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Abstract. 

We give algorithms constructing canonical representations of partial 2-trees (series parallel graphs) 
and partial 3-trees. The algorithms can be implemented in log-linear space, or in linear time using 
quadratic space. 

C R categories." G.2.2. 

1. Introduction. 

A canonical representation of a family of graphs assigns to each member of the 
family a label that is independent of any arbitrary vertex numbering: two graphs 
have the same canonical representation if and only if they are isomorphic. Thus, the 
graph isomorphism problem can be solved efficiently using canonical representa- 
tions if such representations can be efficiently computed and compared. Other uses 
of canonical representations are to investigate the structure of the automorphism 
group of a graph and to generate random graphs with some distribution over 
isomorphism classes. 

Most graph representations are not canonical since vertices are arbritrarily 
numbered. But if we consider all possible vertex permutations, compute the corre- 
sponding representations, and select the lexicographically smallest, then we get 
a canonical representation. The set of vertex permutations yielding the lexi- 
cographicaly smallest representation is a coset of the automorphism group for the 
graph, regarded as a subgroup of the symmetric group on the vertex set. 

A straightforward application of the above procedure has cost, exponential in the 
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graph size, since there are exponentially many vertex permutations to minimize 
over. But in some cases it is possible to constrain the set of explicitly considered 
permutations in such a way that the whole procedure can be performed in poly- 
nomial time. We need only consider a set guaranteed to contain at least one 
representative of each coset of the automorphism group of the given graph. In this 
paper we show how these ideas yield an algorithm which produces a canonical 
representation for partial 3-trees in log-linear time, and thus also solves the isomor- 
phism problem for partial 3-trees in log-linear time. Previously, the graph isomor- 
phism problems for the graphs of bounded valence (Luks [18]), genus (Filotti and 
Mayer [12], Miller [19], [20]), and tree-width (Bodlaender [7]) (none of which is 
a subfamily of the other) have been shown solvable in polynomial time. Linear time 
algorithms for isomorphism of planar graphs (and thus also for partial 2-trees, which 
are planar) are already known (Fontet [13]; Hopcroft and Wong [t5]; Colbourn 
and Booth [10]). 

For a fixed value of the integer parameter k, partial k-trees are exactly subgraphs 
of chordal graphs with the maximum clique size k + 1. Thus, partial 1-trees are the 
acyclic graphs (forests), and partial 2-trees are the series-parallel graphs with no K4 
minors or homeomorphs). 

Partial k-trees have been in the focus of attention in recent years because of their 
interesting algorithmic properties. For a large number of inherently difficult (on 
general graphs) discrete optimization problems, partial k-trees admit a linear time 
solution algorithm when the value of k is fixed and the partial k-tree is given with its 
k-tree embedding. Somewhat discouraging is the fact that, for a general value of k, 
we do not know how to construct a k-tree embedding of such a graph in less than 
O(nk+ Z) time. The only more efficient and practical recognition (and embedding) 
algorithms known are for k < 3. A quadratic time recognition algorithm for any 
given k exists as a consequence of Robertson and Seymour's [23] results, but it uses 
a list of minimal forbidden minors which it is not known how to find and which can 
be of astronomical size. 

The class of partial k-trees is also identical with the class of graphs of tree-width 
k (Scheffer [26], Wimer [30]). In the next section, we will give an iterative definition 
of partial k-trees that is the basis of our approach to solve problems for this class of 
graphs. Bodlaender proposed an algorithm for deciding isomorphism of partial 
k-trees [7]. His method is based on the brute force k-tree embedding method of 
Arnborg, Corneil and Proskurowski [3], where all k-vertex separators of the given 
partial k-tree are tested for suitability as separators in a k-tree embedding. This 
algorithm requires solving bipartite matching problems and takes O(n k+4"~) time. 
We follow a different approach for k = 2, 3. For these values of k there exist small 
complete sets of safe reduction rules that determine k-tree embeddings of a given 
partial k-tree. With help of these reduction rules we produce a canonical string 
representing the graph in log linear time, thus lowering the computation time from 
polynomial (actually, O(n ~ 5)) to log-linear or linear time for isomorphism of partial 
3-trees. 
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The procedure we use is based on a canonical reduction sequence obtained from 
the safe reduction rules reported in Arnborg and Proskurowski [5]. For any given 
graph, the set of vertices reducible according to a given rule is fixed by the automor- 
phism group of the graph 1. Each reduction involves a separator of the graph with 
one, two or three vertices. Whether two reduced vertices are automorphic depends 
on symmetries between the corresponding separators. Our method keeps a record of 
symmetries of the reduced parts of the graph through a sequence of labels and 
orientations attached to the separators used in the reduction process. Two reduced 
subgraphs cut offby such separators are isomorphic (the isomorphism mapping one 
separator to the other) if and only if the labels of the two separators are equal, and 
their orientations indicate the correspondence between the separator vertex sets. 

