
Graph Convolutional Networks with Argument-Aware Pooling
for Event Detection

Thien Huu Nguyen
Department of Computer and Information Science

University of Oregon
Eugene, Oregon 97403, USA
thien@cs.uoregon.edu

Ralph Grishman
Computer Science Department

New York University
New York, NY 10003 USA
grishman@cs.nyu.edu

Abstract

The current neural network models for event detection have
only considered the sequential representation of sentences.
Syntactic representations have not been explored in this area
although they provide an effective mechanism to directly link
words to their informative context for event detection in the
sentences. In this work, we investigate a convolutional neural
network based on dependency trees to perform event detec-
tion. We propose a novel pooling method that relies on en-
tity mentions to aggregate the convolution vectors. The exten-
sive experiments demonstrate the benefits of the dependency-
based convolutional neural networks and the entity mention-
based pooling method for event detection. We achieve the
state-of-the-art performance on widely used datasets with
both perfect and predicted entity mentions.

Introduction
Event Detection (ED) is an important information extraction
task of natural language processing that seeks to recognize
instances of specified types of events (event mentions) in
text. Each event mention is often presented within a single
sentence in which an event trigger is selected to associate
with that event mention. Event triggers are generally sin-
gle verbs or nominalizations that serve as the main words
to evoke the corresponding events. The event detection task,
more precisely stated, aims to detect event triggers and clas-
sify them into specific types of interest. For instance, con-
sider the following sentence with two words “fired”:
“The police officer who fired into a car full of teenagers was
fired Tuesday”
In this example, an ED system should be able to realize that
the first occurrence of “fired” is an event trigger of type At-
tack while the second “fired” takes End-Position as its event
type. ED is a challenging task, as an expression might evoke
different events depending on contexts (illustrated in our
previous example with the word “fired”), and the same event
might be presented in various expressions (e.g, the trigger
words “killed”, “shot” or “beat for the event type Attack).

The current state-of-the-art approach for ED employs
deep learning models in which convolutional neural net-
works (CNN) are the typical architectures (Nguyen and
Grishman 2015; Chen et al. 2015; Nguyen and Grishman

Copyright c� 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2016b). In the basic implementation, CNNs apply the tem-
poral convolution operation over the consecutive k-grams1

in the sentences, attempting to generate the latent structures
that are informative for ED (Nguyen and Grishman 2015;
Chen et al. 2015). The disadvantage of such consecutive
convolution is the inability to capture the non-consecutive
k-grams that can span words far apart in the sentences.
Those non-consecutive k-grams are necessary to recog-
nize event triggers in some situations. For example, in the
example above, the non-consecutive 3-grams “officer was
fired” should be considered to correctly identify the event
type End-Position for the second word “fired”. The non-
consecutive CNN model (NCNN) in (Nguyen and Grish-
man 2016b) seeks to overcome this problem by operating the
temporal convolution over all the non-consecutive k-grams
in the sentences, leading to the state-of-the-art CNN model
for ED.

Unfortunately, due to the consideration of all possible
non-consecutive k-grams, the non-consecutive CNN archi-
tecture might model unnecessary and noisy information, po-
tentially impairing the prediction performance for ED. In
particular, NCNN utilizes the max-pooling operation to ag-
gregate the convolution scores over all the non-consecutive
k-grams. As such k grams might include irrelevant or mis-
leading sequences of words, the max-pooling might incor-
rectly focus on those k-grams and make a wrong final pre-
diction for ED. One example is the non-consecutive 3-gram
“car was fired” in the example above. In contrast to the cor-
rect 3-gram “officer was fired”, “car was fired” suggests the
event type Attack for the second word “fired”, causing the
confusion or failure of NCNN to predict the true event type
of “End-Position” in this situation.

One way to circumvent this issue for NCNN is to notice
that “police officer” is the subject of the second word “fired”
while “a car” does not have much direct connection with
the second “fired” in this example. Guided by this intuition,
in this paper, we propose to perform the convolution opera-
tion over the syntactic dependency graphs of the sentences to
perform event detection. Syntactic dependency graphs rep-
resents sentences as directed trees with head-modifier de-
pendency arcs between related words (Mcdonald and Pereira
2006; Koo, Carreras, and Collins 2008). Each word in such

1
k is often chosen to be some fixed value.

The police officer who fired into a car full of teenagers was fired Tuesday
O B-PER I-PER B-PER O O O B-VEH O O B-PER O O B-TIME

det

compound

nsubjpass

nsubj

acl:relcl

case

det

nmod

case

case

nmod auxpass

nmod:tmod

Figure 1: BIO annotation for entity mentions and dependency parse tree using universal dependency relations for the example
sentence. The label “B-X” for entity mentions indicates the beginning of an entity mention of type “X” while “I-X” is used for
tokens that are inside (but do not start) the range of an entity mention of type “X”. The label “O” is reserved for other tokens
that do not belong to any entity mentions. In this figure, “PER” and “VEH” stands for PERSON and VEHICLE respectively.

graphs is surrounded by its direct syntactic governor and
dependent words (the neighbors), over which the convo-
lution can focus on the most relevant words for the cur-
rent word and avoid the modeling of unrelated words/k-
grams. In the experiments, we demonstrate that these syn-
tactic connections for words provide effective constraints
to implement convolution for ED. Note that the governor
and dependent words has also been found as useful fea-
tures for ED in the traditional feature approaches (Ahn 2006;
Li, Ji, and Huang 2013). This further helps to justify the con-
volution over dependency graphs for ED in this paper. The
dependency parse tree for the previous example sentence is
shown in Figure 1. As we can see from this figure, the de-
pendency tree helps to link the second word “fired” directly
to the dependent words “officer” and “was” that altogether
constitute an effective evidence to predict the event type for
“fired” via convolution.

