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Abstract—Network telemetry systems provide critical visibility
into the state of network traffic. By leveraging modern pro-
grammable switch hardware, significant progress has been made
to scale these systems to production network traffic workloads.
Less attention has been paid towards efficiently utilizing these
hardware targets’ limited resources in the face of dynamics
such as the composition of the traffic workload as well as the
number and types of queries running at any given point in time.
However, both of these dynamics have implications on resource
requirements and query accuracy.

Building on our prior work DynATOS, which argues that
this dynamics problem motivates reframing telemetry systems
as resource schedulers, we present in this paper the design,
implementation, and evaluation of DynATOS+. DynATOS+ relies
on the same efficient time-division approximation and scheduling
algorithm that DynATOS uses and that allows for user-defined
query accuracy and latency specifications that are intended to
result in tradeoffs with respect to query execution to reduce
hardware resource usage. However, unlike DynATOS, DynATOS+
significantly reduces the burden on end users to express their
queries by allowing them to use simple-to-state accuracy goals.
For example, the method for specifying per-query accuracy goals
in DynATOS+ no longer requires end users to either know
the average range of query results in advance or to submit
multiple trial queries to tune their accuracy goal specifications.
We perform extensive simulation-based evaluations that (i) show
that this new functionality of DynATOS+ works in practice,
(ii) illustrate in detail the tradeoffs that result with respect to
query execution and hardware resource usage for a wide range
of systems parameters, and (iii) allow for an assessment of system
performance under changing query workloads on top of changes
in the composition of traffic workloads that has eluded previous
work in this area.

Index Terms—Network Traffic Monitoring, Programmable
Switch Hardware, Resource Scheduling.

I. INTRODUCTION

NETWORK telemetry systems provide users (e.g., net-
work administrators, researchers) with critical insights

into the state of the network by collecting information about
individual packets and processing this information into high-
level features in near real-time. Typically, these features are
the results of user-defined queries, where a query is expressed
as a sequence of high-level operations such as filter and
reduce [1]–[3]. Generated query results drive management
decisions such as deploying defensive measures in the face
of an attack or updating routing to avoid congestion. A key
functionality of telemetry systems is to determine how best to
leverage available resources (e.g., network hardware resources,
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such as switch ASICs or NICs; software-programmable re-
sources, such as general-purpose CPUs) to execute a given
set of queries. Due to massive traffic volumes and often
stringent timing requirements, state-of-the-art telemetry sys-
tems typically make use of programmable network hardware
(e.g., programmable switch ASICs [4], [5]) and also apply
approximation techniques (e.g., sketches [6]–[8]).

In executing user-defined queries, telemetry systems must
cope with two independent and challenging sources of dy-
namics. First, the resources required to execute any given
query depend on the underlying composition of the traffic
workload (e.g., the number of flows that satisfy the given
query, where flows are identified by a flow key such as the
commonly-used IP 5-tuple). For example, a DDoS-detection
query that counts the number of sources contacting each
destination might require a counter for each active destination
on the network, but the number of active destinations may
vary over time [7]. The accuracy guarantees of state-of-the-art
approximation techniques like sketches [6] likewise depend
on the traffic composition and are expressed, for example
in the case of count-min sketch, in terms of the L1 norm.
Consequently, if the traffic changes, accuracy can no longer be
guaranteed. Second, the number and type of concurrent queries
submitted by a user can vary over the system’s deployment.
For example, an operator might need to submit follow-up
queries to pinpoint the root cause of increased congestion.
Both of these sources of dynamics affect data plane resource
usage implying that telemetry systems must dynamically ad-
just resource allocations.

Several recent efforts [3], [7] have made progress towards
coping with both of these sources of dynamics individually
and in isolation, but do not address challenges arising from
their simultaneous presence in network telemetry systems. For
example, ElasticSketch [7] presents a method for dynamically
coping with changes in only certain aspects of traffic (e.g.,
packet rate, available bandwidth, flow size distribution). How-
ever, this effort relies on a fixed flow key which forces users to
reload the switch pipeline to run queries that require a different
flow key. On the other hand, Newton [3] and FlyMon [9]
describe techniques to update query operations during runtime
which enables users to dynamically add and remove queries as
their monitoring needs change. However, these efforts do not
consider the problem of adjusting resource allocations between
concurrent queries as traffic composition changes. To the best
of our knowledge, no other recent line of work addresses
these simultaneous sources of dynamics in an efficient switch
hardware-based system.

