices path vertex xi was replaced with, and Di is the set of vertices the single leaf
neighbour of xi was replaced with. It is in fact sufficient to specify only ((C0, D0), . . . , (Cr, Dr)),
which we will call the sequence representation. Thus, every thick clawpath has a sequence
representation.

Lemma 5.5 Let G be a bipartite permutation graph. Every induced subgraph of G that is a
thick clawpath is distance-preserving.

Proof. We obtain the result in several steps. Let H = (A, B, E) be an induced subgraph of
G that is a thick clawpath. Let ((C0, D0), . . . , (Cr, Dr)) be a sequence representation for H. If
r = 0 then H is a complete bipartite graph and clearly a distance-preserving subgraph of G.
So, let r ≥ 1. According to Lemma 3.6, it suffices to consider the case when C0, D0, . . . , Cr, Dr

all contain exactly one vertex each, i.e., we can restrict to clawpaths. For ease of notation, we
denote these vertices as c0, d0, . . . , cr, dr. Note that c0, c1, . . . , cr correspond to the path vertices.
Let (σA, σB) be a strong ordering for G. Let σ be the union of σA and σB, so that we do not have
to distinguish between colour classes. Without loss of generality, we can assume that d0 ≺σ c1;
otherwise we use (σA, σB)R as strong ordering.

Note the following observation: for (u1, u2, u3, u4) an induced path in G, it is not difficult to
see that cc(u1) = cc(u2) = cc(u3) = cc(u4), and u1 ≺σ u3 if and only if u2 ≺σ u4 by the properties
of strong orderings. So, since (d0, c0, c1, d1) is an induced path in G, the assumption d0 ≺σ c1

implies c0 ≺σ d1. Assume for 1 ≤ i < r that we have already shown c0 ≺σ d1 ≺σ · · · ≺σ ei

and d0 ≺σ c1 ≺σ · · · ≺σ fi, where ei, fi ∈ {ci, di} appropriately. Note that (di−1, ci−1, ci, ci+1),
(ci−1, ci, ci+1, di+1) and (di, ci, ci+1, di+1) are induced paths in H and therefore in G. Applying
the observation to the paths and the assumption di−1 ≺σ ci, we obtain ci−1 ≺σ ci+1, ci ≺σ di+1

and di ≺σ ci+1. Thus, c- and d-vertices are ordered by index in the two colour classes.
We show that H is a distance-preserving subgraph of G by induction over distances in G.

Since H is an induced subgraph of G, pairs of non-adjacent vertices in H are non-adjacent in
G. Let s ≥ 2 and assume that dH(x, y) = dG(x, y) for all pairs x, y of vertices of H where
dG(x, y) ≤ s−1. Let x, y be a pair of vertices of H such that dG(x, y) = s. Let P = (u0, . . . , us)
be an x, y-path in G of length s. Without loss of generality, we can assume that x ≺σ y or
x ≺σ us−1 depending on whether x and y belong to the same colour class or to different colour
classes. By iterative application of the above observation, we obtain that u0 ≺σ u2 ≺σ u4 ≺σ · · ·
and u1 ≺σ u3 ≺σ · · ·. Let x ∈ {cj , dj} for some 0 ≤ j ≤ r. Observe that the x, y-path in H

contains cj+1 and that y ∈ {cj′ , dj′} for some j′ ≥ j + 1. We distinguish between two cases.
For the first case, let x = dj . If y = dj+1 then dH(x, y) = 3, and dG(x, y) ≥ 3 since x and y

belong to different colour classes and are not adjacent. Now, let y 6= dj+1. If dj+1u2 ∈ E then
(dj+1, u2, u3, . . . , us) shows that there is a dj+1, y-path in G of length at most s−1. We apply the
induction hypothesis and obtain dH(dj+1, y) = dG(dj+1, y). Since dH(dj+1, y) = dH(dj , y) − 1,
we conclude that dH(dj , y) = s. Now, let dj+1u2 6∈ E. Since cj+1dj+1 ∈ E, u2 6= cj+1. We

20

claim that u1 ≺σ dj+1. To see this, observe that if u1 = dj+1 then dj+1 and u2 are adjacent in
contradiction to our assumption, and if dj+1 ≺σ u1 then u0dj+1 ∈ E because of dj ≺σ cj+1 and
cj+1dj+1 ∈ E and the properties of strong orderings. Thus, u1 ≺σ dj+1. Furthermore, note that
cc(cj+1) = cc(u2). If cj+1 ≺σ u2 then u1 ≺σ dj+1 and {u1u2, cj+1dj+1} ⊆ E imply dj+1u2 ∈ E,
a contradiction. So, u2 ≺σ cj+1, and thus, x ≺σ u2 ≺σ cj+1. Independent of whether u1 ≺σ cj

or u1 = cj or cj ≺σ u1, we have that u2cj ∈ E. Consequently, (cj , u2, . . . , us) shows that there
is a cj , y-path in G of length at most s − 1. We apply the induction hypothesis and conclude
with dH(cj , y) = dH(dj , y) − 1 that dH(dj , y) = s. This completes the first case.

For the second case, let x = cj . If y = dj+1 then cj+1 is a common neighbour of x and y in H

and G and thus dH(x, y) = dG(x, y) = 2. Let y 6= dj+1. If u1 ≺σ cj+1 then u2cj+1 ∈ E because
of x ≺σ u2 and the properties of strong orderings. Then, (cj+1, u2, u3, . . . , us) shows that there is
a cj+1, y-path in G of length at most s−1. Induction hypothesis and dH(cj+1, y) = dH(cj , y)−1
yield dH(cj , y) = s. Finally, let cj+1 ≺σ u1 or cj+1 = u1. Then, u1 and dj+1 are adjacent
(remember that cj ≺σ dj+1), and (dj+1, u1, . . . , us) shows that there is a dj+1, y-path in G of
length at most s. Thus, dG(dj+1, y) ≤ s, and by induction hypothesis and the first case, we
obtain dH(dj+1, y) = dG(dj+1, y) ≤ s. Since dH(dj+1, y) = dH(cj , y), we conclude dH(cj , y) = s.
This completes the second case and the proof.

Lemma 5.6 Let G = (V, E) be a thick clawpath of length r. Let k ≥ 1 be an odd integer. If
|V | ≥ 1

2
(rk + r + 2k + 6) then D(G) ≥ k + 2.

Proof. We show the lemma by induction over the length of the thick clawpath. First, let G

be a thick clawpath of length r = 0. Then, G is a complete bipartite graph. If G has at least
1

2
(2k + 6) = k + 3 vertices, which is an even number, we obtain D(G) ≥ k + 2 by applying

Theorem 3.10. Now, let r ≥ 1, and assume that the lemma holds for all thick clawpaths
of length at most r − 1. We show the lemma for thick clawpaths of length r by induction
over the number of vertices in set Dr. Let G be a thick clawpath of length r with sequence
representation ((C0, D0), . . . , (Cr, Dr)) and let G have at least 1

2
(rk + r + 2k + 6) vertices. Let

|Dr| ≤
k+1

2
. Then, G[V \ Dr] is a thick clawpath of length r − 1 on at least 1

2
((r − 1)k + (r −

1) + 2k + 6) vertices. By induction hypothesis, D(G[V \ Dr]) ≥ k + 2. Since G[V \ Dr] is a
distance-preserving subgraph of G due to Lemma 5.5, we obtain D(G) ≥ k + 2 by Lemma 3.5.

Let nb be an integer such that nb ≥
k+1

2
. Assume that the lemma holds for all thick clawpaths

of length r with at most nb vertices in their Dr-set. Let G be a thick clawpath of length r on
at least 1

2
(rk + r + 2k + 6) vertices with sequence representation ((C0, D0), . . . , (Cr, Dr)) where

|Dr| = nb + 1. We determine D(G). Let E be a minimum distortion embedding for G. We say
that a vertex x from Dr has the compact property in E if the close vertex to the left and right
of x are both from Dr ∪ Cr. Denote by c and c′ the respectively leftmost and rightmost vertex
from Cr ∪ Dr−1 in E . We distinguish two main cases.