A reducible vertex represents a k-leaf in an embedding k-tre. Thus, adjacent 
vertices cannot be reduced in parallel. To deal with this, we refine the reduction rules 
to deal with overlapping reduction instances. These refined reduction rules allow us 
to construct a parse tree, where each node is associated with a reduction instance and 
two nodes are adjacent if the reduction instance corresponding to one node creates 
a (hyper-) edge involved in the reduction corresponding to the other. This tree is 
used to implement efficiently the algorithms computing canonical representations. 

Our paper is organized as follows. After defining the necessary terminology in 
Section 2 we introduce the method in Section 3 by applying it to partial 2-trees. This 
special case is much simpler. Then the additional reduction instances necessary for 
partial 3-trees are derived in Section 4. The algorithm is presented and analyzed in 
Section 5. 

2. Definitions and terminology. 

We will use standard graph theory terminology, as found, for instance, in Bondy 
and Murty [8]. We will also make use of concepts from the realm of hypergraphs, 
but will introduce them first in Section 4. Some elementary and completely standard 
group theory is also used; see, for example, Rotman [25]. We will now define some 
basic concepts. 

A walk is a sequence of vertices such that every two consecutive vertices are 
adjacent. If all the vertices are' different, we have a path. A walk forms a cycle if only 
its first and last vertices are identical. A set of k vertices, every two of which are 
adjacent, is called a k-clique. The graph on k vertices whose vertex set is a k-clique 
will be denoted Kk. A (minimal) subset of vertices of a graph such that their removal 
disconnects the graph is a (minimal) separator. A k-tree is a connected graph with no 
Kk ÷ 2 subgraph such that every minimal separator is a k-clique. Equivalently (Rose 

1 This means that the automorphism group of the graph permutes these vertices among themselves, 
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[24]), the complete graph on k vertices (Kk) is a k-tree, and any k-tree with n > k 
vertices can be constructed from a k-tree with n - 1 vertices by adding a new vertex 
adjacent to all vertices of a k-clique of that graph. In this new graph, the added vertex 
is a k-leaf. A partial k-tree is any subgraph of a k-tree. 

While partial k-trees are undirected, simple graphs (without multiple edges or 
self-loops), in the course of our presentation we will allow both undirected edges and 
directed arcs (ordered pairs of vertices), as well as parallel edges and arcs. Those 
mixed graphs will be intermediate results of applying graph rewriting rules, consist- 
ing of replacing a subgraph isomorphic to the lefthand side of such a rule by the 
righthand side subgraph. In our case, the latter has always fewer vertices than the 
former and thus a set of such rules defines possible reduction sequences. Given a class 
of graphs, a rewriting rule such that its application preserves membership in both the 
class and its complement is called a safe rule. A set of reduction rules such that any 
non-trivial graph in the class contains as a subgraph the lefthand side of some rule is 
called a complete set of rules. 

Complete sets of safe reduction rules for partial k-trees are known for k < 3 
(Arnborg and Proskurowski [5]). Intuitively, they correspond to pruning of k-leaves 
in an embedding k-tree, safe in the sense of the existence of such a k-tree. For partial 
1-trees (forests), the set of reduction rules consists of the removal of pendant vertices 
(of degree 1) and of isolated vertices. For partial 2-trees (series-parallel graphs) we 
have additional series and parallel rules, in which a path of degree 2 vertices is 
replaced by an edge, and multiple edges are replaced by one edge, respectively. For 
partial 3-trees, the additional rules deal with three cases of degree 3 vertex reduc- 
tions: the triangle, the buddy, and the cube rules (cfi Figure 1, where only subgraph 
vertices matching the white vertices of the lefthand side can have additional adjacen- 
cies than those shown). The cube-like configuration with the 'hub' (vertex x in Figure 
1) of degree greater than 3 can be safely reduced, as well. 

pendant ru le => buclcly 

ser ies  ru le  

Figure 1: Reduction rules for forests, series-parallel graphs and partial 3-trees. 
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In a k-tree, vertices may be partially ordered with respect to the last (k + 1)- 
complete subgraph ('the root') [21]. This partial order might be inherited by 
a partial k-tree, once we decide an embedding. Non-adjacent vertices reduced 
according to applicable reduction rules are not related in partial orders correspond- 
ing to embeddings having those vertices as k-leaves. Such reductions can be per- 
formed simultaneously (or, emulating simultaneity, consecutively in any order), 
leaving the necessary information as labels on other affected elements of the graph 
(for instance, on the pendant vertex in the pendant rule or on the added edge in the 
series rule). 