In this work, we argue that, in order to simultaneously
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address these sources of dynamics, telemetry systems should be
reframed as active resource schedulers for query operations. In
particular, telemetry systems must manage finite switch hard-
ware processing resources while adapting to varying numbers
and types of queries as well as varying traffic composition. To
support this argument, our prior work [10] made the following
key contributions.
Time-division approximation method. Viewing telemetry
systems as online schedulers enables a new approximation
technique based on time-division approximation. At a high-
level, this technique observes that query operations do not
need to run all the time. Instead, operations can execute during
strategically placed sub-windows of the overall time window
(e.g., an operation could execute for 3 of 8 equal-duration
sub-windows of a 5 s overall time window). This technique
is grounded in cluster sampling theory which allows us to
estimate error and future resource requirements.
Adaptive scheduling algorithm. We provide a closed loop
adaptive scheduling algorithm which leverages time-division
approximation to execute operations from many user-defined
queries on a single switch ASIC. Our scheduling algorithm
leverages multi-objective optimization to balance between
multiple high-level goals such as prioritizing accuracy, latency,
or reduced volume of reported data across queries.
Evaluation in a functional hardware prototype. To eval-
uate our proposed techniques, we implement DynATOS, a
telemetry operation scheduling system which leverages pro-
grammable switch hardware to answer dynamically submitted
queries. Our implementation of DynATOS assumes a single
runtime programmable switch hardware capable of executing
a restricted number of primitive operations as supported by
a telemetry module found in a widely available off-the-shelf
switch ASIC. We evaluate DynATOS on our hardware proto-
type and through simulation showing that (i) time-division
approximation is more robust than sketches to changes in
traffic composition while offering a similar accuracy, overhead
tradeoff space, (ii) our adaptive scheduler is able to meet query
accuracy and latency goals in the presence of traffic and query
dynamics, and (iii) the overheads in our scheduling loop are
minimal and dominated by the time required to report and
process intermediate results from the switch.

In this paper, we extend our prior work along several
directions to develop DynATOS+.1 For one, we improve our
original approach to give network administrators better control
over expressing query accuracy requirements and show how
DynATOS+ offers this new functionality “under the hood”.
This improvement simplifies network administrators’ use of
our system in practice by ensuring that formulating and
submitting queries no longer requires any guesswork (e.g.,
advance knowledge of the average range of query results)
or time-consuming tuning efforts (e.g., running multiple trial
queries). Moreover, we complement our prior work with
a new evaluation study that (i) includes a comprehensive
sensitivity analysis of DynATOS+’s performance with respect
to key systems parameters, and (ii) demonstrates DynATOS+’s

1DynATOS+ stands for Dynamic Approximate Telemetry Operation Sched-
uler. The “+” represents the delta of our current system compared to
DynATOS [10] as described in § III-B.

unique ability to simultaneously deal with traffic and query
dynamics.

II. BACKGROUND & MOTIVATION

A. Dynamic Telemetry Use Cases
Example II.1. Consider a scenario where a telemetry system
is executing the DDoS and port scanning detection tasks
described in Sonata [2]2. The first stage of these tasks finds
a set of distinct flow keys in each time window or epoch
(e.g., IPv4 source, destination pairs every 5 s for DDoS). Note
that both tasks can be sufficiently satisfied with approximate
results: it does not matter exactly how many DDoS sources are
detected so long as a sufficiently many are detected to exceed
the query’s threshold. Given this, suppose both queries are
associated with accuracy goals which quantify each query’s
tolerance for error (e.g., underestimation of the number of
DDoS sources).

Suppose traffic follows a stable pattern for several epochs
with only small changes in the number of distinct elements
considered by both tasks. During this time, the telemetry
system is able to allocate adequate resources for these two
queries to achieve good accuracy. Now, suppose at some
later epoch traffic composition changes so that a much larger
number of sources are seen (either due to a natural event like
a flash crowd or due to an actual DDoS attack). This larger
number of sources increases the number of pairs that both
queries must keep track of. Either more resources will need
to be allocated or accuracy will suffer.

While this example only considers a pair of queries, in
realistic settings administrators likely need to monitor for a
wide variety of attacks simultaneously (e.g., the 11 queries
described in Sonata [2]). Moreover, features like number of
sources or destinations commonly overlap in these types of
attack detection queries so that an anomalous change in one
feature may upset the resource requirements of a large number
of simultaneous queries.
Example II.2. Consider a scenario where a network admin-
istrator wants to understand the root cause of TCP latency on
their network. In this scenario, the administrator would like
to first run queries to detect when latency increases and for
which hosts or subnets [11]. Again note that absolute accuracy
is not as important as quickly identifying when overall latency
has increased beyond some threshold, hence this query can
be submitted with lower accuracy targets. Once detected, the
administrator must submit a large number of queries to test
possible causes of high latency such as re-transmissions or
deep queues [1] with filter operations so that these queries
only apply to the subnets experiencing latency. Also, follow-
up queries that require precise packet-level semantics (e.g.,
exact counts of TCP packets) can be submitted with higher
accuracy goals. Note that this root-cause analysis phase may
require several rounds of querying with tens of simultaneous
queries in each round before the root cause of the latency can
be determined.

