
Controller-agnostic SDN
Debugging	

1	

	

Ram Durairajan*, Joel Sommers^, Paul Barford*	

	

*University of Wisconsin - Madison ^Colgate University	

Motivation	

•  Debugging SDN applications is hard	

•  “Runs as designed” may be insufficient	

•  Deployments must cope with wide range of

operating conditions	

•  How can we answer the following question:	

	

Will my SDN app run as designed when deployed in
a live setting?	

Our	 solu)on:	 OFf!	

2	 rkrish@cs.wisc.edu	

Design goals of OFf	

•  Controller-agnostic debugging and test
environment for SDN developers	

•  Default debugging options	

•  Stepping, breakpoints, watch variables, etc.	

•  Comprehensive testing for SDN applications	

•  Packet replay, packet tracing, visualization, alerts, etc.	

•  Tie unwanted network behavior to faulty
controller logic in source code	

•  Simple, light-weight and no hardware support	

•  Facilitate transition to live environments	

3	 rkrish@cs.wisc.edu	

fs-sdn simulation engine	

•  Fast and Accurate SDN prototyping (Gupta et al.,
HotSDN 2013)	

•  Seamless transition of controllers to real
deployments	

•  Based on fs simulator (Sommers et al., IEEE
Infocom 2011)	

– Discrete event simulation techniques	

– Core abstraction is flowlets; high performance	

– Transparently incorporates POX components	

•  Significant extensions to support OFf	

4	 rkrish@cs.wisc.edu	

OFf architecture	

5	 rkrish@cs.wisc.edu	

OFf commands	

•  longlist and shortlist source code 	

•  pretty print expressions	

•  hide and unhide frames	

•  interactive interpreter with all variables in scope	

•  track, watch, or unwatch variables	

•  edit source files during debugging	

•  enable or disable break points on the fly 	

•  sticky mode to visualize code	

6	 rkrish@cs.wisc.edu	

OFf additional features	

•  Trace packet through the network	

– Holistic view of flows, controller and switches	

– No additional hardware 	

•  Replay packets later	

– No OFP modification	

•  Detect configuration changes	

– Topology changes	

– Rule/action changes	

– Performance variations	

7	 rkrish@cs.wisc.edu	

OFf in action	

•  We demonstrate OFf in three scenarios	

– Bad multi-app interaction	

–  Incorrect ordering of updates	

– Unexpected rule expiration	

•  Goal: Identify logical bugs in the source code
that lead to transient outages and losses	

8	 rkrish@cs.wisc.edu	

OFf in action	

•  We demonstrate OFf in three scenarios	

– Bad multi-app interaction	

–  Incorrect ordering of updates	

– Unexpected rule expiration	

•  Goal: Identify logical bugs in the source code
that lead to transient outages and losses	

9	 rkrish@cs.wisc.edu	

Bad multi-app interaction	

Block:	 10.0.0.1	 to	 10.0.0.4	
Modify:	 From:10.0.0.1	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 SrcIP:10.0.0.2	
Modify:	 To:	 10.0.0.3	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 DstIP:	 10.0.0.4	
Allow:	 10.0.0.2	 to	 10.0.0.3	

10	 rkrish@cs.wisc.edu	

Solution: Bad multi-app interaction	

•  Using OFf developer 2 can	

– collect network traces (T1)	

– prototype routing app using fs-sdn	

– collect traces again (T2)	

– runs diff reports (T1 and T2)	

•  Rule set conflicts are found	

– Change and iterate	

– Verify firewall invariants	

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 5 10 15 20 25 30 35 40 45 50 55

B
y
t
e
s

P
r
o
c
e
s
s
e
d

(
K
B
)

Time (s)

11	 rkrish@cs.wisc.edu	

Conclusion	

•  OFf – a controller-agnostic debugging and test
environment for SDN developers	

•  OFf is simple, flexible, and light-weight	

•  We demonstrate OFf using three scenarios	

•  Future work 	

– Generation of regression tests, fuzz testing, etc.	

12	 rkrish@cs.wisc.edu	

Thank you!	

Source Code	

https://github.com/52-41-4d/fs-master	

Questions?	

13	 rkrish@cs.wisc.edu	