Unfortunately, some instances of the reduction rules may deal with adjacent 
proposed k-leaves; obviously, for a k-tree embedding, only one of two such vertices is 
a k-leaf. This situation has to be dealt with separately. We note that there is a simple 
solution if the conflicting rules are different, e.9., a vertex reducible according to the 
triangle rule is adjacent to a vertex reducible according to the buddy rule. We simply 
order the rules and say that a higher priority rule takes precedence. The remaining 
case of conflict is where adjacent vertices are reducible according to the same rule. 
To break the ties in this case, we consider a refined list of rules derived from the 
complete set of safe rules presented in [5]. 

3. Canonical representation of partial 2-trees. 

We start our exposition by presenting the algorithm for partial 2-trees and then 
we generalize it to partial 3-trees. 

Our algorithm is based on a construction of (vertex and edge) labels that record 
the sequence of reduction of the original graph G leading to a set of labeled isolated 
vertices. From these, we construct the final label that is a canonical representation of 
G and, as such, would also allow a unique (and efficient) reconstruction of G. 

Initially, every node label is (0) and every edge label is (0,0). The second compo- 
nent in an edge label is the orientation information, recorded as "an arrow" or its 
absence, depending on the set of end vertex permutations that yield the minimum 
label value. When the identities of vertices are neglected in a subsequent reduction, 
the arrow is replaced by a 0, 1, or - 1, depending on the direction (with or against the 
arrow) in which the edge is scanned in that reduction. 

The algorithm will reduce a given connected graph to the single labeled vertex in 
phases performed in the following manner. Every phase begins with finding the first 
applicable reduction rule (closest to the beginning of the list of reductions, to be 
presented shortly). All instances of this rule in the entire graph are then found and 
the corresponding reductions are performed, resulting in a modified (reduced) 
graph, and some new labels. Since each reduction decreases the size of the graph, in 
O(n) phases the graph will be reduced to a single vertex. 
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3.1. Reduction rules. 

In this subsection we describe the rewriting rules (tailored to the needs of unique 
labeling) that reduce a given connected partial 2-tree to a single labeled vertex. The 
rules are given in their scanning order, together with the associated new label(s). 

0 multiple vertices and edges. The rules below may create several edges with the 
same end-points (series rules) or several labels for a vertex (pendant and chain with 
identical end-vertices). The latter is referred to in the pendant rule 1 as a label being 
merged into the label of a vertex. 

0.1 vertex label merge. The merging of multiple vertex and self-loop labels into 
a vertex label means that we keep a set of labels with multiplicities to describe the 
merged labels. Before the vertex itself is reduced, we must construct a proper label 
for it. This is done simply by lexicographically sorting the labels, and keeping 
duplicates in the sorted list I. The label will be (0.1;/). 

0.2 parallelrule. This rule is applicable when m edges have the same end-points sl 
and s2 (sl # s2, arbitrarily ordered). Let the labels of these edges be l~ and let di be 1 if 
edge i has an arrow from sl to s2, - 1 if an arrow is directed from s2 to sl, and 0 if it is 
not present. The parallel edges are replaced by one new edge between st and s2. This 
edge has a label (0.2;/), where I is the lexicographically smallest of two sorted lists 
corresponding to edge orientations from st to s2 and from s2 to st. The new edge will 
have arrow (st ~ s2) if the first list is smaller, (s2 ---, s~) if the second is smaller, and 
none if they are equal. The first list has the members ~q~, d~n=o~m-~, the second 
(li, --di)?~.o 1. 

1 pendant rule. This rule applies to vertices of degree 1 (pendant vertices) and to 
edges with both endpoints the same (self-loops). 

1.1 dipole. If there is a pair of adjacent pendant vertices, they must form a connec- 
ted component of the graph consisting of two vertices labeled 11 and 12 both incident 
to an edge labeled l', directed from the first to the second vertex (d = 1) or not at all 
(d = 0). This graph is reduced to a single vertex with label (1.1; 11, (l', d), 12) or (1.1; 12, 
(l', -d) ,  11), whichever is lexicographically smallest. 

1.2 pendant vertices. Assumethe set ofpendant (degree 1) vertices is independent. 
One vertex and one edge is removed by a pendant vertex removal. The label l' 
together with the orientation d of the edge form a pair (l', d) with d defined as 1 if the 
arrow of the edge is directed towards the pendant vertex, - 1 if it is directed the other 
way, and 0 if it is not present. Combined with the label of the vertex, l, they form the 
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label (1.2;(l',d),/), which is merged subsequently into the label of the separating 
vertex according to rule 0.1. 

1.3 self-loo~. The label l' of a self-loop is merged into the label of its end-vertex 
according to rule 0.1. 