Case A

Let all vertices from Dr between c and c′ have the compact property. Let d and d′ denote the
respectively leftmost and rightmost vertex from Dr in E . Since the vertices in Dr are pairwise
non-adjacent, dE(d, d′) ≥ k + 1. If a vertex from Cr is to the left of d or to the right of d′ in E ,
we directly obtain D(G, E) = D(G) ≥ k + 2. Now, let no vertex from Cr be to the left of d or
to the right of d′, i.e., all vertices from Cr are between d and d′ in E . If c ≺E d or d′ ≺E c′ then
d or d′ does not have the compact property in contradiction to our assumption. Thus, d ≺E c

and c′ ≺E d′. Denote by a and a′ the respectively leftmost and rightmost vertex from Cr in E .

21

If dE(d, a′) ≥ k + 2 or dE(a, d′) ≥ k + 2 then D(G) ≥ k + 2. Now, let dE(d, a′) ≤ k + 1 and
dE(a, d′) ≤ k + 1. We determine the number of vertices in Dr ∪ Cr ∪ Dr−1. For a pair u, v of
consecutive vertices from Dr ∪ Cr ∪ Dr−1 in E , note the following:

– if one of u, v is from Dr and the other from Cr then dE(u, v) ≥ 1

– if one of u, v is from Dr and the other from Dr−1 then dE(u, v) ≥ 3

– in all other cases, dE(u, v) ≥ 2.

From the assumptions, it follows that

dE(d, d′) = dE(d, a′) + dE(a, d′) − dE(a, a′) ≤ 2k + 2 − dE(a, a′)

dE(d, d′) = dE(d, c) + dE(c, c′) + dE(c′, d′) ,

which gives
dE(d, c) + dE(c, c′) + dE(c′, d′) + dE(a, a′)

2
≤ k + 1 .

It follows from the compact property that all vertices from Dr that are between c and c′ are
between a and a′. Let p be the number of vertices from Dr that are between c and c′. If p < |Cr|
then dE(a, a′) ≥ 2|Cr| − 2, if p ≥ |Cr| then dE(a, a′) ≥ 2|Cr| − 2 + 2(p − |Cr| + 1) = 2p. If
there is a vertex from Dr−1 between a and a′, both lower bounds increase by 2 since vertices
from Dr−1 are non-adjacent to vertices from Dr as well as Cr. We distinguish two cases with
respect to c, c′. First, let c ∈ Dr−1 or c′ ∈ Dr−1. Then, dE(d, c) + dE(c′, d′) ≥ 2(|Dr| − p), and
dE(c, c′) ≥ 2|Cr ∪ Dr−1| − 2 or dE(c, c′) ≥ 2|Cr ∪ Dr−1| − 2 + 2(p − |Cr| + 1). Remember that
|Dr| = nb + 1. So, for two cases, we obtain with the above inequality:

– if p ≤ |Cr| − 2 then
k + 1 ≥ nb + 1 − p + |Cr| − 1 + |Cr ∪ Dr−1| − 1, i.e.,
k + 1 ≥ nb + |Cr| − p − 1 + |Cr ∪ Dr−1| ≥ nb + 1 + |Cr ∪ Dr−1| = |Dr ∪ Cr ∪ Dr−1|

– if p ≥ |Cr| then
k + 1 ≥ nb + 1 − p + p + |Cr ∪ Dr−1| − 1 + p − |Cr| + 1, i.e.,
k + 1 ≥ nb + p − |Cr| + 1 + |Cr ∪ Dr−1| ≥ nb + 1 + |Cr ∪ Dr−1| = |Dr ∪ Cr ∪ Dr−1| .

The case when p = |Cr| − 1 requires a more careful analysis. If there is a vertex between a

and a′ that is not from Dr ∪ Cr then there is also an empty slot between a and a′ (because of
p = |Cr| − 1). Thus, dE(a, a′) ≥ 2|Cr|, and we can conclude |Dr ∪Cr ∪Dr−1| ≤ k + 1 similar to
the case p ≤ |Cr| − 2 above. If c, c′ ∈ Dr−1 then dE(d, c) + dE(c′, d′) ≥ 2(nb + 1 − p) + 2, and
again we obtain |Dr ∪ Cr ∪ Dr−1| ≤ k + 1 similar to the cases above. Now, let there be only
vertices from Dr ∪Cr between a and a′ and assume that c ∈ Cr. Note that this means a = c and
c′ ∈ Dr−1. We determine the cardinality of Dr ∪Cr ∪Dr−1 by partitioning the set into two sets:
the set of vertices from Dr to the left of a′ and the other vertices. All vertices from Cr ∪ Dr−1

are from a on to the right in E . With dE(d, a′) ≤ k + 1, it follows that there are at most k+1

2

vertices from Dr to the left of a′. For the other set, observe that there are two slots between c′

and its close vertex from Dr to the right. So, the number of vertices in the second set is at most
⌊k+2

2
⌋ = k+1

2
. Hence, |Dr ∪ Cr ∪ Dr−1| ≤ k + 1. The case when c′ ∈ Cr is symmetric.

Now, let c, c′ ∈ Cr, i.e., c = a and c′ = a′. Then, dE(a, a′) = dE(c, c′) and dE(d, c)+dE(c′, d′) ≥
2(nb + 1 − p) − 2. We analyse analogously to the cases above:

22

– if p ≤ |Cr| − 2 then
k + 1 ≥ nb + 1 − p − 1 + 2(|Cr ∪ Dr−1| − 1), i.e.,
k + 1 ≥ nb + |Cr| − p + |Cr ∪ Dr−1| − 1 ≥ nb + 1 + |Cr ∪ Dr−1| = |Dr ∪ Cr ∪ Dr−1|

– if p = |Cr| − 1 then dE(a, a′) ≥ 2(|Cr ∪ Dr−1| − 1) + 1 since a vertex from Dr between a

and a′ has an empty slot to its left or right. So,
k + 1 ≥ nb + 1 − p − 1 + 2(|Cr ∪ Dr−1| − 1) + 1, i.e.,
k + 1 ≥ nb + |Cr| − p + |Cr ∪ Dr−1| ≥ nb + 1 + |Cr ∪ Dr−1| = |Dr ∪ Cr ∪ Dr−1|

– if p ≥ |Cr| then
k + 1 ≥ nb + 1 − p − 1 + 2(|Cr ∪ Dr−1| − 1 + p − |Cr| + 1), i.e.,
k + 1 ≥ nb + p − |Cr| + |Dr−1| + |Cr ∪ Dr−1| ≥ nb + 1 + |Cr ∪ Dr−1| = |Dr ∪ Cr ∪ Dr−1| .

We have shown |Dr ∪ Cr ∪ Dr−1| ≤ k + 1. If r ≥ 2 then G[V \ (Dr ∪ Cr ∪ Dr−1)] is a thick
clawpath of length r− 2 on at least 1

2
((r− 2)k + (r− 2) + 2k + 6) = 1

2
(rk + r + 2k + 6)− (k + 1)

vertices. Applying the induction hypothesis, D(G[V \ (Dr ∪ Cr ∪ Dr−1)]) ≥ k + 2, which gives
D(G) ≥ k + 2 due to Lemmata 5.5 and 3.5. Let r = 1. Since |Dr ∪ Cr ∪ Dr−1| ≤ k + 1 and
|Dr| ≥

k+1

2
, |Dr−1| ≤

k+1

2
, and G[V \ Dr−1] is a complete bipartite graph on at least k + 3

vertices. Applying Theorem 3.10 and Lemmata 5.5 and 3.5, we obtain D(G) ≥ k + 2.

Case B

Let there be a vertex x from Dr between c and c′ that does not have the compact property. We
define a new thick clawpath from G and E with fewer vertices in Dr and without increasing the
distortion. Let w be the close vertex to the left or to the right of x in E such that w 6∈ Dr∪Cr. Let
y be a vertex from Dr−1. Observe that dE(w, x) ≥ dG(w, y) + 1, since every shortest w, x-path
in G contains a vertex from Cr−1, that is at distance 2 from x in G and at distance 1 from y. For
z ∈ Dr ∪Cr, z 6= x, it holds that dG(x, z) = dE(y, z)−1. We obtain graph H from G by deleting
x as a Dr-vertex and making it a Dr−1-vertex. This particularly means that the sequence
representation of H is the following: (C0, D0), . . . , (Cr−2, Dr−2), (Cr−1, Dr−1 ∪ {x}), (Cr, Dr \
{x}). Thus, H is a thick clawpath with nb vertices in its Dr-set. Obtain embedding F for H

from E by moving x by one position towards w. Due to the distance observations above, F
is a non-contractive embedding for H. We determine D(H,F). For u, v vertices of H where
u, v 6= x, dF (u, v) = dE(u, v). For u ∈ NH(x) = Cr−1, if u is to the left of x in E (and F) then
dF (u, x) < dE(u, c′), if u is to the right of x then dF (x, u) < dE(c, u). Since c and c′ are adjacent
to u in G, it directly follows that D(H,F) ≤ D(G, E). Applying the induction hypothesis,
k + 2 ≤ D(H) ≤ D(H,F), which gives D(G) ≥ k + 2 by the choice of E . This completes the
proof.