2The DDoS task finds destinations receiving from large numbers of distinct
sources and the port scanning task finds sources sending to a large number
of distinct destination ports.
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While the above examples focus on two particular tasks,
the underlying concepts—of dealing with large shifts in query
resource requirements caused by changes in traffic and of exe-
cuting multiple queries over time in a dependent manner while
respecting diverse accuracy goals—are commonly encountered
in network operations.

B. Telemetry System Requirements
To deal with changes in traffic as well as changing sets

of queries (as discussed in the examples above), telemetry
systems must dynamically update allocation of limited hard-
ware resources to query operations at runtime. In particular,
the telemetry system itself must monitor traffic composition
(e.g., by inspecting the results of queries as it returns them to
network administrators), and react to observed changes based
on their impact on the resource requirements of currently
executing queries. The ability to deal with these dynamics
along with commonly assumed capabilities considered in prior
work (e.g., [2]) lead to the following requirements telemetry
systems must meet.
R1: Query diversity. Marple [1] and Sonata [2] outline how
a small set of parameterized stream processing operators can
enable a wide range of telemetry queries. Telemetry systems
must support these kinds of generic query description inter-
faces, allowing filtering over packet header values, grouping
by arbitrary header fields, chaining operations, and joining the
results of multiple operation chains.
R2: Approximate execution. Executing telemetry queries
over the massive volumes of data flowing through net-
works poses heavy resource requirements. Furthermore, many
telemetry queries are equally effective when computed ap-
proximately [12]. Therefore, telemetry systems should expose
approximation techniques that allow trading off reduced result
accuracy for lower resource requirements.
R3: Traffic dynamics. Composition of traffic (e.g., the
number of distinct keys observed each epoch) changes over
time, and changes may be slow, regular, and easy to predict
(e.g., daily cycles) or fast and hard to predict (e.g., flash
crowds). As discussed in Example II.1, these changes in traffic
composition lead to changes in the resource requirements for
different groups of queries. Telemetry systems should robustly
handle these changes without compromising query accuracy or
latency [7].
R4: Query dynamics. The queries a network administrator
needs to run change over time. Some of these changes may
be infrequent (e.g., adding new queries to monitor a newly
deployed service), while some of these changes may be rapid
and time-sensitive (e.g., adding new queries to debug a per-
formance anomaly or to pinpoint and block a network attack).
Telemetry systems should be able to handle these dynamic
query arrivals and removals, realizing updates within a few
milliseconds and without incurring network downtime [3].
R5: Switch hardware acceleration. Due to massive traffic
volumes, stringent timing requirements, and the limited speed
of a single CPU core, executing telemetry queries on CPU-
based systems is prohibitively expensive [2], [13]. As a result,
telemetry systems must leverage resource-constrained hard-
ware targets [4], [5], [14] for high-speed per-packet processing.

Approach R1 R2 R3 R4 R5
Static switch-based ✓ ✓
Runtime-programmable ✓ ✓ ✓ ✓
Dynamic allocation ✓ ✓ ✓ ✓
Sketch-based ✓ ✓ ✓
Software-based ✓ ✓ ✓ ✓
DynATOS partial partial ✓
DynATOS+ ✓ ✓ ✓ ✓ ✓

TABLE I: Summary of how different approaches relate to the
requirements of § II-B.

After one or more stages of filtering and aggregation in switch
hardware, at the end of each epoch a relatively small batch of
intermediate results can be forwarded to CPU-based systems
for any remaining query operations [2].

