
BIT32 (1992), 197-214.

C A N O N I C A L R E P R E S E N T A T I O N S O F P A R T I A L 2- A N D

3 - T R E E S

STEFAN ARNBORG* and ANDRZEJ PROSKUROWSKI**

Department of Numerical Analysis and Department of Computer and
Computing Science Information Science,
Royal Institute of Technology University of Oregon
100 44 Stockholm, Sweden Eugene, OR 97403, USA

Abstract.

We give algorithms constructing canonical representations of partial 2-trees (series parallel graphs)
and partial 3-trees. The algorithms can be implemented in log-linear space, or in linear time using
quadratic space.

C R categories." G.2.2.

1. Introduction.

A canonical representation of a family of graphs assigns to each member of the
family a label that is independent of any arbitrary vertex numbering: two graphs
have the same canonical representation if and only if they are isomorphic. Thus, the
graph isomorphism problem can be solved efficiently using canonical representa-
tions if such representations can be efficiently computed and compared. Other uses
of canonical representations are to investigate the structure of the automorphism
group of a graph and to generate random graphs with some distribution over
isomorphism classes.

Most graph representations are not canonical since vertices are arbritrarily
numbered. But if we consider all possible vertex permutations, compute the corre-
sponding representations, and select the lexicographically smallest, then we get
a canonical representation. The set of vertex permutations yielding the lexi-
cographicaly smallest representation is a coset of the automorphism group for the
graph, regarded as a subgroup of the symmetric group on the vertex set.

A straightforward application of the above procedure has cost, exponential in the

* Supported in part by a grant from the Swedish Natural Sciefice Research Council.
** Research supported in part by the Office of Naval Research Contract N00014-86-K-0419.
Received January 1991. Revised December 1991.

198 STEFAN ARNBORG AND ANDRZEJ PROSKUROWSKI

graph size, since there are exponentially many vertex permutations to minimize
over. But in some cases it is possible to constrain the set of explicitly considered
permutations in such a way that the whole procedure can be performed in poly-
nomial time. We need only consider a set guaranteed to contain at least one
representative of each coset of the automorphism group of the given graph. In this
paper we show how these ideas yield an algorithm which produces a canonical
representation for partial 3-trees in log-linear time, and thus also solves the isomor-
phism problem for partial 3-trees in log-linear time. Previously, the graph isomor-
phism problems for the graphs of bounded valence (Luks [18]), genus (Filotti and
Mayer [12], Miller [19], [20]), and tree-width (Bodlaender [7]) (none of which is
a subfamily of the other) have been shown solvable in polynomial time. Linear time
algorithms for isomorphism of planar graphs (and thus also for partial 2-trees, which
are planar) are already known (Fontet [13]; Hopcroft and Wong [t5]; Colbourn
and Booth [10]).

For a fixed value of the integer parameter k, partial k-trees are exactly subgraphs
of chordal graphs with the maximum clique size k + 1. Thus, partial 1-trees are the
acyclic graphs (forests), and partial 2-trees are the series-parallel graphs with no K4
minors or homeomorphs).

Partial k-trees have been in the focus of attention in recent years because of their
interesting algorithmic properties. For a large number of inherently difficult (on
general graphs) discrete optimization problems, partial k-trees admit a linear time
solution algorithm when the value of k is fixed and the partial k-tree is given with its
k-tree embedding. Somewhat discouraging is the fact that, for a general value of k,
we do not know how to construct a k-tree embedding of such a graph in less than
O(nk+ Z) time. The only more efficient and practical recognition (and embedding)
algorithms known are for k < 3. A quadratic time recognition algorithm for any
given k exists as a consequence of Robertson and Seymour's [23] results, but it uses
a list of minimal forbidden minors which it is not known how to find and which can
be of astronomical size.

The class of partial k-trees is also identical with the class of graphs of tree-width
k (Scheffer [26], Wimer [30]). In the next section, we will give an iterative definition
of partial k-trees that is the basis of our approach to solve problems for this class of
graphs. Bodlaender proposed an algorithm for deciding isomorphism of partial
k-trees [7]. His method is based on the brute force k-tree embedding method of
Arnborg, Corneil and Proskurowski [3], where all k-vertex separators of the given
partial k-tree are tested for suitability as separators in a k-tree embedding. This
algorithm requires solving bipartite matching problems and takes O(n k+4"~) time.
We follow a different approach for k = 2, 3. For these values of k there exist small
complete sets of safe reduction rules that determine k-tree embeddings of a given
partial k-tree. With help of these reduction rules we produce a canonical string
representing the graph in log linear time, thus lowering the computation time from
polynomial (actually, O(n ~ 5)) to log-linear or linear time for isomorphism of partial
3-trees.

CANONICAL REPRESENTATIONS OF PARTIAL 2- AND 3-TREES 199

The procedure we use is based on a canonical reduction sequence obtained from
the safe reduction rules reported in Arnborg and Proskurowski [5]. For any given
graph, the set of vertices reducible according to a given rule is fixed by the automor-
phism group of the graph 1. Each reduction involves a separator of the graph with
one, two or three vertices. Whether two reduced vertices are automorphic depends
on symmetries between the corresponding separators. Our method keeps a record of
symmetries of the reduced parts of the graph through a sequence of labels and
orientations attached to the separators used in the reduction process. Two reduced
subgraphs cut offby such separators are isomorphic (the isomorphism mapping one
separator to the other) if and only if the labels of the two separators are equal, and
their orientations indicate the correspondence between the separator vertex sets.