Corollary 5.7 Let G be a connected bipartite permutation graph, and let H be an induced
subgraph of G that is a thick clawpath of length r ≥ 0. Let k ≥ 1 be an odd integer. If H

contains at least 1

2
(rk + r + 2k + 6) vertices then D(G) ≥ k + 2.

Proof. The result directly follows from Lemmata 5.6, 5.5 and 3.5.

5.3 Upper bound on the distortion of bipartite permutation graphs

We give an efficient algorithm for computing the distortion of bipartite permutation graphs.
This algorithm works in a vertex-incremental manner, by computing the distortion for a se-

23

quence of induced subgraphs of the input graph. Correctness of our algorithm partially relies
on Corollary 5.7.

The main idea of the algorithm is to take a special minimum distortion embedding for a
smaller graph, to add a new vertex and to improve the embedding by moving vertices. We
specify properties of the special embeddings and the moving operations in the following. Let
G = (A, B, E) be a bipartite permutation graph with strong ordering (σA, σB). Let a be the
leftmost A-vertex in σA. An embedding E for G is called normalised with respect to (σA, σB) if
it satisfies the following two conditions:

(D1) ord(E) is normalised with respect to (σA, σB), i.e., satisfies conditions (C1) and (C2)

(D2) for every A-vertex x, dE(a, x) is even; and for every B-vertex x, dE(a, x) is odd.

The slots of a normalised embedding can be partitioned into even slots and odd slots, the former
ones will only contain A-vertices, the latter ones will only contain B-vertices. The even slots
will also be called cc(a)-slots and the odd slots will also be called cc(a)-slots. The partition into
the two slot classes is not a strong restriction on an embedding for a bipartite graph, but it will
simplify the description of our algorithms. It is a simple but important observation that E is
normalised with respect to (σA, σB) if and only if the reverse of E is normalised with respect
to (σA, σB)R. We will show that every connected bipartite permutation graph has a minimum
distortion embedding that is normalised with respect to a given strong ordering. Thus, a result
analogous to Theorem 5.2 also holds for distortion embeddings.

Our algorithm is based solely on moving vertices. Vertex moving will appear in three different
forms, depending on which vertices are moved into which direction. The corresponding three
operations are called RightMove, LeftMove and DeleteTwo. The latter operation, DeleteTwo,
receives an embedding E and a position p as input and “deletes” the slots at positions p and
p + 1 in E , by moving all vertices that are to the right of position p by two positions to the left.
Note that the result is a proper embedding if the slots at position p and p + 1 are empty. When
we apply DeleteTwo, these two positions are empty.

We give the definition of operation RightMove in pseudocode. For the definition, we introduce
the following notation. For an embedding E , a vertex u and a position p, E − u denotes the
embedding obtained from E by removing u (which leaves an empty slot) and E + (u → p)
is the embedding obtained from E by placing vertex u in the slot at position p (to obtain a
proper embedding, we assume that u is not placed in E and that the slot at position p in E is
empty). Operation RightMove mainly executes a right-shift for vertices of one of the two colour
classes (if the input embedding is normalised for a bipartite permutation graph). It receives an
embedding E and a vertex u as input and is defined as

Procedure RightMove

begin

let p = E(u) + 2; set E = E − u;
while position p in E is occupied do

let x be the vertex at position p in E ;
set E = (E − x) + (u → p); set u = x; set p = p + 2

end while;
return E + (u → p)

end.

An example of a RightMove operation is given in Figure 5. The two colour classes are
depicted as white and grey circles. In the example, RightMove moves u by two positions to the

24

u w x y z u w x y z

Figure 5: The RightMove operation illustrated, applied to vertex u. The small dots indicate
empty slots. Vertices are coloured according to the colour classes they belong to.

right; this operation also moves vertices w, x, y, and the positions of the other vertices remain
unchanged. The resulting embedding is shown on the right side.

Operation LeftMove can be considered the counterpart of RightMove. It receives an embed-
ding E and a vertex u as input. The result is the reverse of the result obtained from applying
RightMove to the reverse of E and u. The following lemma shows that the three operations are
compatible with the notion of normalised embedding.

Lemma 5.8 Let G = (A, B, E) be a connected bipartite permutation graph, and let E be a
normalised non-contractive embedding for G.

1. Let u be a vertex that has a neighbour to its right in E. Let v be the rightmost neighbour
of u. Let there be an empty cc(u)-slot between u and v in E.
Then, RightMove(E , u) is a normalised non-contractive embedding for G.

2. Let v be a vertex that has a neighbour to its left in E. Let u be the leftmost neighbour of
v. Let there be an empty cc(v)-slot between u and v in E.
Then, LeftMove(E , v) is a normalised non-contractive embedding for G.

3. Let u be a vertex such that all cc(u)-vertices to its right in E are adjacent to u.
Then, RightMove(E , u) is a normalised non-contractive embedding for G.

4. Let the slots at position p and p + 1 in E be empty.
Then, DeleteTwo(E , p) is a normalised embedding for G.

Proof. First note that the result in all cases is a proper embedding, meaning that every slot is
occupied by at most one vertex. Furthermore, vertices that change position move exactly two
positions, so that the distance between any pair of vertices from the same colour class is even and
between any pair of vertices from different colour classes is odd. Thus, all embeddings satisfy
condition (D2). The correctness of statement 4 then is immediate, since vertices are not deleted
and the vertex ordering underlying the resulting embedding is equal to ord(E). For statements 1,
2, 3, the vertex ordering underlying the resulting embedding satisfies condition (C1), since vertices
of the same colour class do not change order. We show that also condition (C2) is satisfied. Let
F =def RightMove(E , u). Let a, b, c be three vertices of G where a ≺F b ≺F c, and let ac ∈ E. If
a ≺E b ≺E c then ab ∈ E or bc ∈ E, since ord(E) satisfies condition (C2). Otherwise, b ≺E a ≺E c

or a ≺E c ≺E b, depending on whether cc(b) = cc(c) or cc(a) = cc(b). (Note that every vertex
moves at most two positions for the construction of F , which means it can change its relative
order with at most one vertex.) In the former case, b is a cc(u)-vertex, a is a cc(u)-vertex and
u ≺E a ≺E v. Thus, ua ∈ E. And since u = b or u ≺E b ≺E a, ba ∈ E. In the latter case, b

is a cc(u)-vertex, u ≺E b ≺E v and ub ∈ E, and so bc ∈ E because of u = c or u ≺E c ≺E b.
Consequently, F is normalised. For the non-contractiveness condition, let w be a cc(u)-vertex
between u and v in F . Then, w is between u and v also in E and therefore uw ∈ E by
condition (C2), and thus w is adjacent to all cc(u)-vertices between u and w in E . Hence, the

25

close cc(u)-vertex to the left of w in F is a neighbour, and the close cc(u)-vertex x to the right
of w in F is a neighbour or dF (w, x) ≥ dE(w, x). For vertices to the left of u or to the right of
v in E , nothing has changed in F . Thus, F is non-contractive. The correctness of statement 2
immediately follows from the correctness of statement 1.

