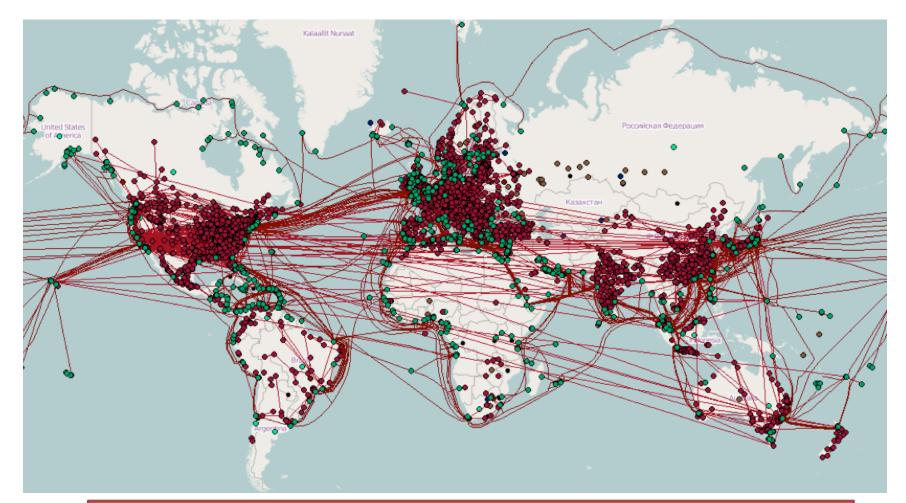
Time's Forgotten: Using NTP to Understand Internet Latency

Ram Durairajan

University of Wisconsin-Madison

Joel Sommers

Colgate University


Sathiya K. Mani

University of Wisconsin-Madison

Paul Barford

University of Wisconsin-Madison & comScore, Inc.

The Internet

Broad understanding of latency is challenging due as to Internet's scale and dynamics.

Active measurements to the rescue

• Understanding latency is (almost) always based on *ping* and/or *traceroute* measurements

- Other great problems
 - Outage quantification
 - SLA monitoring
 - Topology inference and modeling

Problems with pings and traceroutes

Pings and traceroutes

I want to tell you something...

Additional traffic

Coverage problem

Occasionally blocked

Management difficulties

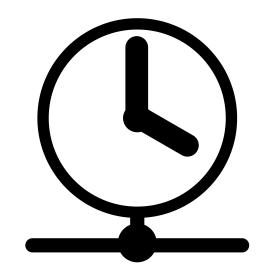
Time's forgotten

• Why not use logs from NTP servers?

Additional traffic

Management difficulties

Occasionally blocked

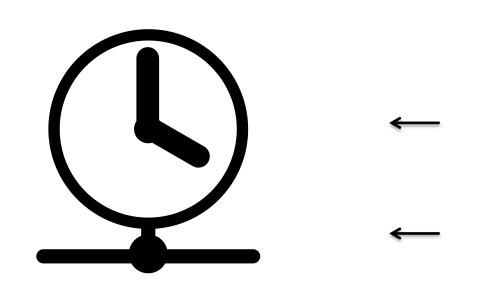

Coverage problems

gs from NTP servers?		
Active Measurements	NTP	
Measurements		We are relying on
YES	№ }	existing time sync. procedure.
YES	NO }	No coordination & I/O blocking issues.
YES	NO }	Not blocked.
YES	NO }	Widely used in routers, DCs,

desktops, etc.