A reducible vertex represents a k-leaf in an embedding k-tre. Thus, adjacent
vertices cannot be reduced in parallel. To deal with this, we refine the reduction rules
to deal with overlapping reduction instances. These refined reduction rules allow us
to construct a parse tree, where each node is associated with a reduction instance and
two nodes are adjacent if the reduction instance corresponding to one node creates
a (hyper-) edge involved in the reduction corresponding to the other. This tree is
used to implement efficiently the algorithms computing canonical representations.

Our paper is organized as follows. After defining the necessary terminology in
Section 2 we introduce the method in Section 3 by applying it to partial 2-trees. This
special case is much simpler. Then the additional reduction instances necessary for
partial 3-trees are derived in Section 4. The algorithm is presented and analyzed in
Section 5.

2. Definitions and terminology.

We will use standard graph theory terminology, as found, for instance, in Bondy
and Murty [8]. We will also make use of concepts from the realm of hypergraphs,
but will introduce them first in Section 4. Some elementary and completely standard
group theory is also used; see, for example, Rotman [25]. We will now define some
basic concepts.

A walk is a sequence of vertices such that every two consecutive vertices are
adjacent. If all the vertices are' different, we have a path. A walk forms a cycle if only
its first and last vertices are identical. A set of k vertices, every two of which are
adjacent, is called a k-clique. The graph on k vertices whose vertex set is a k-clique
will be denoted Kk. A (minimal) subset of vertices of a graph such that their removal
disconnects the graph is a (minimal) separator. A k-tree is a connected graph with no
Kk ÷ 2 subgraph such that every minimal separator is a k-clique. Equivalently (Rose

1 This means that the automorphism group of the graph permutes these vertices among themselves,

200 STEFAN ARNBORG AND ANDRZEJ PROSKUROWSKI

[24]), the complete graph on k vertices (Kk) is a k-tree, and any k-tree with n > k
vertices can be constructed from a k-tree with n - 1 vertices by adding a new vertex
adjacent to all vertices of a k-clique of that graph. In this new graph, the added vertex
is a k-leaf. A partial k-tree is any subgraph of a k-tree.

While partial k-trees are undirected, simple graphs (without multiple edges or
self-loops), in the course of our presentation we will allow both undirected edges and
directed arcs (ordered pairs of vertices), as well as parallel edges and arcs. Those
mixed graphs will be intermediate results of applying graph rewriting rules, consist-
ing of replacing a subgraph isomorphic to the lefthand side of such a rule by the
righthand side subgraph. In our case, the latter has always fewer vertices than the
former and thus a set of such rules defines possible reduction sequences. Given a class
of graphs, a rewriting rule such that its application preserves membership in both the
class and its complement is called a safe rule. A set of reduction rules such that any
non-trivial graph in the class contains as a subgraph the lefthand side of some rule is
called a complete set of rules.

Complete sets of safe reduction rules for partial k-trees are known for k < 3
(Arnborg and Proskurowski [5]). Intuitively, they correspond to pruning of k-leaves
in an embedding k-tree, safe in the sense of the existence of such a k-tree. For partial
1-trees (forests), the set of reduction rules consists of the removal of pendant vertices
(of degree 1) and of isolated vertices. For partial 2-trees (series-parallel graphs) we
have additional series and parallel rules, in which a path of degree 2 vertices is
replaced by an edge, and multiple edges are replaced by one edge, respectively. For
partial 3-trees, the additional rules deal with three cases of degree 3 vertex reduc-
tions: the triangle, the buddy, and the cube rules (cfi Figure 1, where only subgraph
vertices matching the white vertices of the lefthand side can have additional adjacen-
cies than those shown). The cube-like configuration with the 'hub' (vertex x in Figure
1) of degree greater than 3 can be safely reduced, as well.

pendant ru le => buclcly

ser ies ru le

Figure 1: Reduction rules for forests, series-parallel graphs and partial 3-trees.

CANONICAL REPRESENTATIONS OF PARTIAL 2- AND 3-TREES 201

In a k-tree, vertices may be partially ordered with respect to the last (k + 1)-
complete subgraph ('the root') [21]. This partial order might be inherited by
a partial k-tree, once we decide an embedding. Non-adjacent vertices reduced
according to applicable reduction rules are not related in partial orders correspond-
ing to embeddings having those vertices as k-leaves. Such reductions can be per-
formed simultaneously (or, emulating simultaneity, consecutively in any order),
leaving the necessary information as labels on other affected elements of the graph
(for instance, on the pendant vertex in the pendant rule or on the added edge in the
series rule).

Unfortunately, some instances of the reduction rules may deal with adjacent
proposed k-leaves; obviously, for a k-tree embedding, only one of two such vertices is
a k-leaf. This situation has to be dealt with separately. We note that there is a simple
solution if the conflicting rules are different, e.9., a vertex reducible according to the
triangle rule is adjacent to a vertex reducible according to the buddy rule. We simply
order the rules and say that a higher priority rule takes precedence. The remaining
case of conflict is where adjacent vertices are reducible according to the same rule.
To break the ties in this case, we consider a refined list of rules derived from the
complete set of safe rules presented in [5].

3. Canonical representation of partial 2-trees.

We start our exposition by presenting the algorithm for partial 2-trees and then
we generalize it to partial 3-trees.