For statement 3, we distinguish cases with respect to the number of cc(u)-vertices to the
right of u in E . Let F =def RightMove(E , u). If there is no cc(u)-vertex to the right of u in
E , then all vertices to the right of u in E are cc(u)-vertices and ord(F) = ord(E), and F is
clearly a normalised non-contractive embedding for G. Let there be exactly one cc(u)-vertex
to the right of u in E , say v, and let dE(u, v) = 1 and let the slot at position E(u) + 2 in E
be empty. Then, F differs from E only in the position of u, and F is non-contractive. Note
that non-contractiveness here relies on the properties of condition (D2), since u cannot be placed
at distance 1 to a cc(u)-vertex. For satisfaction of condition (C2), it suffices to observe that u

and v are adjacent and consecutive in E and that they changed their order to obtain ord(F).
Thus, F is normalised. If there are at least two cc(u)-vertices to the right of u in E , then F is
the result of at most three consecutive applications of RightMove with the following vertices:
the cc(u)-vertex at distance 1 to the right of the rightmost neighbour of u, then the vertex at
distance 1 to the left of the rightmost neighbour of u and finally to u. The last case is captured
by statement 1.

We will always apply the three operations to normalised non-contractive embeddings. State-
ment 4 of Lemma 5.8 cannot be extended by an unconditional statement about non-contractive-
ness. However, in all cases when we apply DeleteTwo, the two consecutive vertices around the
deleted positions never violate the distance condition. Therefore, we assume throughout the sub-
section that the result of any application of the three operations is a normalised non-contractive
embedding, and we will not mention this explicitly again.

To give a first outline, our algorithm for computing the distortion of bipartite permutation
graphs iteratively takes a minimum distortion embedding for a connected induced subgraph, adds
a new vertex to this embedding and determines on this basis the distortion of the extended graph.
The new vertex is not an arbitrary vertex but one with special properties. This process defines
a vertex ordering for the given graph, that we formalise in the following. Let G = (A, B, E) be
a connected bipartite permutation graph on at least two vertices with strong ordering (σA, σB).
We say that a vertex ordering σ = 〈x1, . . . , xn〉 for G is competitive if it has the following
properties:

– σ satisfies condition (C1), at the beginning of Subsection 5.1

– x1 is the leftmost A-vertex in σA and x2 is the leftmost B-vertex in σB

– for 3 ≤ i ≤ n, N(xi)∩ {x1, . . . , xi−1} ⊆ N(w) where w is the cc(xi)-vertex preceding xi in
σA or σB.

Observe that competitive vertex orderings exist for all connected bipartite permutation graphs
and given strong orderings: if the rightmost A-vertex has a neighbour that is not a neighbour
of the previous A-vertex then this neighbour has degree 1. Without loss of generality, this
neighbour can be chosen as the last B-vertex. And since G is connected the last A-vertex is
adjacent to the last two B-vertices, from which follows that all neighbours of the last B-vertex
are neighbours of the previous B-vertex. Iteration proves the existence. The following lemma is
important for the correctness of the approach of our algorithm. Note that a competitive ordering
defines a strong ordering for a connected bipartite permutation graph.

26

Lemma 5.9 Let G = (A, B, E) be a connected bipartite permutation graph with competitive
ordering σ = 〈x1, . . . , xn〉. Then, G[{x1, . . . , xi}] is connected for every 1 ≤ i ≤ n.

Proof. Suppose the contrary. Let i ≥ 2 be the smallest value such that G[{x1, . . . , xi}] is not
connected, which means that xi has no neighbour among x1, . . . , xi−1. Note that i ≥ 3, since x2

is adjacent to x1. Since G is connected, xi has a leftmost neighbour y in σ, and xi ≺σ y. Let
v be the cc(y)-vertex preceding y in σ. Since v ≺σ y, v is not adjacent to xi by the definition
of y. Then, however, the third condition for competitive orderings is violated by y, which is a
contradiction. Hence, G[{x1, . . . , xi}] is connected.

We give the first step of our algorithm. We take an induced subgraph and a minimum
distortion embedding and extend both by adding a new vertex, which is picked according to a
competitive ordering. For a graph G = (V, E), an embedding E for G and an integer k ≥ 0
we say that a vertex x is (G, E , k)-bad if x has a neighbour y in G where y ≺E x such that
dE(x, y) > k. In particular, if x is a (G, E , k)-bad vertex then its leftmost neighbour in E is at
distance more than k in E . If the context is clear we write “(E , k)-bad vertex” or simply “k-bad
vertex”.

Lemma 5.10 Let G = (A, B, E) be a connected bipartite permutation graph on at least three
vertices with competitive ordering σ. Let x be the rightmost vertex in σ. Let c be the cc(x)-vertex
preceding x in σ, and let d be the leftmost neighbour of x in σ. Let E be a normalised minimum
distortion embedding for G−x, and let k =def D(G−x, E).

1. Let c ≺E d and F =def E + (x → E(d) + 1).
Then, F is a normalised minimum distortion embedding for G of distortion k.

2. Let d ≺E c and F =def E + (x → E(c) + 2).
Then, F is a normalised non-contractive embedding for G of distortion k or k + 2, and if
there is an (F , k)-bad vertex then it is x.

Proof. Note that in either case F is a normalised embedding: x occupies a cc(x)-slot in F (at
odd distance to d or even distance to c) that is empty in E ; therefore, F satisfies condition (D2).
Condition (C1) is satisfied by ord(F) since x is rightmost among all cc(x)-vertices in σ and F .
Now, let u, v, w be three vertices of G where u ≺F v ≺F w and let uw ∈ E. If u = x then
xv ∈ E since d ≺F x and all cc(x)-vertices to the right of d are neighbours of x. If v = x then
xw ∈ E by the same argument. Let w = x. If v is a cc(x)-vertex then vx ∈ E, since d ≺F v. Let
v be a cc(x)-vertex. By definition of σ and since x is rightmost vertex in σ, NG(x) ⊆ NG(c). If
v = c then uv ∈ E. If d ≺F v ≺F c then uv ∈ E, since dc ∈ E and cc(v) = cc(c) and E satisfies
condition (C2). If u, v, w 6= x then uv ∈ E or vw ∈ E, since E satisfies condition (C2). Therefore,
F satisfies condition (C2), and F is a normalised embedding for G. For non-contractiveness,
note that all vertices to the right of x in F are neighbours of x and the close vertex to the left
of x is a neighbour at distance 1 (cases 1 and 2) or a non-neighbour, namely c, at distance 2
and c and x have a common neighbour.

It remains to consider the distortion of F . For a neighbour y of x such that x ≺F y, it
holds that dF (x, y) ≤ dF (c, y) − 2 = dE(c, y) − 2 ≤ k. As the first case, let c ≺E d. By
construction of F , x has exactly one neighbour to the left, and this neighbour is d, at distance 1.
Thus, D(G,F) ≤ k. Due to Lemma 3.7, G−x is a distance-preserving subgraph of G, so that
D(G−x) ≤ D(G) due to Lemma 3.5. Thus, D(G) = D(G,F) and F is a minimum distortion
embedding for G. As the second case, let d ≺E c. Since d is a neighbour also of c, dF (d, x) =

27

dF (d, c) + 2 = dE(d, c) + 2 ≤ k + 2. Consequently, D(G,F) = k because of D(G−x, E) = k or
D(G,F) = k+2 because of dF (d, x) = k+2. Note that D(G,F) 6= k+1 since edges join vertices
on positions of different parity by condition (D2). And since E and F coincide on all vertices of
G−x, x can be the only (F , k)-bad vertex.

In the following, we want to solve the question that is raised by the second case of Lemma 5.10,
namely we want to decide whether the distortion of the graph in this case is at most k or exactly
k + 2. Remember that k + 1 is not a possible value of distortion for a bipartite graph, due to
Lemma 3.3. The main subroutine in our algorithm will answer exactly this question but requires
an input embedding of a special form. The next result shows that this form can be achieved by
few modifications or it is easy to decide the distortion question already by looking at a small
part of the given embedding. For a connected bipartite permutation graph G = (A, B, E), an
integer k ≥ 1 and a normalised non-contractive embedding E for G, we say that E has a nice
beginning if, for bl and br the respectively leftmost and rightmost (G, E , k)-bad vertex in E and
ar the leftmost neighbour of br, all (G, E , k)-bad vertices are cc(br)-vertices, dE(bl, br) ≤ k − 1,
there is no empty cc(br)-slot between ar and br, and there is an empty cc(br)-slot between ar

and bl in E . Note that ar ≺E bl by the distance conditions.