In order to implement the syntactic convolution, we em-
ploy the graph convolutional networks (GCNs) (Kearnes et
al. 2016; Kipf and Welling 2017; Marcheggiani and Titov
2017) that are studied very recently to use graph structures
to form connections between layers of multilayer neural net-
works. In GCNs, the convolution vector for each node is
computed from the representation vectors of the immedi-
ate neighbors. GCNs has been mainly applied for the node
classification tasks in which the convolution representation
vector for a node functions as the only features to classify
that node (Kipf and Welling 2017; Marcheggiani and Titov
2017). For event detection, we can also utilize the graph-
based convolution vector of the current word (the current
node in the dependency graphs) to perform prediction. Un-
fortunately, as the convolution vector tends to preserve only
the most important information of the local context for the
current word (i.e, the immediate neighbors in the depen-
dency graph), it might not have the capacity to encode the
specific (detailed) information about the entity mentions dis-
tributed at different positions in the sentences. An entity
mention is a reference to an object or a set of objects in
the world, including names, nominals and pronouns such
as the entity mentions “police officer”, “car”, “teenagers”
and “Tuesday” in the example sentence above2. The spe-

2For convenience, we also consider time and value expressions

cific knowledge about entity mentions (e.g, entity types),
especially the participants (arguments) of the events, is im-
portant as it might provide models with more confidence
to make prediction for ED (Nguyen and Grishman 2015;
Liu et al. 2017). For instance, the first and the second words
“fired” in the example sentence might be aware of the entity
mentions (arguments) “car” and “officer” in their syntactic
context respectively; however, the types of such entity men-
tions (i.e, VEHICLE for “car” and PERSON for “officer”)
might not be encapsulated or be less pronounced in the con-
volution vectors for the two words “fired” due to the local
attention. These entity types are crucial to accurately predict
the event types for the two words “fired” in this case.

In this work, we propose to overcome this issue by oper-
ating a pooling over the graph-based convolution vectors of
the current word as well as the entity mentions in the sen-
tences. This aggregates the convolution vectors to generate
a single vector representation for event type prediction. The
rationale is to explicitly model the information from the en-
tity mentions to improve the performance for ED. We ex-
tensively evaluate the proposed pooling method with both
manually annotated (perfect) entity mentions and automati-
cally predicted entity mentions to demonstrate its benefit in
the experiments.

To summary, our contribution in this work is as follows:

• We are the first to integrate syntax into neural event de-
tection and show that GCNs are effective for ED.

• We propose a novel pooling method based on entity men-
tions for ED.

• We achieve the state-of-the-art performance on the widely
used datasets for ED using the proposed model with
GCNs and entity mention-based pooling.

Model
Event detection can be cast as a multi-class classification
problem (Nguyen and Grishman 2015; Chen et al. 2015;
Nguyen and Grishman 2016b; Liu et al. 2017). Each word
in the document is associated with the sentence containing
the word (the context) to form an event trigger candidate or
an example in the multi-class classification terms. Our task

as entity mentions in this work.

is to predict the event label for every event trigger candidate
in the document. The label can be one of the pre-defined
event types (subtypes) in the datasets or NONE to indicate a
non-trigger candidate. Consequently, we have an equivalent
problem of (L+1)-class classification for ED where L is the
number of pre-defined event types.

Let w = w1, w2, . . . , wn be a sentence of length n of
some event trigger candidate, in which wa (1  a  n) is
the current word for trigger prediction (wi is the i-th token
in the sentence 81  i  n). In addition, as we assume the
availability of the entity mentions (i.e, the positions and the
types) in w, we can utilize the BIO annotation scheme to
assign the entity type label ei to each token wi of w using
the non-overlapping heads (the most important tokens) of
the entity mentions. This results in the sequence of entity
type labels e1, e2, . . . , en for w, demonstrated in Figure 1
for the example sentence. Note that in such a scheme, ei 6=
O implies that wi is within the range of an entity mention in
w.

The graph convolutional networks for ED in this work
consists of three modules: (i) the encoding module that rep-
resents the input sentence with a matrix for GCN computa-
tion, (ii) the convolution module that performs the convolu-
tion operation over the dependency graph structure of w for
each token in the sentence, and (iii) the pooling module that
aggregates the convolution vectors based on the positions of
the entity mentions in the sentence to perform ED.

1. Encoding
In the encoding module, each token wi in the input sentence
is transformed into a real-valued vector xi by concatenating
the following vectors:

• The word embedding vector of wi: This is a real-valued
vector that captures the hidden syntactic and semantic
properties of wi (Bengio et al. 2003). Word embeddings
are often pre-trained on some large unlabeled corpus
(Mikolov et al. 2013).

• The position embedding vector of wi: In order to in-
dicate that wa is the current word, we encode the rel-
ative distance from wi to wa (i.e, i � a) as a real-
valued vector (called as the position embedding vector)
and use this vector as an additional representation of
wi. We obtain the position embedding vector by look-
ing up the position embedding table that maps the pos-
sible values of the relative positions (i.e, i � a) into ran-
domly initialized vectors (Nguyen and Grishman 2016b;
Liu et al. 2017).