Our algorithm is based on a construction of (vertex and edge) labels that record
the sequence of reduction of the original graph G leading to a set of labeled isolated
vertices. From these, we construct the final label that is a canonical representation of
G and, as such, would also allow a unique (and efficient) reconstruction of G.

Initially, every node label is (0) and every edge label is (0,0). The second compo-
nent in an edge label is the orientation information, recorded as "an arrow" or its
absence, depending on the set of end vertex permutations that yield the minimum
label value. When the identities of vertices are neglected in a subsequent reduction,
the arrow is replaced by a 0, 1, or - 1, depending on the direction (with or against the
arrow) in which the edge is scanned in that reduction.

The algorithm will reduce a given connected graph to the single labeled vertex in
phases performed in the following manner. Every phase begins with finding the first
applicable reduction rule (closest to the beginning of the list of reductions, to be
presented shortly). All instances of this rule in the entire graph are then found and
the corresponding reductions are performed, resulting in a modified (reduced)
graph, and some new labels. Since each reduction decreases the size of the graph, in
O(n) phases the graph will be reduced to a single vertex.

202 STEFAN ARNBORG AND ANDRZEJ PROSKUROWSKI

3.1. Reduction rules.

In this subsection we describe the rewriting rules (tailored to the needs of unique
labeling) that reduce a given connected partial 2-tree to a single labeled vertex. The
rules are given in their scanning order, together with the associated new label(s).

0 multiple vertices and edges. The rules below may create several edges with the
same end-points (series rules) or several labels for a vertex (pendant and chain with
identical end-vertices). The latter is referred to in the pendant rule 1 as a label being
merged into the label of a vertex.

0.1 vertex label merge. The merging of multiple vertex and self-loop labels into
a vertex label means that we keep a set of labels with multiplicities to describe the
merged labels. Before the vertex itself is reduced, we must construct a proper label
for it. This is done simply by lexicographically sorting the labels, and keeping
duplicates in the sorted list I. The label will be (0.1;/).

0.2 parallelrule. This rule is applicable when m edges have the same end-points sl
and s2 (sl # s2, arbitrarily ordered). Let the labels of these edges be l~ and let di be 1 if
edge i has an arrow from sl to s2, - 1 if an arrow is directed from s2 to sl, and 0 if it is
not present. The parallel edges are replaced by one new edge between st and s2. This
edge has a label (0.2;/), where I is the lexicographically smallest of two sorted lists
corresponding to edge orientations from st to s2 and from s2 to st. The new edge will
have arrow (st ~ s2) if the first list is smaller, (s2 ---, s~) if the second is smaller, and
none if they are equal. The first list has the members ~q~, d~n=o~m-~, the second
(li, --di)?~.o 1.

1 pendant rule. This rule applies to vertices of degree 1 (pendant vertices) and to
edges with both endpoints the same (self-loops).

1.1 dipole. If there is a pair of adjacent pendant vertices, they must form a connec-
ted component of the graph consisting of two vertices labeled 11 and 12 both incident
to an edge labeled l', directed from the first to the second vertex (d = 1) or not at all
(d = 0). This graph is reduced to a single vertex with label (1.1; 11, (l', d), 12) or (1.1; 12,
(l', -d) , 11), whichever is lexicographically smallest.

1.2 pendant vertices. Assumethe set ofpendant (degree 1) vertices is independent.
One vertex and one edge is removed by a pendant vertex removal. The label l'
together with the orientation d of the edge form a pair (l', d) with d defined as 1 if the
arrow of the edge is directed towards the pendant vertex, - 1 if it is directed the other
way, and 0 if it is not present. Combined with the label of the vertex, l, they form the

CANONICAL REPRESENTATIONS OF PARTIAL 2- AND 3-TREES 203

label (1.2;(l',d),/), which is merged subsequently into the label of the separating
vertex according to rule 0.1.

1.3 self-loo~. The label l' of a self-loop is merged into the label of its end-vertex
according to rule 0.1.

2 series rule. This rule applies to vertices of degree 2. A set of such vertices
inducing a connected graph will induce a path or a cycle in the graph, as detailed
below:

2.1 ehainrule. Amaximal set ofdegree 2 vertices inducing a connected graph, and
ending in two vertices, sl and s2, of degree higher than 2 consists of a path (vl vm)
with vl adjacent to sl and vm adjacent to s2. Let l~ be the label ofv~ , i = 1 m and
l~ of the edge (vi, vi+ 1), i = 0, m, with vo = sl and v,~+ ~ = s2. Let d~ be 1, - 1 or 0,
depending on whether the arrow of (vi, v~ + 1) is directed from vi to vi ÷ 1, from vi + 1 to
vl, or not present. The vertices v~, i = 1 m and their incident edges are replaced by
an edge connecting s 1 and s2. The label of this edge is the lexicographically smallest

. v V I t of two labels, (2.1,(lo, do) , l l , (l l ,d l) , . . . , l , , , , (l r , ,d , , ,)) and (2 .1; (l , , , , -dr , O, lr~,(l'r,,_l,
- d i n - 1) l~, (l~, -do)). The arrow will point from s l to s2 if the first alternative is
smaller, from s2 to st if the second is smaller, and is absent if they are equal or if
st = s2. (In the latter case the edge is a self-loop).