Lemma 5.11 Let G = (A, B, E) be a connected bipartite permutation graph on at least three
vertices with competitive ordering σ. Let E be a normalised non-contractive embedding for G

of distortion k + 2, and let there be exactly one (G, E , k)-bad vertex x. Let x be the rightmost
cc(x)-vertex in σ. Then, one of the following cases is true:

1. D(G) ≤ k, which is certified by a normalised non-contractive embedding for G

2. D(G) = k + 2, which is certified by a normalised non-contractive embedding for G of
distortion k + 2 and an induced subgraph that is complete bipartite on k + 3 vertices

3. D(G) ≤ k + 2, which is certified by a normalised non-contractive embedding for G of
distortion k + 2 and with a nice beginning.

There is an O(n)-time algorithm that identifies a true case and outputs the certificates.

Proof. Let y be the rightmost cc(x)-vertex in E . If x ≺E y and there is an empty cc(x)-
slot between x and y then LeftMove(E , y) is a normalised non-contractive embedding for G

that satisfies the assumptions of the lemma. Repeated application deletes all empty cc(x)-slots
between x and y. So, we can assume in the following that there are no empty cc(x)-slots
between x and the rightmost vertex in E . Let d be the leftmost neighbour of x in E , and let
F =def RightMove(E , d). If there is no (F , k)-bad vertex then D(G) ≤ k, which is certified by
normalised non-contractive embedding F . Now, suppose there is an (F , k)-bad vertex. Note
that, by the definition of F , x is not (F , k)-bad and no other cc(x)-vertex is (F , k)-bad. Let w

be the rightmost (F , k)-bad vertex in F . Since w must be a moved vertex, w is between d and
y.

Case A

Let x ≺F w. Since w is a moved vertex, there is no empty cc(x)-slot between d and w in E , and
thus there is no empty cc(x)-slot between d and y in E . In particular, all cc(x)-vertices to the
right of d moved for the definition of F . Let c be the leftmost neighbour of w in F . First, let
there be an empty cc(x)-slot between c and x in F and E . Note that, by the choice of w and
the definition of c, no cc(x)-vertex to the right of c has a right neighbour at distance more than

28

k−2 in E . Let E ′ =def LeftMove(E , x). Since d ≺E c ≺E x, E ′ is normalised and non-contractive,
and D(G, E ′) = k. Hence, D(G) ≤ k.

For the other case, let there be no empty cc(x)-slot between c and x. Denote by C the
cc(x)-vertices between c and x and denote by D the cc(x)-vertices between d and w. By the
properties of strong orderings, all vertices in C are adjacent to all vertices in D, which means
that G[C ∪ D] is a complete bipartite graph. We determine the number of vertices in C ∪ D

based on E . Remember that dE(d, x) = k + 2 and dE(c, w) = k. If w ≺E x then C ∪ D is the
set of vertices between d and x in E , hence, |C ∪ D| = k + 3. Now, let x ≺E w. From D there
are k+3

2
vertices between d and x, k+1

2
vertices between c and w and 1

2
dE(c, x) vertices between

c and x (that have been counted twice), and there are 1

2
dE(c, x) + 1 vertices in C. We sum up

and obtain:
k + 3 + k + 1 + dE(c, x) + 2 − dE(c, x)

2
=

2k + 6

2
= k + 3

vertices in C ∪D. Applying Theorem 3.10, G[C ∪D] has distortion k +2. And since G[C ∪D] is
a distance-preserving subgraph of G due to Lemma 5.5, G has distortion at least k+2 according
to Lemma 3.5. Since D(G) ≤ D(G, E), we conclude D(G) = k + 2.

Case B

Let w ≺F x. All (F , k)-bad vertices are between d and x, at distance at most k − 1 to d in F .
If the slot at position F(d) − 1 in F is not occupied, the two slots at position F(d) − 2 and
F(d)− 1 in F are not occupied. (Remember that d occupies the slot at position F(d)− 2 in E .)
We obtain a normalised non-contractive embedding F ′ for G as DeleteTwo(F ,F(d)− 2). Since
all leftmost neighbours of (F , k)-bad vertices are to the left of d in F , D(G,F ′) = k, and thus
D(G) ≤ k. Now, let the slot at position F(d) − 1 in F be occupied, say by vertex a.

Let there be no empty cc(x)-slot between a and x in E . If there is an empty cc(x)-slot
between d and x in E then E is an embedding with a nice beginning. Otherwise, if there is no
empty cc(x)-slot between d and x, let vertex z occupy position E(x) − 1 in E . Note that z 6= d.
According to the properties of F , RightMove(E , z) is a normalised non-contractive embedding
for G of distortion k + 2 with a nice beginning.

Let there be an empty cc(x)-slot between a and x in E . Let v be the leftmost cc(x)-vertex
such that there is no empty cc(x)-slot between v and x in E . Let G =def LeftMove(E , x).
If there is no (G, k)-bad vertex then G is a normalised non-contractive embedding certifying
D(G) ≤ k. So, let there be a (G, k)-bad vertex. Let u be the leftmost (G, k)-bad vertex in
G. Since x is not (G, k)-bad, all (G, k)-bad vertices are cc(x)-vertices and x ≺G u and x ≺E u

(the second relationship follows from the fact that dE(a, x) = k + 1 and dE(v, x) ≤ k − 3) and
dG(x, u) ≥ 5. If there is an empty cc(x)-slot between v and u in G then LeftMove(G, y) is a
normalised non-contractive embedding of distortion k for G. Remember that there is no empty
cc(x)-slot between u and y in E by the discussion at the beginning of the proof. If there is no
empty cc(x)-slot between v and u in G then G is a normalised non-contractive embedding with
a nice beginning, particularly since there is an empty cc(x)-slot between x and u in G.

After just two more definitions we will be ready for presenting the central subroutine of
our algorithm. Let G = (A, B, E) be a bipartite permutation graph and let E be a normalised
embedding for G. We call a pair (v, w) of vertices for v a cc(w)-vertex a blocking pair if v ≺E w,
dE(v, w) = 3 and vw 6∈ E. Let d and x be vertices of G from different colour classes where
d ≺E x. We call a cc(x)-vertex w for d ≺E w ≺E x a breakpoint vertex between d and x if (v, w)
is a blocking pair for some vertex v, there is no empty cc(x)-slot between d and v, and no empty
cc(x)-slot between w and x in E . The algorithm of the main subroutine is then the following:

29

Algorithm RepairAndDecide

Input An embedding E and an integer k

Output Acceptance if E can be repaired into an embedding F of distortion at most k;
rejection otherwise.

begin

while there is an (E , k)-bad vertex do

let x be the rightmost k-bad vertex in E ;
let d be the leftmost neighbour of x in E ;

if there is no empty cc(x)-slot between d and x in E then reject end if;

let F = RightMove(E , d);
if slot at position F(d) − 1 is not occupied in F then accept end if;
if there is no breakpoint vertex between d and x in F and

there is an empty cc(x)-slot between d and x in F then accept end if;
set E = F

end while;
accept

end.

The input of the above algorithm is a normalised non-contractive embedding of distortion k + 2
with a nice beginning. With the results of Lemma 5.8 it is clear that all embeddings during the
execution of RepairAndDecide are normalised non-contractive. If the execution of the while
loop stops since there is no k-bad vertex in E , E has distortion at most k, and the algorithm
accepts correctly. In the following, we show that the algorithm always stops with the correct
answer, which means that it accepts if the distortion of the input graph is at most k and it
rejects if the distortion of the input graph is at least k +2. This correctness proof is partitioned
into two lemmata. We begin with properties about the intermediate embeddings. An iteration
of the while loop is called a round of the algorithm.

Lemma 5.12 Let G = (A, B, E) be a connected bipartite permutation graph with normalised
non-contractive embedding G of distortion k + 2 with a nice beginning. Apply RepairAndDecide

to (G, k). Let E, F , c and x have the values according to RepairAndDecide at the end of a
round, where we assume that there is an empty cc(x)-slot between d and x in E. Denote by xl

and xr the respectively leftmost and rightmost (F , k)-bad vertex.

(W1) D(G,F) ≤ k + 2

(W2) d ≺F xl or d = xl, and xr ≺F x

(W3) the slot at position F(d) − 2 in F is empty

(W4) all (F , k)-bad cc(xr)-vertices are to the right of all (F , k)-bad cc(xr)-vertices

(W5) if there is an empty cc(x)-slot between d and x in F then there is an empty cc(x)-slot
between d and the leftmost (F , k)-bad cc(x)-vertex in F .