C. State-of-the-art and their Limitations
State-of-the-art approaches each satisfy a subset of the

requirements set forth above, but face limitations which hinder
their ability to satisfy all requirements simultaneously.
Static switch-based approaches. Marple [1] and Sonata [2]
compile traffic queries into static hardware description lan-
guages like P4 [15], demonstrating the efficiency of switch
hardware in computing query results. However, these ap-
proaches fail to satisfy R4 since changing queries incurs
seconds of network downtime (see [3]).
Runtime-programmable approaches. Recently,
BeauCoup [16], Newton [3], FlyMon [9], and other “runtime-
programmable” efforts [17], [18] demonstrate techniques to
allow network administrators to add and remove queries at
runtime without incurring downtime. These efforts lay a
technical foundation to address R4, but do not address the
challenge of R3. Our previous work DynATOS [10] introduced
methods to simultaneously address R1-5, but (i) lacked a
sufficiently general control over query accuracy which left
network administrators with significant tunning challenges to
simultaneously address R1 and R2 and (ii) stopped short of
demonstrating our method’s ability to simultaneously address
R3 and R4.
Dynamic allocation approaches. DREAM [12] and
SCREAM [19] develop dynamic allocation systems for
telemetry operations addressing both R3 and R4. However,
these approaches do not satisfy R1 because they require
query-specific accuracy estimators.
Sketch-based approaches. Many telemetry efforts address R2
by leveraging sketches [6], [20]–[23] to gather approximate
query results under the stringent operation and memory lim-
itations faced in the data plane. However, the accuracy of
sketches is tightly coupled to both the resources allocated
(e.g., number of hash functions or number of counters) and
the underlying composition of traffic (e.g., number of flows)
making sketches insufficient for R3 and R4. ElasticSketch [7],
which is explicitly concerned with changes in packet rate,
available bandwidth for telemetry reports, and flow size dis-
tribution, may appear to be an exception to this. However,
ElasticSketch’s approach—which, upon detecting that the
sketch associated with “heavy keys” is full, requires doubling
the size of that sketch—does not directly address the specific
notion of traffic dynamics implied by R3 and is non-trivial to
implement in switch hardware (hence failing R5). Moreover,
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ElasticSketch fails to address R4 or R1 since the sketch’s
implementation requires fixing a single flow key. Similarly,
UnivMon [23] satisfies R4 by computing multiple metrics
from a single sketch, but also fails to satisfy R1 because the
sketch requires fixing a single flow key. Given R5, running
independent parallel instances of sketches for all possible
flow keys (as suggested in [13]) is infeasible (e.g., consider
supporting arbitrary-length source prefix queries using 32
independent sketches).
Software-based approaches. Several prior efforts leverage
the capabilities of general-purpose CPUs to process traffic
queries. For example, Trumpet [24] installs triggers on end
hosts, OmniMon [25] and switch pointer [26] share tables
between end hosts and switches in network, and SketchVi-
sor [27] and NitroSketch [28] tune sketch-based approximation
techniques for virtual switches. While these approaches work
well in settings like data centers where all infrastructure is
under a single administrative domain, in many settings (e.g.,
campus or enterprise networks) it is too expensive (in terms of
infrastructure cost and/or latency) to pass all packets through
software and impractical to instrument end hosts.
Scheduling distributed stream processing operations. Sev-
eral efforts [29]–[33] address the challenge of efficiently
scheduling stream processing operations to maximize resource
utilization. However, these efforts do not consider the partic-
ular types of accuracy and latency constraints encountered in
scheduling telemetry operations on switch hardware.
Limitations of current hardware-based approaches. To
illustrate the limitations of current static approaches [1]–[3]
in dealing with R3 and R4, we implement the two queries
mentioned in Example II.1 and run them over a traffic excerpt
from the MAWILab data set [34] which features pronounced
traffic dynamics. This excerpt starts with relatively stable
traffic, then suddenly, due to an actual DDoS attack or other
causes (which we do not claim to identify), around the 20th 5
s time window (or epoch) contains a large number of sources
sending regular pulses of traffic. As suggested in [2], [3],
we use bloom filters tuned for the initial normal traffic to
approximate the lists of distinct pairs required by the first stage
of both queries.

Fig. 1: Accuracy of concurrent DDoS and port scanning
queries under extreme traffic dynamics.

Figure 1 shows the F1 score3 of these approximate query
implementations along with the number of tuples returned
to the collector in each epoch. Before the change in num-
ber of sources, the approximation methods for both queries
return highly accurate results while sending relatively few

3Computed by comparing with ground truth, the F1 score is a measure of
query accuracy defined as the harmonic mean of precision and recall.

tuples. However, when the number of sources increases, the
approximation accuracy of both queries suffers since the actual
number of ground truth tuples (the “Baseline” trace) far
exceeds the number each query was tuned for. Taking the
static approach in this example shows that when certain events
of interest occur, the accuracy of multiple queries can be
significantly impacted due to fixed assumptions about traffic
composition. Of course, the telemetry system initially could
have tuned these queries for the anticipated number of sources,
but this would lead to significant wastage of resources under
normal traffic conditions. Moreover, it is hard to know what
to tune for without prior knowledge of such an anomaly in
particular and changes in traffic composition in general.