2.2 ring rule. A connected two-regular graph is a cycle consisting of vertices
Vo vm-1, with vertex v~ adjacent to vertex v~+ t for i = 0 m - 2 and with Vo
adjacent to vm- 1- It is reduced into a single vertex labeled with the lexicographically
smallest of 2m labels (2.2; (l i +ik, , ,-1 ' kd~+jk), l~+jk)j=o where i = 0 , m - 1, k = 1, - 1,
and indices are computed modulo m.

Since the above rules refine the complete set of confluent reduction rules recogniz-
ing partial 2-trees ([29,5]), any such graph will be assigned a label by an algorithm
implementing the labeling process. The uniqueness of such a label is due to the fact
that each intermediate label depends only on the unique labeling phase during
which the particular reduction is performed. This follows from the independent
nature of application of reduction rules. The phase is defined by the first reduction
rule on the list that is applicable, and the order of applying any two reductions in the
same phase does not influence the values of resulting labels.

3.2. E x a m p l e .

We will illustrate the process of creating a canonical label by reduction of the
partial 2-tree whose adjacency lists are:

204 STEFAN ARNBORG AND ANDRZEJ PROSKUROWSKI

vertex neighbors

1 13
2 13,14
3 14
4 15
5 6,15
6 5,7
7 6,15
8 12
9 10,12

10 9,11
11 10,12
12 8,9,11,13,15
13 1,2,12,14,15
14 2,3,13,15
15 4,5,7,12,13,14

The canonical reduction sequence produced is the following, where groups of
parallel reductions are separated by horizontal lines:

rule

1.2

0.1

2.1

0.1

0.2

2.1

0.2

1.1

reduced edges removed

1 (1,13)
3 (3,14)
4 (4,15)
8 (8,12)

2 (13,2), (2,14)
5,6,7 (15,5), (5,6), (6,7), (7,15)

9, 10, 11 (12,9), (9,10), (10,11), (11,12)

(13,14)

12 (13,12), (12,15)
14 (13,14), (14,15)

(13,15)

13, 15 (13,15)

The label abbreviations used above are as follows:

label labeled arrow

ll 13
Ii 14
11 15
11 12

12 13
12 14
12 15
12 12

13 (13,14)
l , (15,15)
l , (12,12)

Is 12
Is 15

16 (13,14)

17 (13,15)
ls (15,13) ---,

t9 (13,15) --,

I~o

CANONICAL REPRESENTATIONS OF PARTIAL 2- AND 3-TREES 205

name value

11 (1.2; (0, 0), (0))
12 (0.1; (0), 11)
l~ (2.1; (0, 0), (0), (0, 0))
l, (2A; (0, 0), (0), (0, 0), (0), (0, 0), (0), (0, 0))
15 (0.1; t2, t,)
t6 (0.2; (0, 0), (I3, 0))
z7 (2.1; (o, o), I~, (o, o))
la (2.1; (0, 0), I2, (16, 0))
19 (0.2; (0, 0), (18, -- 1), (17, 0))

lt0 (1.1; 12, (19, 1), Is)

and we can get the explicit label from 11o by expanding the above abbreviations.

4. Canonical representation of partial 3-trees.

The idea behind the algorithm for partial 3-trees is similar to that of the algorithm
constructing a canonical representation of partial 2-trees. The reduction of vertices
is performed in consecutive stages, where each stage consists either of independent
reduction instances or of groups of dependent reduction instances of the same kind.
The situation is more complicated for partial 3-trees for two reasons. For one, the
reduction information (recorded in labels) often concerns three vertices, and thus the
resulting label must be associated with triples of vertices. We will present this as the
labeling process for hyperedges of order 3. The second reason for a more compli-
cated algorithm is the large number of ways in which reduction rules of the same
kind can involve adjacent vertices. For instance, more than one vertex of a triangle
can have degree 3. Below, we elaborate on these differences leading to an algorithm
constructing a canonical label for a given connected partial 3-tree.

4.1. Labeling of hypered#es.

Each of the three reduction rules involving a degree three vertex causes the
elimination of that vertex and edges incident with it and replaces them by edges
between the neighbors of the vertex. (We call this reduction of a single vertex
v adjacent to the separator vertices st, s2, s3 a basic degree 3 reduction.) We will
separate this topological action from the labeling action of creating a labeled
hyperedge corresponding to the three neighbors of the eliminated vertex.

Let a sufficient set of permutations denote permutations of vertices of a subgraph
that are able to represent all symmetries (automorphism group) of the subgraph.
(This can be achieved by a smaller than full symmetric group set of permutations
when permutations exchanging non-symmetric vertices are omitted.)

Let 0 be the label of hyperedges (vertices, edges, or triangles) in the original graph.

206 STEFAN ARNBORG AND ANDRZEJ PROSKUROWSKI

A label ofa hyperedge is determined with respect to a permutation of its vertices and
is given an orientation represented by a subset of permutations of these vertices.
These permutations are symmetric with respect to the label (they constitute the
projection, into the symmetric group on the vertices of the hyperedge, of a coset of
the automorphism group for the graph reduced into the hyperedge). When a hy-
peredge is removed in a reduction operation involving one of its vertices, its label will
form a component of the label of the created hyperedge, together with an indication
of how the orientation of the removed hyperedge corresponds to the orientation of
the created hyperedge. Consider an orientation D of a removed hyperedge and
a permutation tr of the union of vertices in the removed hyperedges. D is coded with
respect to a in the following way. Recall that D is a set of permutations of a subset of
the vertices appearing in tr, so each vertex occurring in D can be replaced by its index
in tr. The resulting set of integer lists is then sorted lexicographically.