- Hierarchical organization of time sources

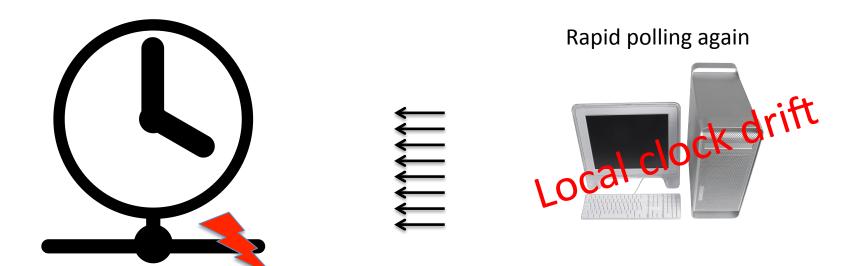
 Stratum-1, stratum-2, etc.
- Clock discipline algorithm



Rapid polling initially

- Hierarchical organization of time sources

 Stratum-1, stratum-2, etc.
- Clock discipline algorithm



Decreased polling after synchronization

- Hierarchical organization of time sources

 Stratum-1, stratum-2, etc.
- Clock discipline algorithm

- Hierarchical organization of time sources

 Stratum-1, stratum-2, etc.
- Clock discipline algorithm
- Four timestamps are generated due to polling
 - Time when request is sent by the client
 - Time when request is received by the server
 - Time when response is sent by the server
 - Time when response is received by the receiver

- Hierarchical organization of time sources

 Stratum-I, stratum-2, etc.
- Clock discipline algorithm
- Four timestamps are generated due to polling
 - Time when request is sent by the client
 - Time when request is received by the server
 - Time when response is sent by the server
 - Time when response is received by the receiver

NTP to the rescue

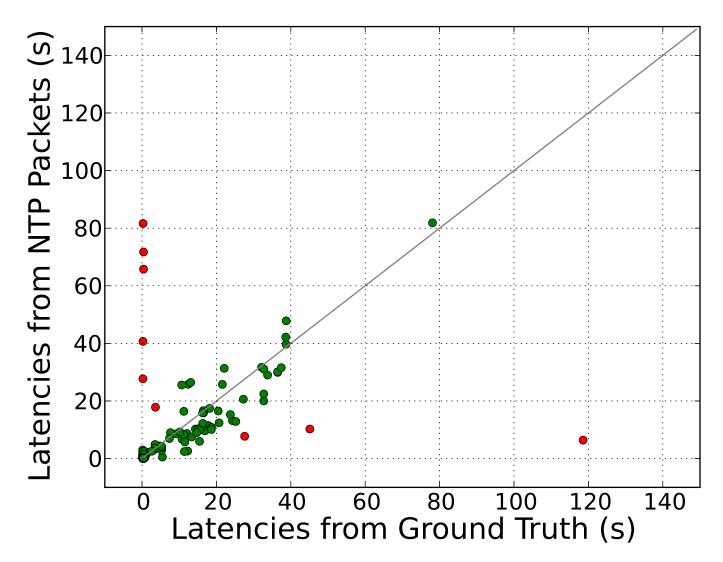
- Goal: Understand basic characteristics of
 Internet latency
- Analysis of logs from 10 NTP servers for a day

Challenges in using latencies from NTP

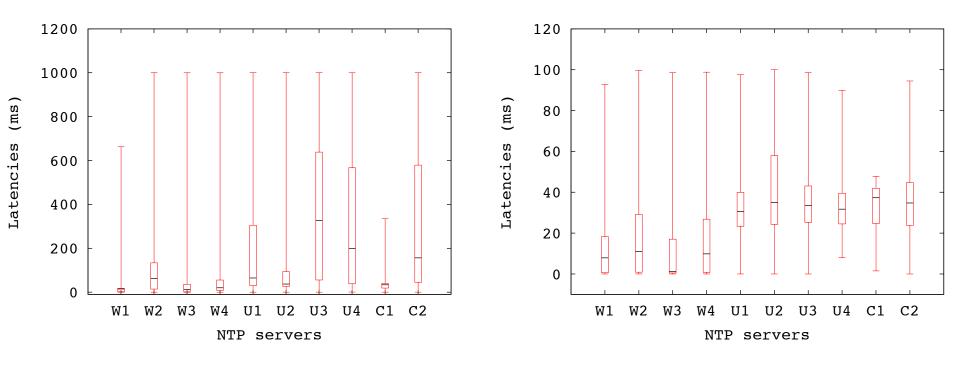
- Invalid measurements
 - Malformed headers
 - Packet errors
 - Missing timestamps
 - Negative latency
- Client's synchronization stage with server?
 - Starting up? Fully synchronized?
 - No explicit information in the logs

- Two step filtering to remove bad latencies
 - Simple filtering to remove invalid packets
 - 48.86 M (out of 73.83 M) packets filtered leaving us with about 25 M packets!