III. DynATOS+ SYSTEM DESIGN

A. Overview
To tackle the above-mentioned limitations, we build

DynATOS+. At its core, DynATOS+ is composed of three
main components as shown in Figure 2. Network administra-
tors submit queries along with accuracy goals as mentioned
in § II-A. They can express these accuracy goals either in
absolute terms (as target standard error) or in relative terms (as
target coefficient of variation) and submit them to the sched-
uler via a high-level REST API. The scheduler then translates
queries into their primitive operations and constructs schedules
for how these operations should be run on switch hardware
given a stateful awareness of current traffic compositions based
on observed results of previously executed queries. These
schedules are then handed to a (state-less) runtime component
which communicates with switch hardware to execute the
primitive operations and collect intermediate results. Once
ready, the runtime component gathers all results and passes
them back to the scheduler and network administrators.

Scheduler

Runtime

Switch Hardware

Epoch
Schedules

Subepoch
Operations

Subepoch
Results

Epoch
Results

Queries

Network
Administrators

Collector REST API

Fig. 2: Architecture of DynATOS+.

B. Difference between DynATOS+ and DynATOS
The key difference between DynATOS+ and DynATOS [10]

is the addition of a new type of per-query accuracy goal that
network administrators can specify and that we measure using
the coefficient of variation (CV).4 Compared to DynATOS’s
use of the standard error to express per-query accuracy goals,
from a network administrator’s perspective, using the CV is a
more reasonable and practical choice because the CV measure
is relative to the magnitude of the underlying values computed,
that is, it is “unit-less” or “dimension-less”. By basing accu-
racy goals on CV and automatically converting to standard
error based on current traffic conditions, DynATOS+ frees

4Coefficient of variation is a standard statistic defined as the ratio of
standard deviation to mean.
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network administrators from a potentially painful accuracy
goal tuning process (illustrated in Figure 3a). For example, the
network administrator in Example II.1 can simply specify an
accuracy goal by setting a CV target of ±10% for both DDoS
and Port Scan queries and then let DynATOS+ automatically
find the corresponding standard error.

DynATOS
Run Query

Submit Update σ
Net Admin.

q,σ results

(a) Original method using only
standard-error accuracy goal
σ [10].

DynATOS+
Run Query

Submit

Update σ

Net Admin.

q, cv

results

results

(b) Updated method using coef-
ficient of variation accuracy goal
cv .

Fig. 3: Comparison of method to tune target accuracy goals
between DynATOS and DynATOS+.

To further illustrate the advantage of CV-based accuracy
goals in DynATOS+, consider a scenario where new queries
must be added without prior knowledge of expected query
results. Suppose the network administrator determines that
the increase in observed sources is not caused by a DDoS
attack, but by a flash crowd of requests to a particular web
service. The administrator then seeks to submit queries to
monitor new TCP connection rates across a set of destination
servers with a relative accuracy goal (expressed relative to the
mean number of TCP connections) to help tune their load
balancing to absorb the flash crowd. However, since traffic to
these particular servers has never been queried in this way,
the administrator does not know what value to choose for the
target standard-error σ.

As shown in Figure 3a, when using DynATOS, the network
administrator has to manually submit the TCP connection rate
query with exploratory settings of target standard error goal
σ (e.g., σ ∈ {±100,±200,±400}) and adjust σ over the
course of a couple of queries before a reasonable value is
found. In DynATOS+, on the other hand, the administrator
can simply specify a single accuracy goal based on the scale-
free coefficient of variation (e.g., cv = ±10%) and DynATOS+
automatically adjusts σ to satisfy the requested cv as shown in
Figure 3b. We describe more details of DynATOS+’s cv-based
accuracy goals in § IV.

C. Scheduling horizon.

Since queries can arrive at any time, we must decide when
and for how far into the future resources should be scheduled.
We first examine several possible approaches to this problem,
then describe our approach in the next paragraph. One option
is to compute the schedule each time a new query arrives
and adjust all existing queries to the new schedule. While this
option minimizes the time a query has to wait before it can
start executing, it complicates the realization of accuracy and
latency goals since the duration of the scheduling horizon (i.e.,
until the next query arrives) is unknown when forming the
schedule. Alternatively, we could compute the new schedule
each time all queries in the prior schedule terminate. While this

option ensures schedules can be executed exactly as planned,
newly submitted queries may experience a longer delay.

We choose, instead, to make scheduling decisions at fixed
windows of time which we call epochs (e.g., every 5 s).
This allows a balance between the two schemes mentioned
above: queries must wait at most the duration of one epoch
before executing and during an epoch queries are ensured to
execute according to the schedule. In particular, we divide the
scheduling epoch into N subepochs and our scheduler assigns
subsets of the submitted queries to each subepoch as shown
in Figure 4. Subepochs provide flexibility to schedule differ-
ent queries at different times while also providing concrete
resource allocation units. Queries submitted during an epoch
are checked for feasibility and only considered in the following
epoch. For example, in the figure, Q4 is added sometime
during epoch 2, but cannot be scheduled until epoch 3. During
the epoch, the scheduler collects intermediate results for each
subepoch in which a query is executed and aggregates these
subepoch results based on the query’s aggregation operation.
Once an epoch completes, results of complete queries are
returned, while new and incomplete queries (e.g., queries that
have not yet met their accuracy goal, or queries that have
a longer latency goal) are considered for the next epoch.
For example, in Figure 4 Q3 completes execution in the
second subepoch of epoch 2 and its results are returned during
the scheduler invocation before epoch 3. We further assume
that each query executes over traffic in a single epoch and
telemetry tasks requiring longer measurement durations than
our scheduling epoch can simply re-submit queries.