As an example, consider reduction of a degree 3 vertex v with neighbors a, b and c,
This reduction removes at most one 1-hyperedge, three 2-hyperedges, and three
3-hyperedges. Now, for instance, the permutation a = (a, b,c, v) will cause the
orientation D = {(a, b, v),(a, v, b)} of a 3-hyperedge {a, b, v} to be encoded as
((1, 2, 4), (1, 4, 2)).

We can now describe the reduction of a set of vertices R = k {Vi}i = 1 separated from
the rest of the graph by vertices S = {sl}l= 1:

Produce a sufficient set P of permutations of R u S. For each permutation p in P,
produce a label as follows: consider the set of (label, orientation) pairs that contain
some vertices of R. Replace each orientation with its encoding wrt p and sort the
pairs to get a label wrt p. The subset of permutations that yield the lexicographically
smallest label I constitute the orientation of the new edge. The minimum value I and
the rule number r according to which the reduction is made are used to build the
label (1";/) of the new hyperedge.

Observe that the previous label construction for partial 2-trees was only slightly
different and can be easily changed to the present one. As an example, in the chain
rule, each di would be changed from 1 to ((i, i + 1)), from - 1 to ((i + 1, i)) and from
0 to ((i, i + 1), (i + 1, i)). An arrow on an edge between vertices a and b would be
represented as an orientation ((a, b)) or ((b, a)) and its absence would be represented
by orientation ((a, b), (b, a)).

4.2. Reduction rules for partial 3-trees.

Except for applications of the parallel rules, the sequence of reductions made is
decided solely on basis of adjacency informat ion- we never investigate which type of
hyperedge (2- or 3-hyperedge) makes two vertices adjacent. So in this section we can
consider the graph represented by its clique representation when looking for vertex
sets to reduce. After this set has been decided, we must use another data structure to
find the set of hyperedges containing some reduced vertex, as detailed in Section 5.

CANONICAL REPRESENTATIONS OF PARTIAL 2- AND 3-TREES 207

The data structure for hyperedges is also used to decide when parallel rules (rule
group 3) are to be invoked. The correctness of our algorithm rests on the fact that for
every partial 3-tree there is a unique way to select a number of non-overlapping
reduction rules and to describe the reduced parts of the graph uniquely in the labels
created. This in turn follows from a careful reading of this section: for every rule
reducing a partial 3-tree, have we identified all ways in which reduction instances of
this rule can overlap? The numbering of the rules is intended to simplify the
understanding of the case analysis.

3 parallel triangles. This rule is applicable when two or more 3-hyperedges have
the same set of vertices, Let the vertices be S = (sl,s2,s3), and the labels of the
hyperedges l~, i = 1 , m. The orientations d~, i = 1 m are sets of permuta-
tions of S. Let dl p) be the coding ofdl wrt a permutation p of S. For each permutation
p of S, form the set ~tl d (p)~m t~ ~, i Jji= 1, sort it lexicographically and extract the lexi-
cographically smallest list (over p) as well as those p giving a minimum, and call the
smallest list l and the set of permutations P. The new hyperedge with vertices
sl, s2, s3 has label (3;/) and orientation P.

4 isolated reduction instances.

4.1 triangle. A vertex that is triangle-reducible and not adjacent to another
triangle-reducible vertex can be reduced directly. This reduction of a single vertex
adjacent to three separator vertices will be called the basic degree 3 reduction. The
sufficient set of permutations consists of every permutation of the s~, each followed
by v.

4.2 buddy. Vertices in a buddy configuration not adjacent to another buddy
configuration can be reduced simultaneously with the basic degree 3 reduction in all
occurrences.

4.3 cube. The three reducible vertices in a cube configuration not adjacent to
another cube are reduced with the basic degree 3 reduction.

5 conflicting triangles.

5.1 diamonds. We can consider separately the cases when two adjacent triangle-
reducible degree 3 vertices vl, v2 have two neighbors sl, s2 in common.

5.1.1 K4. More than one occurrence of the diamond rule with adjacent reducible
vertices is possible only if a connected component of the graph is the 4-clique K4.
The sufficient set consists of all 24 permutations of the vertices vi, i = 1, 2, 3, 4.

208 STEFAN ARNBORG AND ANDRZEJ PROSKUROWSKI

5.1.2 Kg. If the vertices vl and v2 are not adjacent, they induce, together with
their common neighbors s 1, s2, the four-clique without an edge, K~-. A sufficient set
of permutations to consider is each of the two permutations of {sl, s2 } followed by
each permutation of {vl, v2}.

5.2 Subgraph H. The remaining configurations of adjacent degree 3 vertices
reducible according to the triangle rule and with at most one common neighbor
(triangle-reducible for short) are discussed below. For a given partial 3-tree G, let us
consider a maximal connected subgraph H consisting of triangle-reducible vertices
subject to conflicting reductions according to the triangle rule. We will investigate
the structure of those subgraphs and will make unique choices of independently
reducible vertex sets in G. We consider the following cases of reductions in G de-
pending on the degrees of vertices in H:

5.2.1 degree 1 only. Two adjacent vertices of degree 1 in H, vl and v2, represent
one of the two subgraphs in G shown in Figure 2. In the case of a four-vertex
separator, other reduction rules must be applicable in the rest of the graph ('beyond
the four separating vertices'), or else G cannot be a partial 3-tree. In the case of
a 3-vertex separator, a separate reduction rule allows us to reduce vl and v2, creating
a hyperedge containing the separator vertices, with a unique label describing the
reduced subgraph of the original graph (none of the separator vertices is triangle-
reducible).