• The entity type embedding vector of wi: Similar to the
position embeddings, we maintain a table of entity type
embeddings that maps entity type labels of tokens (i.e,
the BIO labels for entity mentions) to real-valued random
vectors. We look up this table for the entity type label ei
of wi to retrieve the corresponding embedding.

As each token wi is represented by the vector xi with di-
mensionality of d0, the input sentence w can be seen as a
sequence of vectors X = x1, x2, . . . , xn. X would be used
as input for the graph convolution module in the next step.

2. Graph Convolution
Let G = {V, E} be the dependency parse tree for w with V
and E as the sets of nodes and edges of G respectively. V con-
tains n nodes corresponding to the n tokens w1, w2, . . . , wn

in w. For convenience, we also use wi to denote the i-th node
in V : V = {w1, w2, . . . , wn}. Each edge (wi, wj) in E is di-
rected from the head word wi to the dependent word wj and
has the dependency label L(wi, wj). For instance, in the de-
pendency tree of Figure 1, there is a directed edge from the
node for the second word wi = “fired” (the head word) to the
node for the word wj = “officer” (the dependent word) with
the edge label L(wi, wj) = L(“fired”, “officer”) = nsubj-
pass.

In order to allow the convolution for each token wi in G
to involve the word wi itself as well as its governor word (if
any) in the dependency graph, we add the self loops (wi, wi)
and the inverse edges (wj , wi) ((wi, wj) 2 E) into the initial
edge sets E , resulting in a new set of edges E 0 (Kipf and
Welling 2017; Marcheggiani and Titov 2017):

E 0 = E[{(wi, wi) : 1  i  n}[{(wj , wi) : (wi, wj) 2 E}

Note that the additional edges of E 0 are also directed and
labeled. The label for the self loops is a special symbol
“LOOP” while the label for the inverse edge (wj , wi) in-
volves the label of the corresponding original edge (wi, wj)
followed by an apostrophe to emphasize the opposite direc-
tion with respect to the original edge (wi, wj) in G:

L(wi, wi) = LOOP 81  i  n

L(wj , wi) = L

0(wi, wj) 8(wi, wj) 2 E

The new edge set E 0 along with the node set V con-
stitute a new graph G0 = {V, E 0} on which the convolu-
tion operation can rely. In particular, the graph convolution
vector h

k+1
u at the (k + 1)-th layer (k � 0) for a node

u 2 G0 (corresponding to a word wi in the input sentence
w : u = wi 2 {w1, w2, . . . , wn}) is computed by:

h

k+1
u = g

0

@
X

v2N (u)

W

k
L(u,v)h

k
v + b

k
L(u,v)

1

A (1)

where N (u) is the set of neighbors of u in G0: N (u) = {v :
(u, v) 2 E 0}; W k

L(u,v) 2 Rdk+1⇥dk and b

k
L(u,v) 2 Rdk+1 are

the weight matrix and the bias (respectively) for the edge
(u, v) in G0 (dk is the number of hidden units or the di-
mensionality of hk

u in the k-th layer); and g is a nonlinear
activation function3. For convenience, we assume the same
number of hidden units for all the graph convolution layers
in this work (i.e, d1 = d2 = . . . = d). Note that the ini-
tial vectors h0

u are set to the representation vectors obtained
from the encoding module:

h

0
u = h

0
wi

= xi 8u 2 V (2)

Limiting the capacity The convolution in Equation (1) as-
sumes different weight matrices W

k
L(u,v) for different edge

labels L(u, v). The capacity of such parameters might be too
3
g is the rectify function g(x) = max(0, x) in this paper.

high, given that the datasets for ED often have moderate size
with respect to the deep learning perspectives. In order to re-
duce the capacity, following (Marcheggiani and Titov 2017),
we only use three different weight matrices W k

L(u,v) in each
layer depending on whether the corresponding edge (u, v) is
an original edge in E , a self loop or an added inverse edge in
E 0:

W

k
L(u,v) = W

k
type(u,v) (3)

where “type(u, v)” returns the type of the edge (u, v) (i.e,
original edges, self loops and inverse edges).

Weighting the edges The second word “fired” in the ex-
ample sentence of Figure 1 has three immediate neighbors
in the dependency graph: “officer”, “was” and “Tuesday”.
While “officer” and “was” are crucial to determine the event
type of End-Position for “fired”, “Tuesday” do not contribute
much information in this case. It is thus not appropriate to
weight the neighbors uniformly in the graph convolution for
ED. Consequently, for the k-th layer, we compute a weight
s

k
(u,v) for each neighboring edge (u, v) of a node u 2 V to

quantify its importance for ED in GCNs (Marcheggiani and
Titov 2017):

s

k
(u,v) = �(hk

vW̄
k
type(u,v) + b̄

k
L(u,v)) (4)

where W̄

k
type(u,v) 2 Rdk and b̄

k
L(u,v) 2 R are weight matrix

and the bias (respectively); and � is a nonlinear activation
function4.