2 series rule. This rule applies to vertices of degree 2. A set of such vertices 
inducing a connected graph will induce a path or a cycle in the graph, as detailed 
below: 

2.1 ehainrule. Amaximal  set ofdegree 2 vertices inducing a connected graph, and 
ending in two vertices, sl and s2, of degree higher than 2 consists of a path (vl . . . . .  vm) 
with vl adjacent to sl and vm adjacent to s2. Let l~ be the label ofv~ , i  = 1 . . . . .  m and 
l~ of the edge (vi, vi+ 1), i = 0, . . . .  m, with vo = sl and v,~+ ~ = s2. Let d~ be 1, - 1 or 0, 
depending on whether the arrow of (vi, v~ + 1) is directed from vi to vi ÷ 1, from vi + 1 to 
vl, or not present. The vertices v~, i = 1 . . . . .  m and their incident edges are replaced by 
an edge connecting s 1 and s2. The label of this edge is the lexicographically smallest 

. v V I t of two labels, (2.1,( lo,  do) , l l , ( l l ,d l ) , . . . , l , , , , ( l r , ,d , , , ) )  and (2 .1; ( l , , , , -dr ,  O, lr~,(l'r,,_l, 
- d i n -  1) . . . . .  l~, (l~, -do)).  The arrow will point from s l to s2 if the first alternative is 
smaller, from s2 to st if the second is smaller, and is absent if they are equal or if 
st = s2. (In the latter case the edge is a self-loop). 

2.2 ring rule. A connected two-regular graph is a cycle consisting of vertices 
Vo . . . . .  vm-1, with vertex v~ adjacent to vertex v~+ t for i = 0 . . . . .  m - 2 and with Vo 
adjacent to vm- 1- It  is reduced into a single vertex labeled with the lexicographically 
smallest of 2m labels (2.2; (l i +ik, , ,-1 ' kd~+jk), l~+jk)j=o where i = 0 . . . .  , m - 1, k = 1, - 1, 
and indices are computed modulo m. 

Since the above rules refine the complete set of confluent reduction rules recogniz- 
ing partial 2-trees ([29,5]), any such graph will be assigned a label by an algorithm 
implementing the labeling process. The uniqueness of such a label is due to the fact 
that each intermediate label depends only on the unique labeling phase during 
which the particular reduction is performed. This follows from the independent 
nature of application of reduction rules. The phase is defined by the first reduction 
rule on the list that is applicable, and the order of applying any two reductions in the 
same phase does not influence the values of resulting labels. 

3.2. E x a m p l e .  

We will illustrate the process of creating a canonical label by reduction of the 
partial 2-tree whose adjacency lists are: 
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vertex neighbors 

1 13 
2 13,14 
3 14 
4 15 
5 6,15 
6 5,7 
7 6,15 
8 12 
9 10,12 

10 9,11 
11 10,12 
12 8,9,11,13,15 
13 1,2,12,14,15 
14 2,3,13,15 
15 4,5,7,12,13,14 

The canonical reduction sequence produced is the following, where groups of 
parallel reductions are separated by horizontal lines: 

rule 

1.2 

0.1 

2.1 

0.1 

0.2 

2.1 

0.2 

1.1 

reduced edges removed 

1 (1,13) 
3 (3,14) 
4 (4,15) 
8 (8,12) 

2 (13,2), (2,14) 
5,6,7 (15,5), (5,6), (6,7), (7,15) 

9, 10, 11 (12,9), (9,10), (10,11), (11,12) 

(13,14) 

12 (13,12), (12,15) 
14 (13,14), (14,15) 

(13,15) 

13, 15 (13,15) 

The label abbreviations used above are as follows: 

label labeled arrow 

ll 13 
Ii 14 
11 15 
11 12 

12 13 
12 14 
12 15 
12 12 

13 (13,14) 
l ,  (15,15) 
l ,  (12,12) 

Is 12 
Is 15 

16 (13,14) 

17 (13,15) 
ls (15,13) ---, 

t9 (13,15) --, 

I~o 
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name value 

11 (1.2; (0, 0), (0)) 
12 (0.1; (0), 11) 
l~ (2.1; (0, 0), (0), (0, 0)) 
l, (2A; (0, 0), (0), (0, 0), (0), (0, 0), (0), (0, 0)) 
15 (0.1; t2, t,) 
t6 (0.2; (0, 0), (I3, 0)) 
z7 (2.1; (o, o), I~, (o, o)) 
la (2.1; (0, 0), I2, (16, 0)) 
19 (0.2; (0, 0), (18, -- 1), (17, 0)) 

lt0 (1.1; 12, (19, 1), Is) 

and we can get the explicit label from 11o by expanding the above abbreviations. 