Proof. We prove satisfaction of the conditions by induction over the number of rounds. If the
current round is the first round, E is an embedding with a nice beginning. If the current round
is not the first round, we assume that E satisfies the conditions. Let u be the rightmost cc(x)-
vertex such that there is no empty cc(x)-slot between d and u in E ; note that u ≺E x by the
empty slot assumption of the lemma. Then, the cc(x)-vertices between d and u are exactly the
vertices that have different positions in E and F . It follows that all (F , k)-bad cc(x)-vertices are

30

(E , k)-bad, since they are not moved and their leftmost neighbours are not moved (the leftmost
neighbours are to the left of d). An (F , k)-bad cc(x)-vertex is (E , k)-bad or is between d and u.

Claim u is at distance at least 3 to the left of the leftmost (E , k)-bad vertex in E .

Proof. For E in the first round, this is clear from the fact that there is an empty cc(x)-slot
between d and the leftmost k-bad vertex by definition of nice beginning. Let the current round
not be the first round. Then, E is the result of a RightMove operation, applied to some vertex d′.
By assumption, E satisfies condition (W3), so that the slot at position E(d′)− 2 in E is empty. If
d′ is a cc(x)-vertex then u is clearly to the left of d′ at distance at least 4 and no k-bad vertex
is to the left of d′ in E by condition (W2). For the other case, let d′ be a cc(x)-vertex. We
show that there is no empty cc(x)-slot between d′ and x. Let E ′ be the input embedding to the
previous round, and let x′ be the rightmost (E ′, k)-bad vertex. Note that x′ is a cc(x)-vertex.
Since d′x′ ∈ E and dx ∈ E, all cc(x)-vertices between d and x′ are adjacent to all cc(x)-vertices
between d′ and x. Consequently, there is no vertex w between d′ and x in E such that (v, w)
for some vertex v is a blocking pair. Here, it is important to note that dE(d′, x) ≤ k − 1, so
that d ≺E w and dE(d, w) ≥ 3 for all vertices w between d′ and x in E . Therefore, there is no
breakpoint vertex between d′ and x in E . If there is an empty cc(x′)-slot between d′ and x′ then
the algorithm would have accepted in the previous round. Therefore, there can be no empty
cc(x)-slot between d′ and x in E . Thus, all empty cc(x)-slots between d and x are to the left of
d′, and since there exists an empty cc(x)-slot due to assumption of the lemma, u is at distance
at least 3 to d′ in E .

(W1)

No cc(x)-vertex between d and u is (E , k)-bad. Therefore, moved vertices have left neighbours
at distance at most k, and so no (F , k)-bad vertex has a neighbour at distance more than k + 2
in F . This means D(G,F) ≤ k + 2.

(W2)

Since no vertex to the right of x is moved for defining F according to the claim or is (E , k)-bad,
and since d is the leftmost neighbour of x, all left neighbours of x in F are at distance at most
k. Thus, xr ≺F x. For xl, it follows from the claim that no (F , k)-bad vertex is to the left of d

in F .

(W3)

This is immediately clear from the fact that d is the leftmost moved vertex.

(W4)

Vertices that are (F , k)-bad but not (E , k)-bad are cc(x)-vertices between d and u. Since E
satisfies condition (W4), which is clear for G by the definition of nice beginning, no (F , k)-bad
cc(x)-vertex is to the right of an (F , k)-bad cc(x)-vertex in F .

(W5)

For this condition, we partition the sequence of rounds into intervals. A new interval always
starts when x changes colour class with respect to the previous round, and the first interval
starts with the first round. Note that during the rounds of a single interval, new bad vertices
are from the same colour class. So, it suffices to consider only first rounds of intervals. Consider
the first round, which is the first round of the first interval. By definition of nice beginning,
there is no empty cc(x)-slot between d and x in G, thus there is no empty cc(x)-slot between d

and x in F . Now, consider the beginning of an arbitrary but later interval. Let E be the input
embedding of the first round of the interval, and denote by bl and br the respectively leftmost

31

and rightmost (E , k)-bad vertex. Let E ′ be the input embedding of the previous round, which is
the last round of the previous interval. Denote by x′ the rightmost (E ′, k)-bad vertex in E ′ and
denote by d′ its leftmost neighbour. Then, d′ = bl or d′ ≺E bl according to condition (W2). And
the slot at position E(d′) − 2 is empty in E . And since the leftmost neighbour of br, denoted as
dr, is at distance k + 2 to the left of br in E , which means at distance at least 3 to the left of d′

in E , there is an empty cc(br)-slot between dr and bl in RightMove(E , dr). This completes the
proof.

Let G = (A, B, E) be a bipartite permutation graph and let E be an embedding for G. Let
b, x be two vertices of G of the same colour class where b ≺E x. Let H be an induced subgraph
of G that is a thick clawpath. We say that H has a proper connection on (b, x) if H and (b, x)
satisfy the following conditions in E :

(P1) x ∈ V (H), the slot at position E(x) − 1 is occupied, say by vertex c, and bc ∈ E

(P2) H contains no cc(x)-vertex to the left of b and no cc(x)-vertex to the left of c

(P3) no cc(x)-vertex to the left of x has a neighbour in H to the right of x

(P4) the cc(x)-vertices between b and x in H correspond to a last path vertex of the clawpath
underlying H.

We use such thick clawpaths to extend them on their proper connections.

Lemma 5.13 Let G = (A, B, E) be a connected bipartite permutation graph with normalised
non-contractive embedding E of distortion k + 2 with a nice beginning. Apply RepairAndDecide

to (E , k). If the algorithm accepts then D(G) ≤ k, if the algorithm rejects then G contains a
thick clawpath of length r on 1

2
(rk + r + 2k + 6) vertices as induced subgraph.

Proof. We show the lemma by induction over the number of rounds of RepairAndDecide.
We begin with the first round; note that there is a first round. Let x and d be the vertices
chosen according to the algorithm. By definition of nice beginning, there is an empty cc(x)-
slot between d and x in E and the slot at position E(d) + 1 is occupied, say by vertex u. Let
F =def RightMove(E , d). Let c be any cc(x)-vertex between d and x in F such that there is no
empty cc(x)-slot between d and c in F . Then, G contains a thick clawpath of length 0 on k+5

2

vertices as induced subgraph with a proper connection on (d, c), as we show in the following.
According to the properties of nice beginning, there is no empty cc(x)-slot between u and x in
F . Let b be the vertex occupying the slot at position F(c)−1 in F . Note that b exists, since b is
a cc(x)-vertex between u and x in E . Then, bc ∈ E due to non-contractiveness of F . Let Hd,c be
the subgraph of G induced by the cc(x)-vertices between d and c and the cc(x)-vertices between
b and x in F . To show satisfaction of the conditions (P1–4), it remains to show satisfaction of
condition (P4); the other conditions are clearly satisfied by the definition of Hd,c. Since dx ∈ E

and bc ∈ E, all cc(x)-vertices in Hd,c are adjacent to all cc(x)-vertices in Hd,c by the properties
of normalised embeddings and strong orderings. Thus, Hd,c is a complete bipartite graph, i.e.,
a thick clawpath of length 0, and the cc(c)-vertices correspond to a last path vertex of the
underlying clawpath. For the number of vertices in Hd,c, note that dF (d, x) = k and there are
1

2
dF (d, c) + 1 many cc(c)-vertices and 1

2
dF (b, x) + 1 many cc(c)-vertices in Hd,c. This sums up

to k+5

2
vertices, since dF (d, c) + dF (b, x) = k + 1.

We now consider an arbitrary but later round. Let E , x and d be defined according to
the algorithm. We assume that there is a cc(x)-vertex b, where b = x or b ≺E x, such that

32

there is no empty cc(x)-slot between b and x in E and (b, x) is a proper connection for a thick
clawpath Hb,x of length r on |V (Hb,x)| = 1

2
(rk + r +k +5) vertices. We consider cases according

to RepairAndDecide.