The edge weights in Equation (4) and the weight matri-
ces in Equation (3) transform the convolution operation in
Equation (1) into:

h

k+1
u = g

0

@
X

v2N (u)

s

k
(u,v)(W

k
type(u,v)h

k
v + b

k
L(u,v))

1

A (5)

Note that edge weighting also helps to alleviate the effect of
the potentially wrong syntactic edges that are automatically
predicted by imperfect syntactic parsers.

Abstracting the initial representation with LSTM The
graph convolution induces a hidden representation for the
local graph context of each node (word) in V (i.e, the word
itself, the governor and the dependents), functioning as fea-
tures for ED. The hidden representations of a single layer of
GCNs can only capture the information for the immediate
neighbors while those of multiple layers (e.g, K layers) can
incorporate nodes (words) that are at most K hops aways in
the dependency tree. In other words, the context coverage of
the representation vectors for the nodes is restricted by the
number of convolution layers, causing the inability of the
representation vectors to encode the dependencies between
words far away from each other in the dependency graph. In-
creasing the number of convolution layers might help to mit-
igate this problem, but it might fail to capture the word de-
pendencies with shorter distances due to the redundant mod-
eling of context. It is thus preferable to have a mechanism
to adaptively accumulate the context rather than fixing the

4The sigmoid function in this case.

context coverage with K layers in the current formulation
of GCNs. In this work, we employ a bidirectional long-short
term memory network (BiLSTM) (Hochreiter and Schmid-
huber 1997) to first abstract the initial representation vectors
xi whose outputs are later consumed by GCNs for ED.

Specifically, we run a forward LSTM and a back-
ward LSTM over the representation vector sequence
(x1, x2, . . . , xn) to generate the forward and back-
ward hidden vector sequences (i.e, (�!r1 ,�!r2 , . . . ,�!rn) and
(�r1 , �r2 , . . . , �rn) respectively). We then concatenate the
hidden vectors at the corresponding positions to obtain
the abstract representation vector sequence (r1, r2, . . . , rn)
where ri = [�!ri , �ri]. The new representation vectors
r1, r2, . . . , rn would then replace the initial vector se-
quences x1, x2, . . . , xn in Equation (2) for further compu-
tation of GCNs in Equations (4) and (5):

h

0
u = h

0
wi

= ri 8u 2 V (6)

The convolution of GCNs over these new representation
vectors would allow the adaptive integration of long-range
dependencies of words with fewer convolution layers in
GCNs (Marcheggiani and Titov 2017).

3. Pooling
The GCN model with K convolution layers pro-
duces the sequence of convolution representation vectors
h

K
w1

, h

K
w2

, . . . , h

K
wn

. The role of the pooling module is to ag-
gregate such convolution vectors to generate a single vector
representation v

ED, that would be fed into a standard feed-
forward neural network with softmax in the end to perform
classification for ED.

There are several methods to aggregate the convolution
vectors for ED in the literature. In this section, we first re-
view these methods to emphasize the entity mention-based
pooling in this paper.

• Anchor Pooling (ANCHOR): In this case, vED is set to the
convolution vector of the current word: vED = h

K
wa

. This
method is used in (Nguyen, Cho, and Grishman 2016a)
and most work on GCNs so far (Kipf and Welling 2017;
Marcheggiani and Titov 2017).

• Overall Pooling (OVERALL): v

ED is computed by
taking the element-wise max over the entire convo-
lution vector sequence h

K
w1

, h

K
w2

, . . . , h

K
wn

: v

ED =
max element-wise(hK

w1
, h

K
w2

, . . . , h

K
wn

). This methods is
employed in (Nguyen and Grishman 2015; 2016b).

• Dynamic Pooling (DYNAMIC) (Chen et al. 2015;
2017): The convolution vector sequence is divided into
two parts based on the position of the current word
(i.e, (hK

w1
, h

K
w2

, . . . , h

K
wa

) and (hK
wa+1

, h

K
wa+2

, . . . , h

K
wn

)).
These two subsequences are then aggregated by an
element-wise max operation whose outputs are concate-
nated to generate v

ED:
v

ED = [max element-wise(hK
w1

, h

K
w2

, . . . , h

K
wa

),
max element-wise(hK

wa+1
, h

K
wa+2

, . . . , h

K
wn

)]

The common limitation of these methods is the failure to
explicitly model the convolution representation vectors for

the entity mentions in the sentence. Such representation vec-
tors are helpful as they encode specific information for the
entity mentions that might help to improve the ED perfor-
mance. In particular, ANCHOR ignores the representation
vectors for the entity mentions while OVERALL and DY-
NAMIC consider both the entity mentions’ representations
and the others uniformly in v

ED, potentially rejecting the
representation vectors of the entity mentions if the repre-
sentation vectors from the other words in the sentence acci-
dentally receive higher values. In this paper, we propose to
exclusively rely on the representation vectors of the entity
mentions to perform the pooling operation for ED. To be
more specific, the representation vector v

ED in this entity
mention-based pooling (called ENTITY) is computed by:

v

ED =max element-wise({hK
wa

} [{
h

K
wi

: 1  i  n, ei 6= O})
(7)

To summarize, the proposed model for ED in this paper
works in the following order:
1. Initial encoding with word embeddings, position embed-
dings and entity type embeddings
2. Abstracting the initial encoding with bidirectional LSTM
3. Performing convolution over the dependency trees using
the BiLSTM representation (Equation 5)
4. Pooling over the convolution vector based on the positions
of the entity mentions (Equation 7)
5. Feed-forward neural networks with softmax for prediction

Training
In order to train the networks, following the previous work
on ED (Nguyen and Grishman 2015; Chen et al. 2015;
Nguyen and Grishman 2016b; Liu et al. 2017), we mini-
mize the negative log-likelihood on the training dataset us-
ing stochastic gradient descent with shuffled mini-batches
and the AdaDelta update rule. The gradients are computed
via back-propagation while dropout is employed to avoid
overfitting. We also rescale the weights whose l2-norms ex-
ceed a predefined threshold.