4. Canonical representation of partial 3-trees. 

The idea behind the algorithm for partial 3-trees is similar to that of the algorithm 
constructing a canonical representation of partial 2-trees. The reduction of vertices 
is performed in consecutive stages, where each stage consists either of independent 
reduction instances or of groups of dependent reduction instances of the same kind. 
The situation is more complicated for partial 3-trees for two reasons. For one, the 
reduction information (recorded in labels) often concerns three vertices, and thus the 
resulting label must be associated with triples of vertices. We will present this as the 
labeling process for hyperedges of order 3. The second reason for a more compli- 
cated algorithm is the large number of ways in which reduction rules of the same 
kind can involve adjacent vertices. For instance, more than one vertex of a triangle 
can have degree 3. Below, we elaborate on these differences leading to an algorithm 
constructing a canonical label for a given connected partial 3-tree. 

4.1. Labeling of hypered#es. 

Each of the three reduction rules involving a degree three vertex causes the 
elimination of that vertex and edges incident with it and replaces them by edges 
between the neighbors of the vertex. (We call this reduction of a single vertex 
v adjacent to the separator vertices st, s2, s3 a basic degree 3 reduction.) We will 
separate this topological action from the labeling action of creating a labeled 
hyperedge corresponding to the three neighbors of the eliminated vertex. 

Let a sufficient set of permutations denote permutations of vertices of a subgraph 
that are able to represent all symmetries (automorphism group) of the subgraph. 
(This can be achieved by a smaller than full symmetric group set of permutations 
when permutations exchanging non-symmetric vertices are omitted.) 

Let 0 be the label of hyperedges (vertices, edges, or triangles) in the original graph. 
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A label ofa  hyperedge is determined with respect to a permutation of its vertices and 
is given an orientation represented by a subset of permutations of these vertices. 
These permutations are symmetric with respect to the label (they constitute the 
projection, into the symmetric group on the vertices of the hyperedge, of a coset of 
the automorphism group for the graph reduced into the hyperedge). When a hy- 
peredge is removed in a reduction operation involving one of its vertices, its label will 
form a component of the label of the created hyperedge, together with an indication 
of how the orientation of the removed hyperedge corresponds to the orientation of 
the created hyperedge. Consider an orientation D of a removed hyperedge and 
a permutation tr of the union of vertices in the removed hyperedges. D is coded with 
respect to a in the following way. Recall that D is a set of permutations of a subset of 
the vertices appearing in tr, so each vertex occurring in D can be replaced by its index 
in tr. The resulting set of integer lists is then sorted lexicographically. 

As an example, consider reduction of a degree 3 vertex v with neighbors a, b and c, 
This reduction removes at most one 1-hyperedge, three 2-hyperedges, and three 
3-hyperedges. Now, for instance, the permutation a = (a, b,c, v) will cause the 
orientation D = {(a, b, v),(a, v, b)} of a 3-hyperedge {a, b, v} to be encoded as 
((1, 2, 4), (1, 4, 2)). 

We can now describe the reduction of a set of vertices R = k {Vi}i = 1 separated from 
the rest of the graph by vertices S = {sl}l= 1: 

Produce a sufficient set P of permutations of R u S. For  each permutation p in P, 
produce a label as follows: consider the set of (label, orientation) pairs that contain 
some vertices of R. Replace each orientation with its encoding wrt p and sort the 
pairs to get a label wrt p. The subset of permutations that yield the lexicographically 
smallest label I constitute the orientation of the new edge. The minimum value I and 
the rule number r according to which the reduction is made are used to build the 
label (1";/) of the new hyperedge. 

Observe that the previous label construction for partial 2-trees was only slightly 
different and can be easily changed to the present one. As an example, in the chain 
rule, each di would be changed from 1 to ((i, i + 1)), from - 1 to ((i + 1, i)) and from 
0 to ((i, i + 1), (i + 1, i)). An arrow on an edge between vertices a and b would be 
represented as an orientation ((a, b)) or ((b, a)) and its absence would be represented 
by orientation ((a, b), (b, a)). 

4.2. Reduction rules for partial 3-trees. 

Except for applications of the parallel rules, the sequence of reductions made is 
decided solely on basis of adjacency informat ion-  we never investigate which type of 
hyperedge (2- or 3-hyperedge) makes two vertices adjacent. So in this section we can 
consider the graph represented by its clique representation when looking for vertex 
sets to reduce. After this set has been decided, we must use another data structure to 
find the set of hyperedges containing some reduced vertex, as detailed in Section 5. 



CANONICAL REPRESENTATIONS OF PARTIAL 2- AND 3-TREES 207 

The data structure for hyperedges is also used to decide when parallel rules (rule 
group 3) are to be invoked. The correctness of our algorithm rests on the fact that for 
every partial 3-tree there is a unique way to select a number of non-overlapping 
reduction rules and to describe the reduced parts of the graph uniquely in the labels 
created. This in turn follows from a careful reading of this section: for every rule 
reducing a partial 3-tree, have we identified all ways in which reduction instances of 
this rule can overlap? The numbering of the rules is intended to simplify the 
understanding of the case analysis. 