No empty slot

Suppose there is no empty cc(x)-slot between d and x in E . Let c be the vertex occupying
position E(x)− 1 in E . Since dx ∈ E and bc ∈ E (according to condition (P1)), all cc(x)-vertices
between d and x are adjacent to all cc(x)-vertices between b and x. Because of conditions (P3–4),
subgraph H of G induced by the cc(x)-vertices between d and x and V (Hb,x) is a thick clawpath
of length r. We determine the number of vertices of H. There are k+3

2
cc(x)-vertices between d

and x in E and at least all k+1

2
cc(x)-vertices to the left of c are not contained in Hb,x due to

condition (P2). Hence, |V (H)| ≥ 1

2
(rk + r + 2k + 6).

For the other cases, let there be an empty cc(x)-slot between d and x in E . Let F =def

RightMove(E , d).

Position F(d) − 1 not occupied

Let the slot at position F(d)− 1 not be occupied in F . Then, the slots at position F(d)− 2 and
F(d) − 1 are not occupied in F . Let G =def DeleteTwo(F ,F(d) − 2). Due to Lemma 5.12, all
(F , k)-bad vertices are between d and x in F . And since dF (d, x) = k, the leftmost neighbour
of every (F , k)-bad vertex is to the left of d in F . If there is no vertex to the left of d in F ,
then there are no (F , k)-bad vertices, and D(G,F) = D(G,G) = k. Otherwise, let w be the
close vertex to the left of d in F . Then, w is the close vertex to the left of d also in E , and
dG(w, d) = dF (w, d) − 2 = dE(w, d). Thus, G is a normalised non-contractive embedding for G.
And since D(G,F) ≤ k + 2, it follows that D(G,G) = k; equality is shown by dG(d, x) = k.

Position F(d) − 1 occupied

Let u be the vertex occupying position F(d) − 1 in F . As the first case, let there be no empty
cc(x)-slot between d and x. Let c be a cc(x)-vertex between d and x such that there is no empty
cc(x)-slot between d and c in F , and let b be the vertex occupying the slot at position F(c)− 1
in F . Analogous to the beginning of the proof, the cc(x)-vertices between d and c and the
cc(x)-vertices between c and x define a thick clawpath of length 0 on k+5

2
vertices with a proper

connection on (d, c). As the second case, let there be an empty cc(x)-slot between d and x in
F ; let p be the position of the leftmost empty cc(x)-slot between d and x. Let there be no
breakpoint vertex between d and x in F . We want to move u two positions to the right to
obtain an embedding without vertex occupying the slot at position F(d) − 1. Suppose there
is a blocking pair (v, w) such that v is a cc(x)-vertex and w is a cc(x)-vertex and d ≺F w

and F(v) < p. When we move u then v has to move and would come too close to the non-
neighbour w. Note that vw 6∈ E implies that no vertex to the right of w is adjacent to v.
In particular, no cc(x)-vertex between w and x has a left neighbour at distance more than k.
Remember that dF (u, x) = k + 1. Since w is no breakpoint vertex, there is an empty cc(x)-
slot between w and x. Since wx ∈ E due to condition (C2), RightMove(F , w) is a normalised
non-contractive embedding without (v, w) being a blocking pair. If there are further blocking
pairs with vertices to the left of position p, repeat the described procedure. If there are no
(further) blocking pairs, F ′ =def RightMove(F , u) is a normalised non-contractive embedding of
distortion at most k+2 with (F ′, k)-bad vertices only between d and x. We obtain a normalised
non-contractive embedding of distortion at most k by deleting the two empty slots to the left of
d, similar to the case above.

33

Finally, let there be a breakpoint vertex w between d and x; let v be the vertex such that
(v, w) is a blocking pair. By definition, there is no empty cc(x)-slot between d and v and there
is no empty cc(x)-slot between w and x. Note that v ≺F b by condition (W5) of Lemma 5.12.
Let a be an (F , k)-bad cc(x)-vertex that is not (E , k)-bad. This particularly means that there
are no empty cc(x)-slots between d and a in F . Observe that a ≺F w. Let c be the vertex
occupying the slot at position F(a)−1. Now, let Hd,a be the subgraph of G induced by V (Hb,x)
and the cc(x)-vertices between d and a and between w and x and the cc(x)-vertices between c

and v. Similar to the beginning of the proof, all cc(x)-vertices between d and x are adjacent to
all cc(x)-vertices between b and x. And since dx ∈ E and au ∈ E, all cc(x)-vertices between u

and v are adjacent to all cc(x)-vertices between d and a. And no cc(x)-vertex between u and
v is adjacent to a vertex from w on to the right in F . Thus, Hd,a is a thick clawpath with a
proper connection on (d, a) of length r + 1. It remains to determine the number of vertices in
V (Hd,a) \ V (Hb,x):

– 1

2
dF (c, v) + 1 cc(x)-vertices between c and v

– 1

2
dF (d, a) + 1 cc(x)-vertices between d and a

– 1

2
(dF (w, x) − 1) cc(x)-vertices between w and x, where the vertex occupying the slot at

position F(x) − 1 in F is not counted,

which sums up to 1

2
(dF (c, v) + dF (d, a) + dF (w, x)− 1) + 2 new vertices. With the definition of

the selected vertices, it holds that dF (c, a) = 1 and dF (v, w) = 3, so that

dF (c, v) + dF (d, a) + dF (w, x) = k + 1 − 3 = k − 2 .

Thus, Hd,a contains |V (Hb,x)| + k+1

2
≥ 1

2
((r + 1)k + (r + 1) + k + 6) vertices.

We have seen that in case RepairAndDecide stops during a round then the decision is correct
with respect to our definitions; and if it does not stop then every k-bad vertex is associated with
a thick clawpath of special properties. This completes the proof.

So far, there is a third possible case for RepairAndDecide that is not covered by Lemma 5.13,
namely that the algorithm might not terminate on an input. However, we have actually already
proven that this cannot happen, as condition (W2) in Lemma 5.12: in every round of the algo-
rithm, the number of vertices to the right of k-bad vertices increases. Now, we are ready for
presenting the two main results of this section.

Theorem 5.14 Let G = (A, B, E) be a connected bipartite permutation graph, and let k ≥ 1 be
an odd integer. Then, D(G) ≤ k or G contains a thick clawpath of length r on 1

2
(rk+r+2k+6)

vertices as induced subgraph.

Proof. We show the statement by induction over the number of vertices of G. If G contains at
most two vertices then D(G) ≤ 1. So, let G have n ≥ 3 vertices. Assume that the claim holds
for all graphs on at most n − 1 vertices. Let σ be a competitive ordering for G, and let x be
the last vertex in σ. If D(G−x) ≥ k + 2 then G−x contains a thick clawpath of length r on
1

2
(rk + r + 2k + 6) vertices as induced subgraph, and thus G. Now, let D(G−x) ≤ k, and let F

be the embedding obtained as in Lemma 5.10 on input E , σ and x. Assume that D(F) = k + 2.
Then, Lemma 5.11 can be applied to F , and in connection with Lemma 5.13, we obtain the
claim.

34

Corollary 5.15 A connected bipartite permutation graph G has distortion at most k for k ≥ 1
an odd integer if and only if G does not contain a thick clawpath of length r on 1

2
(rk+r+2k+6)

vertices as induced subgraph.

Proof. The statement directly follows from Theorem 5.14 and Corollary 5.7.

Note that Corollary 5.15 also gives a lower bound on the number of vertices of graphs of
high distortion.

With the result of Theorem 5.14, we can conclude that Lemmata 5.10, 5.11 and 5.13
readily give an algorithm for computing the distortion of a connected bipartite permutation
graph directly. We summarize this as our main algorithm bpg-distortion, which we call
bpg-distortion:

Algorithm bpg-distortion

Input connected bipartite permutation graph G

Output k = D(G), a corresponding embedding E with D(G, E) = k and
an induced thick clawpath subgraph H such that D(H) > k − 2

begin

if G consists of a single vertex x then return k = 0, E = 〈x〉, H = G end if;
Compute a competitive ordering 〈x1, x2, . . . , xn〉 for G;
let E = 〈x1, x2〉; let k = 1; let H = G[{x1, x2}];
for i = 3 to n do

let Gi = G[{x1, x2, . . . xi}];
Apply Lemma 5.10 on Gi and E to obtain embedding F ; set E = F ;
if D(Gi, E) > k then

Apply Lemma 5.11 on Gi and E to obtain a true case and a certificate
embedding F corresponding to this case; set E = F ;
if Case 2 of Lemma 5.11 then

set k = k + 2;
set H = induced complete bipartite subgraph returned by this case

end if;
if Case 3 of Lemma 5.11 then

Apply Algorithm RepairAndDecide to (E , k);
if RepairAndDecide rejects then

set k = k + 2;
Apply the algorithm in the proof of Lemma 5.13 to compute an induced
thick clawpath subgraph H

else

set E = output embedding F of Algorithm RepairAndDecide

end if

end if

end if

end for;
return k, E , H

end.