Figure 2: Subgraphs of H with two adjacent degree 1 vertices.

5.2.2 degree 1 and 2 or 3. In this case we have a vertex of degree 1. If there are
more, they must be nonadjacent. Nonadjacent vertices of degree 1 in H can be
subjects to the basic degree 3 reductions in G, since these do not conflict with each
other.

5.2.3 degree 2 only. The vertices of degree 2 form a cycle in H. Let us call an edge
t if it is a side of a triangle of G and f otherwise. Notice that end vertices of adjacent
t edges have one common neighbor in G. Consider those vertices incident to both

CANONICAL REPRESENTATIONS OF PARTIAL 2- AND 3-TREES 209

a t and an f edge; call this set A. Depending on the relation between A and H, we
have three subcases (Figure 3).

a) wheel (b) (c) square

Figure 3: Cycles in H (a) a wheel, (b) a general case, (c) the square.

5.2.3.1 wheel. The set A is empty: all edges of H are t edges. This is the wheel
configuration, reduced to a single vertex label ("the hub's') according to a separate
rule.

5.2.3.2. coileetion of paths. A does not contain all vertices of H and its vertices
partition the set of the remaining vertices of H into connected components. Those
can be dealt with in a manner similar to that in rules 4.1, 5.2.1, and 5.2.2.

5.2.3.3 square. I fH consists of alternating t and f edges (all the vertices are in A),
then we have to consider subcases depending on the number of edges in H (it is
trivially greater than 3). When H has 4 edges (only two triangles are involved), the
triangles' "third vertices" form a separator of G. The corresponding configuration
(square, Figure 3(c)), is the left hand side of a separate reduction rule. If there are
more than two triangles, then there must be another instance of a reduction rule
"beyond the separating vertices" (i.e., in the subgraph of G induced by vertices of
G other than in H), or else G is not a partial 3-tree.

5.2.4 degrees 2 and 3. If H consists of both vertices of degree 2 and vertices of
degree 3, then the vertices of degree 2 form in H paths that end in degree 3 vertices.
When such a path has exactly two degree 2 vertices, these can be reduced according
to rule 5.2.1. Otherwise, there are unique and nonadjacent vertices of degree 2 in
H and the corresponding vertices in G can be reduced with the basic degree
3 reduction, similarly to the situation in 5.2.2.

5.2.5 degree 3 only (prism). Since a vertex in H is of degree 3 in the original partial
3-tree G, a cubic H is identical with G. To analyse this case, we consider the
multigraph/-I obtained from H in the following manner: The set of vertices of/7 is
the set of edges of H not in the triangles. A vertex of H is incident with an edge of/-/if
the corresponding triangle contains a vertex of H incident with that edge in H. We

210 STEFAN ARNBORG AND ANDRZEJ PROSKUROWSKI

will show t h a t / / i s a series-parallel graph, which has important consequences in
determining unique triangle reductions in H (or, equivalently, G). A multigraph is
series-parallel if and only if it does not contain a subgraph homeomorphic to K4.
However, if/7 contains such a subgraph, then H contains as a minor the 4-regular
Duffin graph (see Figure 4(b)), and is thus not a partial 3-tree. Since all vertices of
/-/have degree 3, there must be instances of independent parallel edge reductions in
/-/. Unless H has six vertices and nine edges ("the prism", see Figure 4(a)) reduced to
a single vertex by a separate rule, an instance of the parallel edge reduction in
/-/corresponds to the subgraph of the 5.2.3.3 square rule in H. Thus, the only new
configuration for this case is where H, and thus also G, is the prism, Figure 4(a).

a) Prism b) Duff in graph

Figure 4: 3-regular subgraphs (a) the prism, (b) a minimal forbidden, minor.

6 conflicting buddies. The 3-1eaves vl,/)2 in an instance of the buddy reduction can
be adjacent to 3-1eaves ul, u2 in another instance of the buddy reduction only if u l, u2

are commonly adjacent to a third vertex w. This third vertex may be identical with or
different from the third common neighbor of vl, v2, leading to two configurations
that can be incorporated as the left-hand-sides of new reduction rules. The former is
a case of the 5.2.3.1 wheel rule discussed above, the latter, cat's cradle, is shown in
Figure 5.

a) Cat's craclle D) K(3, 3)

Figure 5: Overlapping buddy configurations.

Ka,3. Two cat's cradles can overlap only when the graph has a connected
component which is K3.3.

CANONICAL REPRESENTATIONS OF PARTIAL 2- AND 3-TREES 211

6.2 cat's cradle. This is the other case where w ~ F({vl,v2}). The separator
vertices sl,s2 and the cycle (/)l,/)2,v3,v4) have edges (sl,vl), (si,v3), (s2,v2) and
(s2, v~) between them.

7 conflicting cubes. There are two basic cases of possible conflicts between the
reduced vertices in two different instances of the cube reduction.

7.1 cube. In one case, the purported 3-leaf vertices vl,/)2,/)3 in one instance of the
cube reduction are adjacent to 3-leaf vertices of another instance. This occurs only in
the 8-vertex, 12-edge three-dimensional cube graph. This is because the vertices
ul, u2, and u3 (cf. Figure 6) have then degree 3 and are adjacent to a common
neighbor (the hub of that instance), also of degree 3.

a) Gube b) Hammock

Figure 6: Overlapping cube configurations.