3 parallel triangles. This rule is applicable when two or more 3-hyperedges have 
the same set of vertices, Let the vertices be S = (sl,s2,s3), and the labels of the 
hyperedges l~, i = 1 . . . .  , m. The orientations d~, i = 1 . . . . .  m are sets of permuta- 
tions of S. Let dl p) be the coding ofdl wrt a permutation p of S. For each permutation 
p of S, form the set ~tl d (p)~m t~ ~, i Jji= 1, sort it lexicographically and extract the lexi- 
cographically smallest list (over p) as well as those p giving a minimum, and call the 
smallest list l and the set of permutations P. The new hyperedge with vertices 
sl, s2, s3 has label (3;/) and orientation P. 

4 isolated reduction instances. 

4.1 triangle. A vertex that is triangle-reducible and not adjacent to another 
triangle-reducible vertex can be reduced directly. This reduction of a single vertex 
adjacent to three separator vertices will be called the basic degree 3 reduction. The 
sufficient set of permutations consists of every permutation of the s~, each followed 
by v. 

4.2 buddy. Vertices in a buddy configuration not adjacent to another buddy 
configuration can be reduced simultaneously with the basic degree 3 reduction in all 
occurrences. 

4.3 cube. The three reducible vertices in a cube configuration not adjacent to 
another cube are reduced with the basic degree 3 reduction. 

5 conflicting triangles. 

5.1 diamonds. We can consider separately the cases when two adjacent triangle- 
reducible degree 3 vertices vl, v2 have two neighbors sl, s2 in common. 

5.1.1 K4. More than one occurrence of the diamond rule with adjacent reducible 
vertices is possible only if a connected component of the graph is the 4-clique K4. 
The sufficient set consists of all 24 permutations of the vertices vi, i = 1, 2, 3, 4. 
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5.1.2 Kg. If the vertices vl and v2 are not adjacent, they induce, together with 
their common neighbors s 1, s2, the four-clique without an edge, K~-. A sufficient set 
of permutations to consider is each of the two permutations of {sl, s2 } followed by 
each permutation of {vl, v2}. 

5.2 Subgraph H. The remaining configurations of adjacent degree 3 vertices 
reducible according to the triangle rule and with at most one common neighbor 
(triangle-reducible for short) are discussed below. For a given partial 3-tree G, let us 
consider a maximal connected subgraph H consisting of triangle-reducible vertices 
subject to conflicting reductions according to the triangle rule. We will investigate 
the structure of those subgraphs and will make unique choices of independently 
reducible vertex sets in G. We consider the following cases of reductions in G de- 
pending on the degrees of vertices in H: 

5.2.1 degree 1 only. Two adjacent vertices of degree 1 in H, vl and v2, represent 
one of the two subgraphs in G shown in Figure 2. In the case of a four-vertex 
separator, other reduction rules must be applicable in the rest of the graph ('beyond 
the four separating vertices'), or else G cannot be a partial 3-tree. In the case of 
a 3-vertex separator, a separate reduction rule allows us to reduce vl and v2, creating 
a hyperedge containing the separator vertices, with a unique label describing the 
reduced subgraph of the original graph (none of the separator vertices is triangle- 
reducible). 

Figure 2: Subgraphs of H with two adjacent degree 1 vertices. 

5.2.2 degree 1 and 2 or 3. In this case we have a vertex of degree 1. If there are 
more, they must be nonadjacent. Nonadjacent vertices of degree 1 in H can be 
subjects to the basic degree 3 reductions in G, since these do not conflict with each 
other. 

5.2.3 degree 2 only. The vertices of degree 2 form a cycle in H. Let us call an edge 
t if it is a side of a triangle of G and f otherwise. Notice that end vertices of adjacent 
t edges have one common neighbor in G. Consider those vertices incident to both 
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a t and an f edge; call this set A. Depending on the relation between A and H, we 
have three subcases (Figure 3). 

a) wheel (b) (c) square 

Figure 3: Cycles in H (a) a wheel, (b) a general case, (c) the square. 

5.2.3.1 wheel. The set A is empty: all edges of H are t edges. This is the wheel 
configuration, reduced to a single vertex label ("the hub's') according to a separate 
rule. 

5.2.3.2. coileetion of paths. A does not contain all vertices of H and its vertices 
partition the set of the remaining vertices of H into connected components. Those 
can be dealt with in a manner similar to that in rules 4.1, 5.2.1, and 5.2.2. 

5.2.3.3 square. I fH  consists of alternating t and f edges (all the vertices are in A), 
then we have to consider subcases depending on the number of edges in H (it is 
trivially greater than 3). When H has 4 edges (only two triangles are involved), the 
triangles' "third vertices" form a separator of G. The corresponding configuration 
(square, Figure 3(c)), is the left hand side of a separate reduction rule. If there are 
more than two triangles, then there must be another instance of a reduction rule 
"beyond the separating vertices" (i.e., in the subgraph of G induced by vertices of 
G other than in H), or else G is not a partial 3-tree. 