Theorem 5.16 There is an O(n2)-time algorithm that computes the distortion of a connected
bipartite permutation graph on n vertices. The algorithm certifies the computed distortion by a
normalised non-contractive embedding as an upper bound and an induced thick clawpath subgraph
as a lower bound.

Proof. We show that Algorithm bpg-distortion is such an algorithm. Let G = (A, B, E) be
a connected bipartite permutation graph with a competitive ordering 〈x1, x2, . . . , xn〉, and let
Gi = G[{x1, . . . , xi}]. Minimum distortion embeddings for G1 and G2 are trivial. For G1, there

35

is no certifying induced subgraph, and G2 is a thick clawpath of length 0 on two vertices, thus
clearly D(G2) = 1. The correctness of the for loop of Algorithm bpg-distortion follows from
Lemmata 5.10, 5.11, 5.13 and Corollary 5.15. Notice that if D(G, E) ≤ k after the application
of Lemma 5.11, then the loop continues to next value of i, and none of the remaining commands
inside the loop are executed. Similarly, the application of Lemma 5.11 returns exactly one true
case, and if this is Case 1 (D(G) ≤ k) then the loop continues to next value of i with the same
k value. If the value of k does not change from one iteration to the next then the induced thick
clawpath H does not change either, since this is still a certificate of D(Gi) > k − 2 for the next
i value as well.

For the running time, observe first that a competitive ordering for G can be computed in
linear time. Furthermore, we see that the algorithms of Lemmata 5.10 and 5.11 are executed at
most n times, which sums up to O(n2) time. Algorithm RepairAndDecide is applied at most n

times, so that it remains to consider the running time of a single RepairAndDecide application.
Observe that there are at most two empty slots between consecutive vertices in a normalised
embedding for a connected bipartite permutation graph. Thus, the distance between leftmost
and rightmost vertex in such an embedding is at most 3n. With the definition of nice beginning,
it also follows that no further slots are needed during a computation. Every vertex is moved at
most once. For every slot, we store the number of vertices of the two colour classes to its right
in the embedding. Existence of empty slots can be decided from the difference of these numbers
for two positions. When vertices are moved, the number information has to be updated, which
takes time linear in the number of moved vertices. The existence of a breakpoint vertex can be
checked straightforward since a breakpoint vertex is not moved (anymore), and thus a vertex
has to be checked for being breakpoint vertex at most once. Finally, the next bad vertex is
found by simply checking the vertices to the left of the previous bad vertex in (the reverse of)
their order in the current embedding. This follows from condition (W2) in Lemma 5.12. Thus,
RepairAndDecide has an O(n)-time implementation, and the total computation running time
is O(n2). It remains to consider the time for computing the certificates. Modifications on the
embedding in case RepairAndDecide accepts can be executed in O(n) time, since they require
only some move operations. In case RepairAndDecide rejects a thick clawpath has to be found.
The proof of Lemma 5.13 gives a recursive algorithm for doing this, that has an O(n)-time
implementation.

6 Final remarks

We gave an O(n2)-time implementation of an algorithm for computing the distortion of con-
nected bipartite permutation graphs. In our implementation of RepairAndDecide the input em-
bedding is expected to be arbitrary. However, the actual embedding given to RepairAndDecide

by Algorithm bpg-distortion is of a specific form. Is it possible to give a linear-time imple-
mentation of Algorithm bpg-distortion using the information about the embedding gained
during previous iterations of the main loop?

Acknowledgments

The authors thank Fedor V. Fomin for suggesting the study of minimum distortion embeddings
of specific graph classes. The authors also thank Dieter Kratsch for preliminary discussions

36

on the topic. The authors thank anonymous referees for the hints on the improvement of the
presentation of the results.

References

[1] M. Bădoiu, J. Chuzhoy, P. Indyk, A. Sidiropoulos. Low-distortion embeddings of general
metrics into the line. STOC 2005, pp. 225–233, ACM, 2005.

[2] M. Bădoiu, K. Dhamdhere, A. Gupta, Y. Rabinovich, H. Räcke, R. Ravi, A. Sidiropou-
los. Approximation algorithms for low-distortion embeddings into low-dimensional spaces.
SODA 2005, pp. 119–128, ACM and SIAM, 2005.

[3] M. Bădoiu, P. Indyk, A. Sidiropoulos. Approximation algorithms for embedding general
metrics into trees. SODA 2007, pp. 512–521, ACM and SIAM, 2007.

[4] G. Blache, M. Karpinski, J. Wirtgen. On approximation intractability of the bandwidth
problem. Technical report TR98-014, University of Bonn, 1997.

[5] A. Brandstädt, V. B. Le, J. P. Spinrad. Graph Classes: A Survey. SIAM Monographs on
Discrete Mathematics and Applications, 1999.

[6] V. Chvátal and P. L. Hammer. Set-packing and threshold graphs. University of Waterloo
Research Reports, CORR 73–21, 1973.

[7] M. R. Fellows, F. V. Fomin, D. Lokshtanov, E. Losievskaja, F. A. Rosamond, S. Saurabh.
Distortion Is Fixed Parameter Tractable. ICALP 2009, Springer LNCS, 5555:463–474, 2009.

[8] P. Fishburn, P. Tanenbaum, A. Trenk. Linear discrepancy and bandwidth. Order, 18:237–
245, 2001.

[9] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Second edition. Annals of
Discrete Mathematics 57, Elsevier, 2004.

[10] P. Heggernes, D. Kratsch, D. Meister. Bandwidth of bipartite permutation graphs in poly-
nomial time. Journal of Discrete Algorithms, 7:533–544, 2009.

[11] P. Heggernes and D. Meister. Hardness and approximation of minimum distortion embed-
dings. Information Processing Letters, 110:312–316, 2010.

[12] P. Indyk. Algorithmic applications of low-distortion geometric embeddings. FOCS 2001,
pp. 10–35, IEEE, 2005.

[13] P. Indyk and J. Matousek. Low-distortion embeddings of finite metric spaces. Handbook of
Discrete and Computational Geometry, second edition, pp. 177–196, CRC press, 2004.

[14] C. Kenyon, Y. Rabani, A. Sinclair. Low distortion maps between point sets. STOC 2004,
pp. 272–280, ACM, 2004.

[15] D. J. Kleitman and R. V. Vohra. Computing the bandwidth of interval graphs. SIAM
Journal on Discrete Mathematics, 3:373–375, 1990.

37

[16] P. J. Looges and S. Olariu. Optimal greedy algorithms for indifference graphs. Computers
& Mathematics with Applications, 25:15–25, 1993.

[17] N. Mahadev and U. Peled. Threshold graphs and related topics. Annals of Discrete Mathe-
matics 56. North Holland, 1995.

[18] B. Monien. The Bandwidth-Minimization Problem for Caterpillars with Hair Length 3 is
NP-Complete. SIAM Journal on Algebraic and Discrete Methods, 7:505–512, 1986.

[19] C. Papadimitriou and S. Safra. The complexity of low-distortion embeddings between point
sets. SODA 2005, pp. 112–118, ACM and SIAM, 2005.

[20] F. S. Roberts. Indifference graphs. In F. Harary (Ed.), Proof techniques in graph theory,
pp. 139–146, Academic Press, New York, 1969.

[21] J. Spinrad, A. Brandstädt, L. Stewart. Bipartite permutation graphs. Discrete Applied
Mathematics, 18:279–292, 1987.

[22] A. P. Sprague. An O(n log n) algorithm for bandwidth of interval graphs. SIAM Journal
on Discrete Mathematics, 7:213–220, 1994.

[23] J. B. Tenenbaum, V. de Silva, J. C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290:2319–2323, 2000.

38