7.2 hammock. In the second case, the hub x of one instance is a 3-leaf of the other
instance. This implies that one of the 3-1eaves of the first instance, say v3, is the hub of
the second instance and its other neighbors u l, u2 are the remaining 3-1eaves of the
second instance. The vertices ul, u2 must have another common neighbor y. If this
vertex is identical with the remaining vertex u3 of the original cube, u~,u2 are
triangle-reducible. I fy is different from u3, this leads to a new reduction rule with the
left-hand-side configurations given in Figure 6(b).

5. Fast canonical labeling and isomorphism test.

We will now describe some implementation details for the simultaneous reduc-
tion and computation of hyperedge labels described in Section 4. Let n be the
number of vertices of the graph (this reflects the size of the input since any partial
3-tree has fewer than 3n edges). Moreover, each reduction removes at least one
vertex and adds a constant number of adjacencies and labels. Thus, the total number
of adjacencies and hyperedges in the graph during reduction is O(n). Hence, also the
number of applications of parallel rules (which remove hyperedges but not vertices)
is O(n). It can thus be expected that an O(n log n) (log-linear) time realization is
possible.

212 STEFA~,I ARNBORG AND ANDRZEJ PROSKUROWSKI

Actually, using the trick of constant time "initialization" of entries in a table (see,
for instance, [1]) we can achieve a linear time (albeit quadratic space) algorithm. The
anonymous referee convinced us that this algorithm is too complex to present easily.
Accordingly, we changed our emphasis to log-linear time, especially since we could
not avoid using quadratic space anyway. The log-linear version discussed below is
probably better in most repects. Additional "tricks" required by the linear time
algorithm are presented in [4].

The following tasks present certain difficulties:

(i) Sorting O(n) labels, each of length O(n), when producing labels for applications
of parallel rules.

(ii) Finding the lexicographically smallest label for m shifts of m labels, each of size
k, where mk is O(n), when deciding a label for the ring and wheel reductions (2.2
and 5.2.3.1).

(iii) Finding instances of applicable reductions.

Actually, there are already methods available to overcome these obstacles. First,
the abbreviations introduced in the example of section 3.2 can be formalized into
a canonical numbering of labels (or objects labeled), as is done for a tree isomorphism
algorithm due to Edmonds and described in, e.g., Aho, Hopcroft and Ullman [1]
and Colbourn and Booth [10]. In this way, all labels will have size O(logn). Two
identical branches of the graph will get the same label if they are permuted by the
automorphism group of the original graph, since they will correspond to reductions
made in parallel. With this canonical numbering, any of the corresponding algo-
rithms by Syslo [28], Shiloah [27], or Booth [9] also solves problem (ii) above.

The total number of times vertex adjacencies change during the reduction process
is proportional to the graph size. Thus, maintaining "ready lists" for vertices that
reach small enough degree to be considered in the reduction rules resolves problem
(iii) above. Below, we elaborate on the Ready lists and the Ring algorithms.

5.1. Ready lists.

The reduction instances are either bounded size, connected graphs cut off by
a separator (rules 1.1, 1.2, 1.3, 4.1, 4.3, 5.1.1, 5.1.2, 5.2.3.3, 5.2.5, 6.1, 6.2, 7.1, 7.2),
variable size configurations involving only vertices of degree not greater than 3 (2.1,
2.2, 5.2.3.1), parallel rules (0.1, 0.2, 3) or the buddy configuration (4.2). The member-
ship of a vertex in such a configuration may vary during the reduction process.
However, membership is altered only when one of the adjacencies of reducible
vertices is altered. Since each reduction involves at most adjacencies of three
remaining vertices, the total number of times a vertex changes its neighborhood or is
part of a created hyperedge (by being in the separator associated with a reduction) is
O(n), summed over all vertices. Each time this happens we investigate which is the
highest ranking rule by which the vertex is reducible, or if it is a vertex ofa hyperedge

CANONICAL REPRESENTATIONS OF PARTIAL 2- AND 3-TREES 213

to which a parallel rule applies. The vertex is then linked into a list for that reduction
rule.

5.2. Ring algorithm.

The problem of determining the label for the ring reduction (2.2) is equivalent to
the problem of finding a lexicographically minimum linearization of a cyclic string.
A simple solution to this problem involves recording the change of two pairs of
positions in the cyclic string. These positions delimit two identical substrings,
minimum so far: the candidate substring precedes the other, challenger, substring
(both start with the overall smallest element). One pair of positions indicates the
start of the two substrings, and another pair of positions delimits their explored
prefixes. The algorithm calls for a comparison of elements possibly extending the
two substrings. If the elements are equal but lexicographically smallest, it is easy to
see that the challenger substring would never prove lexicographically smaller than
the candidate substring. This causes advancement of the position indicating the
beginning of the challenger substring to the last scanned position. The same happens
when the element comparison indicates explicitly that the candidate substring is
lexicographically smaller than the challenger. Otherwise, the challenger substring
becomes the current candidate and the position indicating the beginning of the
second string is advanced beyond the last scanned.