Experiments
1. Datasets and Settings
We evaluate the networks in this paper using the widely used
datasets for ED, i.e, the ACE 2005 dataset and the TAC
KBP 2015 dataset. We employ the ACE 2005 dataset in the
setting with golden (perfect) annotation for entity mentions
as do the prior work (Nguyen and Grishman 2015; 2016b;
Liu et al. 2017). TAC KBP 2015, on the other hand, is ex-
ploited to test the networks for the setting with predicted en-
tity mentions (i.e, the annotation for entity mentions in the
sentences is provided by some automatic entity mention de-
tector(Li et al. 2014b)). Although the predicted entity men-
tions might involve some errors, it is a more realistic setting
as we usually do not have the golden entity mentions for the
datasets in practice.

The ACE 2005 dataset annotate 33 event subtypes that,
along with, the NONE class, function as the pre-defined la-
bel set for a 34-class classification problem for this dataset.

In order to ensure a compatible comparison with the previ-
ous work on this dataset (Nguyen and Grishman 2015; Chen
et al. 2015; Nguyen and Grishman 2016b; Chen et al. 2017;
Liu et al. 2017), we use the same data split with 40 newswire
articles for the test set, 30 other documents for the develop-
ment set and 529 remaining documents for the training set.

The TAC KBP 2015 dataset is the official evaluation data
from the Event Nugget Detection Evaluation of the 2015
Text Analysis Conference (TAC). It has 38 event subtypes,
thus requiring a 39-class classification problem with the
“NONE” class for ED. We use the official data split pro-
vided by the 2015 Event Nugget Detection, including 360
documents for the training dataset and 202 documents for
the test dataset.

2. Parameters, Resources and Settings
The parameters are tuned on the development data of the
ACE 2005 dataset. The selected values for the parameters in-
clude the mini-batch size = 50, the pre-defined threshold for
the l2 norms = 3, the dropout rate = 0.5, the dimensionality
of the position embeddings and the entity type embeddings
= 50 and the number of hidden units for the convolution lay-
ers d = 300. We employ the pre-trained word embeddings
with 300 dimensions from (Mikolov et al. 2013) to initialize
the word embeddings. These parameters and resources are
used for both datasets in this paper.

In order to parse the sentences in the datasets, we employ
the Stanford Syntactic Parser with the universal dependency
relations. Following the previous work (Nguyen and Grish-
man 2015; 2016b; Liu et al. 2017), we utilize a fixed length
n = 31 of sentences in the experiments5. This implies that
we need to pad the shorter sentences with a special charac-
ter or trim the longer sentences to fit the fixed length of n.
While the syntactic edges in the dependency trees for the
short sentences can be preserved, we remove the syntactic
edges that are linked to at least one trimmed word for the
longer sentences.

3. Evaluating Network Architectures
This section evaluates different model architectures to
demonstrate the effectiveness of GCNs and BiLSTM for
GCNs. In particular, we compare the proposed model with
its corresponding versions where the GCNs layers or the
BiLSTM layers are excluded. For the versions with GCN
layers, we incrementally increase the number of graph-based
convolution layers (ie. K) until the performance drops. Ta-
ble 1 reports the performance of the models (Precision (P),
Recall (R), and F-measure (F1)) on the development por-
tion of the ACE 2005 dataset. Note that the experiments in
this section use the proposed pooling mechanism (i.e, entity
mention-based pooling ENTITY).

There are three blocks in this table. The first block corre-
sponds to the full proposed models (i.e, BiLSTM + GCNs);
the second block amounts to the proposed model excluding
the BiLSTM layers (i.e, GCNs (no BiLSTM)); and the third
block shows the performance of the proposed model when
the GCN layers are not included (i.e., only using BiLSTM

5This is also the best value on the development data in our case.

Model P R F1
BiLSTM + GCNs (K = 1) 81.1 63.8 71.4
BiLSTM + GCNs (K = 2) 79.8 65.2 71.8
BiLSTM + GCNs (K = 3) 79.6 58.0 67.1
GCNs (no BiLSTM) (K = 1) 81.5 62.2 70.6
GCNs (no BiLSTM) (K = 2) 75.2 67.6 71.2
GCNs (no BiLSTM) (K = 3) 79.4 63.0 70.3
BiLSTM 78.9 63.7 70.5

Table 1: Model performance on the ACE 2005 development
dataset for the ENTITY pooling method.

layers). Importantly, we optimize the number of BiLSTM
layers in this experiment6 (tuned on the ACE 2005 devel-
opment dataset) to measure the actual contribution of GCNs
for ED in the presence of BiLSTM more accurately.