Q4 added

Time

Epoch 1 Epoch 2 Epoch 3

Subepochs

Q3 results returned

Scheduling decision points

Q1
Q2
Q3
Q4

Legend

Fig. 4: Example of scheduling 4 queries with N = 3 sube-
pochs per epoch.

D. Design Challenges
In order to successfully leverage the ideas introduced in

§ III-A to satisfy the goals set forth in § II-B, we must solve
several concrete design challenges discussed below.
D1: Approximating generic query results. Efforts like
Marple and Sonata develop expressive query description lan-
guages which map into data plane computation models. How-
ever, approximation of query operations is often necessary due
to limited data plane resources and massive traffic volumes.
It is unclear how state-of-the-art approximation methods can
be leveraged to work with queries expressed in languages
like Marple or Sonata. As illustrated in § II-C, the currently
proposed baseline approach of simply replacing stateful reduc-
tions in Sonata queries with sketch-based primitives requires
prior knowledge of worse-case traffic conditions and does not
perform well under dynamic traffic scenarios.

On the other hand, directly setting a fixed number of
subepochs in which to run query operations as discussed
in § III-A does not consistently translate into query result
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accuracy. To illustrate, Figure 5 shows the accuracy (as F1
score) of four queries on a single trace with a fixed allocation
of 6 out of 8 subepochs (details of the queries, metrics, and
settings used in this experiment are given in § VI). The
accuracy of each query is clearly different with median over
the trace ranging from ∼0.48 for TNC to ∼0.93 for DDoS
demonstrating the challenge in reasoning about query accuracy
from the number of subepochs in which the query is executed.

0.00
0.25
0.50
0.75
1.00

DDoS PS SS TNC
Query

F1

Fig. 5: Median F1 score of various queries on a single trace
(MAWILab [34] 2022-08-30) under fixed allocation of 6 out of
8 subepochs in all epochs. The different accuracy achieved by
each query illustrates the challenge of translating the number
of subepochs executed to query accuracy.

D2: Estimating accuracy of approximations. Approximate
query results must be accompanied with a sound estimate of
their accuracy. This is critical for network administrators to
understand the system’s confidence in detecting a particular
event or reporting a particular metric and equally critical in
dynamic telemetry systems to inform the balance of resources
between approximate queries. Prior efforts have made progress
towards this goal [8], [12], [19], but none anticipate accuracy
estimation for current state-of-the-art generic query descrip-
tions in dynamic telemetry systems.

We extend the illustration of Figure 5 by considering a sin-
gle port scan (PS) query run in a fixed number of subepochs.
Each line in Figure 6 shows distribution of accuracy achieved
by PS (run with the corresponding number of subepochs)
over a sample of 28 traces from MAWILab [34]. The wide
spread of each distribution on the x-axis indicates that query
accuracy varies significantly in response to different traffic
compositions in the sampled traces, regardless of number of
subepochs. Even when all 8 subepochs are allocated, the query
still achieves less than perfect accuracy on some traces due to
the brief system down times during reconfiguration between
subepochs. As a result, even if the relationship between
number of subepochs and accuracy could be captured statically
for individual queries, query accuracy would still vary greatly
depending on the underlying traffic composition.
D3: Allocating finite hardware resources among variable
sets of queries under traffic dynamics. Very few prior efforts
address the need of a telemetry system to evaluate multiple
concurrent queries on finite hardware resources. In order to
handle traffic dynamics, such a system must dynamically
update resource allocations based on the estimated accuracy
of each query. Moreover, since it is possible that the given
resources will be insufficient to meet the accuracy of all
queries, such a system must enable network administrators
to express query priorities and allocate resources with respect
to these priorities.

0.00
0.25
0.50
0.75
1.00

0.25 0.50 0.75 1.00
F1 score

C
D

F

# subepochs 2 4 6 8

Fig. 6: Distribution of F1 score (w.r.t. ground truth) of the port
scan query for different (fixed) numbers of subepochs over
sample of 28 traces from MAWILab. For each fixed number
of subepochs, the query achieves a wide range of F1 scores
over different traces implying the system must dynamically
estimate accuracy.