5.2.4 degrees 2 and 3. If H consists of both vertices of degree 2 and vertices of 
degree 3, then the vertices of degree 2 form in H paths that end in degree 3 vertices. 
When such a path has exactly two degree 2 vertices, these can be reduced according 
to rule 5.2.1. Otherwise, there are unique and nonadjacent vertices of degree 2 in 
H and the corresponding vertices in G can be reduced with the basic degree 
3 reduction, similarly to the situation in 5.2.2. 

5.2.5 degree 3 only (prism). Since a vertex in H is of degree 3 in the original partial 
3-tree G, a cubic H is identical with G. To analyse this case, we consider the 
multigraph/-I obtained from H in the following manner: The set of vertices of/7 is 
the set of edges of H not  in the triangles. A vertex of H is incident with an edge of/-/if 
the corresponding triangle contains a vertex of H incident with that edge in H. We 
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will show t h a t / / i s  a series-parallel graph, which has important consequences in 
determining unique triangle reductions in H (or, equivalently, G). A multigraph is 
series-parallel if and only if it does not contain a subgraph homeomorphic to K4. 
However, if/7 contains such a subgraph, then H contains as a minor the 4-regular 
Duffin graph (see Figure 4(b)), and is thus not a partial 3-tree. Since all vertices of 
/-/have degree 3, there must be instances of independent parallel edge reductions in 
/-/. Unless H has six vertices and nine edges ("the prism", see Figure 4(a)) reduced to 
a single vertex by a separate rule, an instance of the parallel edge reduction in 
/-/corresponds to the subgraph of the 5.2.3.3 square rule in H. Thus, the only new 
configuration for this case is where H, and thus also G, is the prism, Figure 4(a). 

a) Prism b) Duff in graph 

Figure 4: 3-regular subgraphs (a) the prism, (b) a minimal forbidden, minor. 

6 conflicting buddies. The 3-1eaves vl,/)2 in an instance of the buddy reduction can 
be adjacent to 3-1eaves ul, u2 in another instance of the buddy reduction only if u l, u2 

are commonly adjacent to a third vertex w. This third vertex may be identical with or 
different from the third common neighbor of vl, v2, leading to two configurations 
that can be incorporated as the left-hand-sides of new reduction rules. The former is 
a case of the 5.2.3.1 wheel rule discussed above, the latter, cat's cradle, is shown in 
Figure 5. 

a) Cat's craclle D) K(3, 3) 

Figure 5: Overlapping buddy configurations. 

Ka,3. Two cat's cradles can overlap only when the graph has a connected 
component which is K3.3. 
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6.2 cat's cradle. This is the other case where w ~ F({vl,v2}). The separator 
vertices sl,s2 and the cycle (/)l,/)2,v3,v4) have edges (sl,vl), (si,v3), (s2,v2) and 
(s2, v~) between them. 

7 conflicting cubes. There are two basic cases of possible conflicts between the 
reduced vertices in two different instances of the cube reduction. 

7.1 cube. In one case, the purported 3-leaf vertices vl,/)2,/)3 in one instance of the 
cube reduction are adjacent to 3-leaf vertices of another instance. This occurs only in 
the 8-vertex, 12-edge three-dimensional cube graph. This is because the vertices 
ul, u2, and u3 (cf. Figure 6) have then degree 3 and are adjacent to a common 
neighbor (the hub of that instance), also of degree 3. 

a) Gube b) Hammock 

Figure 6: Overlapping cube configurations. 

7.2 hammock. In the second case, the hub x of one instance is a 3-leaf of the other 
instance. This implies that one of the 3-1eaves of the first instance, say v3, is the hub of 
the second instance and its other neighbors u l, u2 are the remaining 3-1eaves of the 
second instance. The vertices ul, u2 must have another common neighbor y. If this 
vertex is identical with the remaining vertex u3 of the original cube, u~,u2 are 
triangle-reducible. I fy is different from u3, this leads to a new reduction rule with the 
left-hand-side configurations given in Figure 6(b). 

5. Fast canonical labeling and isomorphism test. 

We will now describe some implementation details for the simultaneous reduc- 
tion and computation of hyperedge labels described in Section 4. Let n be the 
number of vertices of the graph (this reflects the size of the input since any partial 
3-tree has fewer than 3n edges). Moreover, each reduction removes at least one 
vertex and adds a constant number of adjacencies and labels. Thus, the total number 
of adjacencies and hyperedges in the graph during reduction is O(n). Hence, also the 
number of applications of parallel rules (which remove hyperedges but not vertices) 
is O(n). It can thus be expected that an O(n log n) (log-linear) time realization is 
possible. 
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Actually, using the trick of constant time "initialization" of entries in a table (see, 
for instance, [1]) we can achieve a linear time (albeit quadratic space) algorithm. The 
anonymous referee convinced us that this algorithm is too complex to present easily. 
Accordingly, we changed our emphasis to log-linear time, especially since we could 
not avoid using quadratic space anyway. The log-linear version discussed below is 
probably better in most repects. Additional "tricks" required by the linear time 
algorithm are presented in [4]. 