The table indicates that both the proposed model and the
proposed model without BiLSTM (i.e, blocks 1 and 2 re-
spectively) achieve the best performance when the number
of GCN layers is 2. The best performance of the former (i.e,
the full proposed model “BiLSTM + GCNs (K = 2)” with
F1 score of 71.8%) is better than the best performance of the
latter (i.e, the full proposed excluding BiLSTM “GCNs (no
BiLSTM) (K = 2)” with F1 score of 71.2%). Consequently,
BiLSTM captures some useful dependencies for ED that are
not encoded in GCNs. Thus, BiLSTM is complementary to
GCNs for ED and the utilization of BiLSTM with GCNs
would further improve the performance for GCNs. However,
as BiLSTM only adds 0.6% (i.e, from 71.2% to 71.8%) into
the performance of GCNs, most of the necessary informa-
tion for ED has been captured by GCNs themselves. More
importantly, comparing the proposed model (i.e, BiLSTM +
GCNs (K = 2) in block 1 of the table) with the BiLSTM
model in block 3, we see that GCNs significantly improve
the performance of BiLSTM (i.e, from 70.5% to 71.8%),
thus demonstrating the effectiveness of GCNs for ED.

In the following experiments, we would always use the
best network architecture for the proposed model discovered
in this section, i.e, BiLSTM + GCNs (K = 2).

4. Evaluating Pooling Mechanisms
In order to show the benefit of the entity mention-based
pooling method (ENTITY) for GCNs, we compare it with
the other pooling methods for ED in the literature (i.e, AN-
CHOR (Nguyen, Cho, and Grishman 2016a; Marcheggiani
and Titov 2017), OVERALL (Nguyen and Grishman 2015;
2016b), DYNAMIC (Chen et al. 2015; 2017) as discussed in
the section about pooling above). Specifically, we repeat the
model selection procedure in Table 1 of the previous sec-
tion to select the best network architecture for each pool-
ing method of comparison in {ANCHOR, OVERALL, DY-
NAMIC} (using the ACE 2005 development dataset). For
each pooling method, the selection includes the model with
both BiLSTM and GCNs (BiLSTM + GCNs), the model
with just GCNs (GCNs (no BiLSTM)) and the model with
just BiLSTM (BiLSTM). We also optimize the number of
GCN layers and the number of BiLSTM layers for each

6The optimal number of BiLSTM layers is 2.

model as do the previous section. This procedure ensures
that each pooling method has its best network architecture
to facilitate a fair comparison. The best network architec-
ture for each pooling method and their corresponding per-
formance on the ACE 2005 test set are shown in Table 2.

Pooling Best Architecture F1
ENTITY BiLSTM + GCNs (K = 2) 73.1
ANCHOR BiLSTM + GCNs (K = 3) 71.4
OVERALL GCNs (no BiLSTM) (K = 1) 70.8
DYNAMIC GCNs (no BiLSTM) (K = 2) 68.5

Table 2: ED performance for pooling mechanisms.

As we can see from the table, the best architectures for
ENTITY and ANCHOR have BiLSTM layers while this is
not the case for OVERALL and DYNAMIC whose best ar-
chitectures only include GCN layers. We attribute this phe-
nomenon to the fact that both OVERALL and DYNAMIC ag-
gregate the convolution vectors of every word in the sen-
tences, potentially encapsulating useful long-range depen-
dencies of word in the sentences for ED. This makes BiL-
STM redundant as BiLSTM also attempts to capture such
long-range dependencies in this case. This is in contrast to
ENTITY and ANCHOR that only aggregate the convolution
vectors at some specific positions in the sentences (i.e, the
entity mentions and the current word) and lack the capac-
ity to model the long-range dependencies of words. This
necessitates BiLSTM to incorporate the long-range depen-
dencies for ENTITY and ANCHOR. Finally, we see that EN-
TITY significantly outperforms all the other pooling meth-
ods (p < 0.05) with large margins (i.e, 1.7% better than
the second best method of ANCHOR in terms of F1 score),
demonstrating the effectiveness of the entity mention-based
pooling (ENTITY) for ED with GCN models.

5. Comparing to the State of the art
This section compares the proposed model (i.e, BiLSTM
+ GCNs (K = 2) with ENTITY pooling) (called GCN-
ED) with the state-of-the-art ED systems on the ACE 2005
dataset in Table 3. These systems include:
1) Perceptron: the structured perceptron model for joint
beam search with both local and global hand-desgined fea-
tures in (Li, Ji, and Huang 2013)
2) Cross-Entity: the cross-entity model (Hong et al. 2011)
3) PSL: the probabilistic soft logic model to capture the
event-event correlation (Liu et al. 2016a)
4) Framenet: the model that leverages the annotated corpus
of FrameNet to improve ED (Liu et al. 2016b)
5) CNN: the CNN model (Nguyen and Grishman 2015)
6) DM-CNN: the dynamic multi-pooling CNN model (Chen
et al. 2015)
7) DM-CNN+: the dynamic multi-pooling CNN model aug-
mented with automatic labeled data (Chen et al. 2017)
8) B-RNN: the bidirectional recurrent neural network model
(Nguyen, Cho, and Grishman 2016a)
9) NCNN: the nonconsecutive CNN model (Nguyen and Gr-
ishman 2016b)
10) ATT: the attention-based model (Liu et al. 2017)

11) ATT+: the attention-based model augmented with anno-
tated data in Framenet (Liu et al. 2017)
12) CNN-RNN: the ensemble model of CNN and LSTM in
(Feng et al. 2016)

Method P R F1
Perceptron 73.7 62.3 67.5
Cross-Entity † 72.9 64.3 68.3
PSL † 75.3 64.4 69.4
Framenet ‡ 77.6 65.2 70.7
CNN 71.8 66.4 69.0
DM-CNN 75.6 63.6 69.1
DM-CNN+ ‡ 75.7 66.0 70.5
B-RNN 66.0 73.0 69.3
NCNN NA 71.3
ATT 78.0 66.3 71.7
ATT+ ‡ 76.8 67.5 71.9
CNN-RNN 84.6 64.9 73.4
GCN-ED 77.9 68.8 73.1

Table 3: Comparison to the state of the art. †beyond the sen-
tence level. ‡using additional data.