E. Our Solutions

We develop a novel approximation method based on cluster
sampling theory and runtime programmable capabilities to
address D1 and D2. Cluster sampling is known to be a good fit
for scenarios where the overheads (e.g., cost) of sampling large
groups of the population (e.g., subepochs) are significantly
lower than the overheads of sampling individual population
members (e.g., packets) [35]. Runtime programmability ex-
poses exactly such a scenario: large groups of packets can
be sampled each subepoch and only (small) aggregate results
need to be reported to the collector. In contrast, per-packet
sampling, where each packet needs to be considered a candi-
date for sampling, incurs non-trivial per-packet overheads (in
switch hardware) and a copy of each sampled packet needs to
be sent to the collector resulting in non-trivial communication
overheads.

We leverage cluster sampling to address D1 by applying it
to the first aggregation operator in multistage queries. For
example, in the DDoS query we only approximate computation
of the distinct source-destination pairs list and execute all
subsequent operations exactly. The intuition behind this is that
each aggregation operator in a telemetry query reduces the
volume of data passed to the next operator. Therefore, reducing
the resource requirements and volume of data emitted from the
first aggregation reduces the load on all subsequent operators.

Cluster sampling naturally addresses D2. As the underlying
traffic composition changes, each sampled subepoch presents
a snapshot of the changed traffic composition. § IV describes
the details of how we use the formal error bounds of cluster
sampling to actively adapt resource allocations as traffic com-
position changes across multiple epochs. Compare this with
sketch-based traffic monitoring. Because a sketch’s accuracy
degrades as the number of keys increases (see Figure 1), it is
difficult to tell from the sketch counters alone if the traffic
composition has changed. Moreover, without knowing the
ground truth traffic composition, it is difficult to determine the
accuracy of a sketch-based result in order to drive allocation
decisions in future epochs.

To address D3, we integrate our approximation technique
in a scheduler that determines how a number of concurrent
queries should be executed on a single switch hardware,
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balancing resources between queries to satisfy accuracy and
latency goals set by network administrators. As described in
§ V, our scheduler uses a novel multi-objective optimization
formulation of the problem of when to run which queries given
query priorities and resource constraints. This formulation
allows the scheduler to balance between the goals of multiple
concurrent queries, sometimes allocating less than the exact
number of subepochs when queries have lower priority and
resources are scarce (e.g., due to a large number of concurrent
queries).

Finally, we develop a runtime system leveraging these ideas
to efficiently execute schedules on switch hardware, gather
intermediate results, apply factors to correct for sampling,
and return results to network administrators in a high-level
format. Based on these results, administrators can then decide
to execute new queries in the subsequent epoch, or to re-
execute the same queries.

To illustrate how our key ideas apply to telemetry system
design, we return to the examples introduced in § II-A. First,
cluster sampling method can be applied to the first aggregation
stage of a wide range of queries including the DDoS, port
scanning, and TCP latency queries. Second, when the number
of sources increase in Example II.1, each sampled subepoch
in our system will return a proportionally increased number
of tuples thereby increasing the volume of reports exported
while maintaining high accuracy. Compare this to sketches
where the increased number of sources would increase the
number of hash collisions reducing accuracy of results. Note
that state-of-the-art approaches [36], [37] dynamically allocate
new sketches when the number of keys changes (to preserve
sketch accuracy). However, this approach is infeasible in
current switch hardware. Finally, when the network admin-
istrator begins digging into the root causes of TCP latency in
Example II.2, our scheduling approach handles the burst of
queries by adapting the optimization problem to account for
the new query’s accuracy and latency goals while assigning
query operations to limited switch hardware.

F. Limitations and Assumptions
Monitoring problems addressed by DynATOS+. As shown
in Figure 7, DynATOS+ can monitor traffic queries whose first
steps (in the Sonata [2] paradigm) are filter, key-by, reduce
followed by arbitrary post-processing. In the current work we
only apply approximation to the first three operators (i.e., to
the first aggregation) and compute post-processing exactly.
Moreover, DynATOS+’s approximation method implies the
traffic features computed by these queries satisfy the following
assumptions.
• Feature values do not fluctuate excessively over measure-

ment durations of one or two seconds.
• The monitoring task can be implemented using features

gathered at a single point in the network.
• Features are constructed from packet header fields and/or

other switch-parsable regions of the packet.
• Features can be computed using atomic filter, map, and

reduce operations.
Under these assumptions monitoring tasks like detecting mi-
crobursts [38], identifying global icebergs [39], and detecting

patterns in TCP payloads [40] cannot be efficiently executed
using DynATOS+. However, tasks like the DDoS, port-
scanning, and latency detection examples of § II-A, along with
a wide range of tasks considered in prior efforts with similar
assumptions (e.g., [1], [2], [12]) can be effectively executed
using DynATOS+.