The following tasks present certain difficulties: 

(i) Sorting O(n) labels, each of length O(n), when producing labels for applications 
of parallel rules. 

(ii) Finding the lexicographically smallest label for m shifts of m labels, each of size 
k, where mk is O(n), when deciding a label for the ring and wheel reductions (2.2 
and 5.2.3.1). 

(iii) Finding instances of applicable reductions. 

Actually, there are already methods available to overcome these obstacles. First, 
the abbreviations introduced in the example of section 3.2 can be formalized into 
a canonical numbering of labels (or objects labeled), as is done for a tree isomorphism 
algorithm due to Edmonds and described in, e.g., Aho, Hopcroft and Ullman [1] 
and Colbourn and Booth [10]. In this way, all labels will have size O(logn). Two 
identical branches of the graph will get the same label if they are permuted by the 
automorphism group of the original graph, since they will correspond to reductions 
made in parallel. With this canonical numbering, any of the corresponding algo- 
rithms by Syslo [28], Shiloah [27], or Booth [9] also solves problem (ii) above. 

The total number of times vertex adjacencies change during the reduction process 
is proportional to the graph size. Thus, maintaining "ready lists" for vertices that 
reach small enough degree to be considered in the reduction rules resolves problem 
(iii) above. Below, we elaborate on the Ready lists and the Ring algorithms. 

5.1. Ready lists. 

The reduction instances are either bounded size, connected graphs cut off by 
a separator (rules 1.1, 1.2, 1.3, 4.1, 4.3, 5.1.1, 5.1.2, 5.2.3.3, 5.2.5, 6.1, 6.2, 7.1, 7.2), 
variable size configurations involving only vertices of degree not greater than 3 (2.1, 
2.2, 5.2.3.1), parallel rules (0.1, 0.2, 3) or the buddy configuration (4.2). The member- 
ship of a vertex in such a configuration may vary during the reduction process. 
However, membership is altered only when one of the adjacencies of reducible 
vertices is altered. Since each reduction involves at most adjacencies of three 
remaining vertices, the total number of times a vertex changes its neighborhood or is 
part of a created hyperedge (by being in the separator associated with a reduction) is 
O(n), summed over all vertices. Each time this happens we investigate which is the 
highest ranking rule by which the vertex is reducible, or if it is a vertex ofa hyperedge 
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to which a parallel rule applies. The vertex is then linked into a list for that reduction 
rule. 

5.2. Ring algorithm. 

The problem of determining the label for the ring reduction (2.2) is equivalent to 
the problem of finding a lexicographically minimum linearization of a cyclic string. 
A simple solution to this problem involves recording the change of two pairs of 
positions in the cyclic string. These positions delimit two identical substrings, 
minimum so far: the candidate substring precedes the other, challenger, substring 
(both start with the overall smallest element). One pair of positions indicates the 
start of the two substrings, and another pair of positions delimits their explored 
prefixes. The algorithm calls for a comparison of elements possibly extending the 
two substrings. If the elements are equal but lexicographically smallest, it is easy to 
see that the challenger substring would never prove lexicographically smaller than 
the candidate substring. This causes advancement of the position indicating the 
beginning of the challenger substring to the last scanned position. The same happens 
when the element comparison indicates explicitly that the candidate substring is 
lexicographically smaller than the challenger. Otherwise, the challenger substring 
becomes the current candidate and the position indicating the beginning of the 
second string is advanced beyond the last scanned. 

6. Conclusions. 

The presented method to construct a canonical label for partial 2- and 3-tree is 
based entirely on the complete systems of confluent vertex-reduction rules that 
recognize graphs from these classes. Lagergren [17] shows that such systems do not 
exist for partial k-trees with k > 3. Thus, this method is not readily extensible. 
However, there exist more general graph reduction systems that decide membership 
in classes of partial k-trees. Namely, Arnborg et al. show in [4] that this is the case for 
any subclass of partial k-trees (fixed k) definable by the Monadic Second Order Logic 
(MSOL) (cf., for instance, Courcelle [11]). Specifically, this gives the existence of 
a graph reduction system for partial k-trees (any fixed k). Such a graph rewriting 
system can be implemented as a linear time (although space intensive) algorithm. 
However, it remains an open question how the rewriting system can be modified to 
permit a unique labeling in polynomial time. 
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