From the table, we see that GCN-ED is a single model,
but it still performs comparably with the ensemble model
CNN-RNN in (Feng et al. 2016), and significantly outper-
forms all the other compared models. In particular, GCN-
ED is 1.2% better than ATT+ although GCN-ED does not
utilize the annotated data from Framenet as ATT+ does. Be-
sides, although GCN-ED only uses the sentence-level infor-
mation, it is still greatly better than the methods that em-
ploy the document-level information (i.e, Cross-Entity and
PSL) with large margins (an improvement of about 4.8% on
the F1 score). Finally, among the single convolution-based
models (i.e, CNN, DM-CNN, NCNN and GCN-ED), GCN-
ED is superior to the others (an improvement of 1.9% on F1
score with respect to the best reported convolutional model
NCNN). This is significant with p < 0.05 and demonstrates
the benefits of the proposed model for ED.

6. Investigating the effect of predicted entity
mentions
The previous sections have demonstrated the effectiveness
of the the proposed model in which the pooling mecha-
nism ENTITY plays an important role. The operation of EN-
TITY requires entity mentions that are obtained from the
manual annotation (perfect entity mentions) in the previ-
ous experiments. It remains to test if the proposed model
in general and the pooling method ENTITY in particular can
still perform well when the entity mentions are predicted by
an automatic system. The TAC KBP 2015 is used for the
experiments in this section. We first utilize the RPI Joint
Information Extraction System (Li, Ji, and Huang 2013;
Li et al. 2014b) to label this dataset for entity mentions, and
then employ the predicted entity mentions as inputs for the
models. In order to ensure consistency, we train the models
with the best network architectures for each pooling mecha-
nism in Table 2 on the training portion and report the perfor-
mance on the test portion of the TAC KBP 2015 dataset.

We also use the same hyper-parameters and resources as
those of the experiments for the ACE 2005 dataset (in Ta-
ble 2) to achieve compatibility. Table 4 shows the results.
We also include the performance of the best system in the
Event Nugget Detection Evaluation of the 2015 Text Anal-
ysis Conference for reference (Mitamura, Liu, and Hovy
2015).

Model P R F1
TAC TOP NA 58.4
ENTITY 70.3 50.6 58.8
ANCHOR 67.3 50.8 57.9
OVERALL 71.7 48.2 57.6
DYNAMIC 69.7 48.2 57.0

Table 4: Performance on the TAC KBP 2015 dataset with
predicted entity mentions for the models in Table 2.

The most important observation from the table is that
ENTITY is still significantly better than the other pooling
methods (p < 0.05), confirming the effectiveness of en-
tity mentions to specify pooling positions for GCNs in ED
even when the entity mentions are predicted. In addition, the
proposed model GCN-ED (corresponding to the row of EN-
TITY in the table) outperforms the best reported system in
the 2015 TAC evaluation, further demonstrating the advan-
tages of GCN-ED for ED.

Related Work
Event detection has attracted much research effort in the last
decade. The early and successful approach for ED has in-
volved the feature-based methods that hand-design feature
sets for different statistical models for ED (Ahn 2006; Ji and
Grishman 2008; Hong et al. 2011; Li, Ji, and Huang 2013;
Venugopal et al. 2014; Li et al. 2015a).

The last couple of years witness the success of the neu-
ral network models for ED. The typical models employs
CNNs (Nguyen and Grishman 2015; Chen et al. 2015;
Nguyen et al. 2016c), recurrent neural networks (Nguyen,
Cho, and Grishman 2016a; Jagannatha and Yu 2016) and
attention-based networks (Liu et al. 2017). However, none
of these works consider syntax for neural ED as we do in
this work.

Syntactic information has also been employed in neu-
ral network models for various natural language process-
ing tasks, including sentiment analysis (Socher et al. 2013;
Mou et al. 2015), dependency parsing (Le and Zuidema
2014; Dyer et al. 2015), relation extraction (Li et al.
2015b; Nguyen and Grishman 2016d), machine translation
(Eriguchi, Tsuruoka, and Cho 2017) etc. However, this is
the first work to integrate syntactic information in the neural
network models for event detection.

Conclusion
We propose a novel neural network model for event detec-
tion that is based on graph convolutional networks over de-
pendency trees and entity mention-guided pooling. We ex-
tensively compare the proposed models with various base-
lines and settings, including both perfect entity mention

setting and predicted entity mention setting. The proposed
model achieves the state-of-the-art performance on two
widely used datasets for ED, i.e, ACE 2005 and TAC KBP
2015. In the future, we expect to investigate the joint mod-
els for event extraction (i.e, both event detection and argu-
ment prediction) that employ the syntactic structures. We
also plan to apply the GCN models to other information ex-
traction tasks such as relation extraction, entity linking etc.