- Two step filtering to remove bad latencies
 - Simple filtering to remove invalid packets
 - 48.86 M (out of 73.83 M) packets filtered leaving us with about 25 M packets!
 - Filtering by leveraging polling behaviors
 - Exhibited by the clock discipline algorithm


- Two step filtering to remove bad latencies
 - Simple filtering to remove invalid packets
 - 48.86 M (out of 73.83 M) packets filtered leaving us with about 25 M packets!
 - Filtering by leveraging polling behaviors
 - Exhibited by the clock discipline algorithm
 - Monotonically increasing polling values

- Two step filtering to remove bad latencies
 - Simple filtering to remove invalid packets
 - 48.86 M (out of 73.83 M) packets filtered leaving us with about 25 M packets!
 - Filtering by leveraging polling behaviors
 - Exhibited by the clock discipline algorithm
 - Monotonically increasing polling values
 - Monotonically decreasing polling values


- Two step filtering to remove bad latencies
 - Simple filtering to remove invalid packets
 - 48.86 M (out of 73.83 M) packets filtered leaving us with about 25 M packets!
 - Filtering by leveraging polling behaviors
 - Exhibited by the clock discipline algorithm
 - Monotonically increasing polling values
 - Monotonically decreasing polling values
 - Constant polling values

- Two step filtering to remove bad latencies
 - Simple filtering to remove invalid packets
 - 48.86 M (out of 73.83 M) packets filtered leaving us with about 25 M packets!
 - Filtering by leveraging polling behaviors
 - Exhibited by the clock discipline algorithm
 - Monotonically increasing polling values
 - Monotonically decreasing polling values
 - Constant polling values
 - Varying (non-monotonic) polling values

Filtering results

Latency characteristics

Clients distributed worldwide

Clients distributed in the US

Latency characteristics

Client latencies

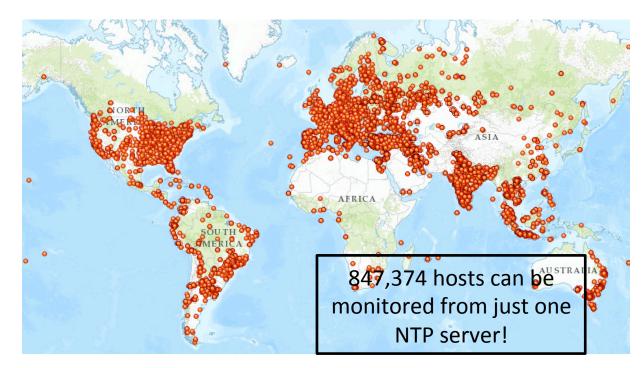
Bottlenecks

1999

90% of clients had latencies < 100ms

2015

99% of clients had latencies < 100ms


Stratum-1 servers were bottlenecked

Stratum-1 servers are not bottlenecked anymore!

Future work

• Opens up many new opportunities

Internet monitoring without traceroutes/pings

Distribution of clients talking to only one stratum-2 NTP server at UW-Madison

Future work

- Opens up many new opportunities
 - Internet monitoring without traceroutes/pings
 - Replicate previous efforts by leveraging NTP logs
 - E.g., can we find outage characteristics without Thunderpings?

Thank you!

Acknowledgements

- Murray Anderegg, James Babb, Tim Czerwonka, John Ricketts, and Aaron Topence for providing NTP server logs.
- Judah Levine and Dave Plonka for all the helpful discussions.

Backup

Research Question

- Can we understand latency without pings and traceroutes?
 - Can we also extend coverage?
 - Can we also improve accuracy?