6. Conclusions.

The presented method to construct a canonical label for partial 2- and 3-tree is
based entirely on the complete systems of confluent vertex-reduction rules that
recognize graphs from these classes. Lagergren [17] shows that such systems do not
exist for partial k-trees with k > 3. Thus, this method is not readily extensible.
However, there exist more general graph reduction systems that decide membership
in classes of partial k-trees. Namely, Arnborg et al. show in [4] that this is the case for
any subclass of partial k-trees (fixed k) definable by the Monadic Second Order Logic
(MSOL) (cf., for instance, Courcelle [11]). Specifically, this gives the existence of
a graph reduction system for partial k-trees (any fixed k). Such a graph rewriting
system can be implemented as a linear time (although space intensive) algorithm.
However, it remains an open question how the rewriting system can be modified to
permit a unique labeling in polynomial time.

REFERENCES

1. A. V. Aho, J. E. Hopcroft and J. D. Ullman, Design and Analysis of Computer Algorithms, Addison-
Wesley (1972).

2. S. Arnborg, Efficient algorithms for combinatorial problems on graphs with bounded decomposability-
a survey, BIT 25(1985), 2-33.

214 STEFAN ARNBORG AND ANDRZEJ PROSKUROWSKI

3. S. Arnborg, D. G. Corneil and A. Proskurowski, Complexity offinding embeddings in a k-tree, SIAM
J. Alg. and Distr. Methods 8(1987), 277-287.

4. S. Arnborg, B. Courcelle, A. Proskurowski and D. Seese, An algebraic theory of graph reduction,
submitted.

5. S. Arnborg and A. Proskurowski, Characterization and recognition of partial 3-trees, SIAM J. Alg.
and Discr. Methods 7(1986), 305-314.

6. S. Arnb•rg and A. Pr•skur•wski• Linear time alg•rithms f•r N P-hard pr•blems •n graphs embedded in
k-trees, Discr. Appl. Math, 23(1989), 11-24.

7. H. L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic index on partial
k-trees, Proceedings of SWAT'88, Springer-Verlag LNCS 318(1988), 227-232.

8. J. A. Bondy and U. S. R. Murty, Graph Theory with Application, North Holland (1976).
9. K.S. Booth, Finding a lexicographic least shift of a string, Information Processing Letters 10(1980),

240-242.
10. C.J. Colbourn and K. S. Booth, Linear time automorphism algorithms for trees, interval graphs, and

planar graphs, SIAM J. Computing 10(1981), 203-225.
t 1. B. Courcelle, The monadic second order logic of graphs I: Recognizable sets offinite graphs, Informa-

tion and Computation 85(1990), 12-75.
12. I.S. Filotti and J. N. Mayer, A polynomial-time algorithm for determining the isomorphism of graphs of

bounded genus, Proc. 12th ACM Symp. on Theory of Computing (1980), 236-243.
13. M. F •ntet• A linear alg•rithm f•r testing is•m•rphism •f planar graphs• Pr•c. 3rd •nt. C•nf. Aut •mata•

Languages, Programming, Springer-Verlag LNCS (1976), 1411-423.
14. M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman and Company, San

Francisco (1979).
15. J.E. Hopcroft and J. K. Wong, A linear time algorithm for isomorphism of planar graphs, Proc. 6th

ACM Symp. Theory of Computer Science (1974), 172-184.
16. J.Lagergren•E•cientpara•le•a•••rithmsf•rtree-dec•mp•siti•nandrelatedpr•blems.Pr••eedings•f

IEEE FoCS 1990.
17. J. Lagergren• The n•n-existence •f reducti•n rules giving an embedding in a k-tree• t• appear in Annals

of Discrete Mathematics.
18. E. M. Luks• •s•m•rphism •f graphs •f b•unded valence can be tested in p•lyn•mial time• JCSS 25(• 982)•

42-65.
19. G.L. Miller, Isomorphism testing for graphs with bounded genus, Proc. 12th ACM Symp. on Theory

of Computing (1980), 225-235.
20. G.L. Miller, Isomorphism testing and canonical forms for k-contractible graphs, Proc. Foundations of

Computation Theory, Springer-Verlag LNCS 158 (1983), 310-327.
21. A. Proskurowski, Recursive graphs, recursive labelings and shortest paths, SIAM J. Computing

10(1981), 391-397.
22. A. Proskurowski, Separating subgraphs in k-trees: cables and caterpillars, Discrete Mathematics

49(1984), 275-285.
23. N. Robertson and P. D. Seymour, Graph minors V, excluding a planar graph, J. Combinatorial

Theory, Ser. B, 41(1986), 92-114.
24. D.J. Rose, On simple characterization of k-trees, Discrete Mathematics 7(1970), 317-322.
25. J. J. Rotman, The Theory of Groups (2nd ed.), Allyn and Bacon (1973).
26. P. Scheifler, Linear time algorithms for NP-complete problems restricted to partial k-trees, Akad. Wiss.

DDR Report R-MATH-03/87 (1987).
27. Y. Shiloah, A fast equivalence-checking algorithm for circular lists, Information Processing Letters

8(1979), 236-238.
28. M.M. Syslo, Linear time algorithm for coding outerplanar graphs, in Beitr~ige zum Graphentheorie,

Proceedings of Oberhof Conference 1977, H. Sachs (Ed.) (1978), 259-269.
29. A. Wald and C. J. Colbourn, Steiner trees, partial 2-trees, and minimum IFI networks, Networks

t3(1983), 159-167.
30. T. V. Wimer, Linear algorithms on k-terminal graphs, PhD. Thesis, Clemson University (1988).