References
Ahn, D. 2006. The stages of event extraction. In Proceed-
ings of the Workshop on Annotating and Reasoning about
Time and Events.
Bengio, Y.; Ducharme, R.; Vincent, P.; and Jauvin, C. 2003.
A neural probabilistic language model. In Journal of Ma-
chine Learning Research 3.
Chen, Y.; Xu, L.; Liu, K.; Zeng, D.; and Zhao, J. 2015. Event
extraction via dynamic multi-pooling convolutional neural
networks. In ACL-IJCNLP.
Chen, Y.; Liu, S.; Zhang, X.; Liu, K.; and Zhao, J. 2017.
Automatically labeled data generation for large scale event
extraction. In ACL.
Dyer, C.; Ballesteros, M.; Ling, W.; Matthews, A.; and
Smith, N. A. 2015. Transition-based dependency parsing
with stack long short-term memory. In ACL.
Eriguchi, A.; Tsuruoka, Y.; and Cho, K. 2017. Learning to
parse and translate improves neural machine translation. In
arXiv preprint arXiv:1702.03525.
Feng, X.; Huang, L.; Tang, D.; Ji, H.; Qin, B.; and Liu, T.
2016. A language-independent neural network for event de-
tection. In ACL.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. In Neural Computation.
Hong, Y.; Zhang, J.; Ma, B.; Yao, J.; Zhou, G.; and Zhu, Q.
2011. Using cross-entity inference to improve event extrac-
tion. In ACL.
Jagannatha, A. N., and Yu, H. 2016. Bidirectional rnn
for medical event detection in electronic health records. In
NAACL.
Ji, H., and Grishman, R. 2008. Refining event extraction
through cross-document inference. In ACL.
Kearnes, S.; McCloskey, K.; Berndl, M.; Pande, V.; and Ri-
ley, P. 2016. Molecular graph convolutions: Moving beyond
fingerprints. In Journal of computer-aided molecular design
30(8).
Kipf, T. N., and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In ICLR.
Koo, T.; Carreras, X.; and Collins, M. 2008. Simple semi-
supervised dependency parsing. In ACL.
Le, P., and Zuidema, W. 2014. The inside-outside recursive
neural network model for dependency parsing. In EMNLP.
Li, Q.; Ji, H.; Hong, Y.; and Li, S. 2014b. Constructing
information networks using one single model. In EMNLP.

Li, X.; Nguyen, T. H.; Cao, K.; and Grishman, R. 2015a.
Improving event detection with abstract meaning represen-
tation. In Proceedings of ACL-IJCNLP Workshop on Com-
puting News Storylines (CNewS).
Li, J.; Luong, M.-T.; Jurafsky, D.; and Hovy, E. 2015b.
When are tree structures necessary for deep learning of rep-
resentations? In arXiv preprint arXiv:1503.00185.
Li, Q.; Ji, H.; and Huang, L. 2013. Joint event extraction via
structured prediction with global features. In ACL.
Liu, S.; Liu, K.; He, S.; and Zhao, J. 2016a. A probabilis-
tic soft logic based approach to exploiting latent and global
information in event classification. In AAAI.
Liu, S.; Chen, Y.; He, S.; Liu, K.; and Zhao, J. 2016b. Lever-
aging framenet to improve automatic event detection. In
ACL.
Liu, S.; Chen, Y.; Liu, K.; and Zhao, J. 2017. Exploiting
argument information to improve event detection via super-
vised attention mechanisms. In ACL.
Marcheggiani, D., and Titov, I. 2017. Encoding sentences
with graph convolutional networks for semantic role label-
ing. In EMNLP.
Mcdonald, R., and Pereira, F. 2006. Online learning of ap-
proximate dependency parsing algorithms. In EACL.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; and Dean,
J. 2013. Distributed representations of words and phrases
and their compositionality. In NIPS.
Mitamura, T.; Liu, Z.; and Hovy, E. 2015. Overview of tac
kbp 2015 event nugget track. In TAC.
Mou, L.; Peng, H.; Li, G.; Xu, Y.; Zhang, L.; and Jin, Z.
2015. Discriminative neural sentence modeling by tree-
based convolution. In EMNLP.
Nguyen, T. H., and Grishman, R. 2015. Event detection and
domain adaptation with convolutional neural networks. In
ACL-IJCNLP.
Nguyen, T. H., and Grishman, R. 2016b. Modeling skip-
grams for event detection with convolutional neural net-
works. In EMNLP.
Nguyen, T. H., and Grishman, R. 2016d. Combining neural
networks and log-linear models to improve relation extrac-
tion. In Proceedings of IJCAI Workshop on Deep Learning
for Artificial Intelligence (DLAI).
Nguyen, T. H.; Fu, L.; Cho, K.; and Grishman, R. 2016c.
A two-stage approach for extending event detection to
new types via neural networks. In Proceedings of the
1st ACL Workshop on Representation Learning for NLP
(RepL4NLP).
Nguyen, T. H.; Cho, K.; and Grishman, R. 2016a. Joint
event extraction via recurrent neural networks. In NAACL.
Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning,
C. D.; Ng, A.; and Potts, C. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment treebank.
In EMNLP.
Venugopal, D.; Chen, C.; Gogate, V.; and Ng, V. 2014.
Relieving the computational bottleneck: Joint inference for
event extraction with high-dimensional features. In EMNLP.