Filter pred → KeyBy key → Reduce op → Post-proc.

Fig. 7: Visualization of type of queries supported by
DynATOS+ as a pipeline of atomic operations.

Switch hardware model. In the following, we assume a re-
stricted runtime programmable switch hardware model. In this
model, switch hardware is able to execute the first Filter,
KeyBy, and Reduce operators shown in Figure 7 for a num-
ber of independent queries maintaining dynamic allocation of
per-key state between queries. Similar to Newton [3], our
switch hardware allows arbitrary parameterization of these
operators at runtime. For example, switch hardware could
execute the filter and reduce commands required by the Sonata
TCP new connections queries for a period of time, then quickly
(e.g., within a few milliseconds) be re-programmed to execute
the filter and reduce commands required by the Sonata DDoS
query. We note that our scheduling methods are independent
of this particular switch hardware model and could readily be
applied to more fully programmable ASICs [5], [15].
Network-wide scheduling. Ultimately, administrators need
to query traffic across different logical or physical domains
of their network. This implies that telemetry systems should
collect information from a distributed set of switches (or other
monitoring points) and provide a global view of network
traffic. In this work, we consider only a single monitoring
point (e.g., a critical border switch) and leave the challenges
of distributed scheduling of telemetry operations to future
work. Nonetheless, a single switch deployment on a enterprise
or data center border switch can still be highly effective in
executing the types of queries considered.

IV. TIME-DIVISION APPROXIMATION IN DynATOS+
Accuracy tradeoff. Given fixed scheduling epochs,
DynATOS+ trades off accuracy for reduced resource
requirements by sampling a subset of the subepochs in which
to execute a particular query. Suppose the query executes
in a total of E epochs and that each epoch is divided into
N equal-duration subepochs. Let ti,j be the query’s result
in the i-th subepoch of the j-th epoch, Sj be the set of
which subepochs are actually sampled in the j-th epoch,
nj = |Sj | be the number of subepochs sampled in the j-th
epoch, and s2tj be the sample variance of the ti,j’s in the j-th
epoch. Using results from cluster sampling theory [35], the
estimator

t̂E =
1

E

E∑
j=1

N

nj

∑
i∈Sj

ti,j (1)

can be shown to be unbiased for the mean (tE =

1
E

E∑
j=1

N∑
i=1

ti,j) and has standard error
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SE(t̂E) =
N

E

√√√√ E∑
j=1

(
1− nj

N

) s2tj
nj

. (2)

We use Equation 1 to estimate query results after E epochs
and Equation 2 to determine when accuracy goals have been
fulfilled. Assuming the query has already executed in E − 1
epochs without achieving the target standard error σ, we can
rearrange Equation 2 as

nacc =
s2tEN

2

E2σ2 −

(
E−1∑
j=1

Var
(
t̂j
))

+Ns2tE

(3)

to estimate nacc, the number of subepochs in which a query
should execute in the E-th epoch. Details of this rearrangement
are given in Appendix A-A of our Supplementary Materials.
Note that if σ = 0, then nacc = N and the query will
be executed in all of the subepochs in its first epoch. As σ
increases, nacc decreases freeing more of the subepochs for
other queries.
Latency tradeoff. In addition to the accuracy tradeoff dis-
cussed above, we can tradeoff latency for reduced resource
requirements by executing a query’s operations across several
epochs. The key observation enabling this tradeoff is that
by spreading the sampled subepochs over several epochs,
the query can reduce its per-epoch requirements while still
attaining its accuracy goal. Network administrators leverage
this tradeoff by specifying larger latency goals on queries that
do not require fast returns.

Suppose a particular query has a latency goal of Ẽ epochs.
Again, assuming the query has already executed in E − 1
epochs, we need to estimate the number of subepochs in which
the query should be allocated nlat in the E-th epoch with
1 ≤E≤ Ẽ. First, we break the sum in Equation 2 into past
(1 ≤ j <E) and future (E< j ≤ Ẽ) components. We then
have,

nlat =
s2tEN

2

Ẽ2σ2 −N2 (past+ future) +Ns2tE
. (4)

While the past component can be calculated directly using
observations from prior epochs, the future component must
be estimated based on the number of subepochs the query ex-
pects to receive in future epochs. Administrators can tune this
expected number of subepochs based on current and expected
query workloads. (See Appendix A-B of our Supplementary
Materials for more details.)
Approximation based on relative error goals. A key chal-
lenge with the formulation described in Equations 3 and 4 is
that s2tj (and hence SE(t̂E)) varies based on several aspects
of traffic (e.g., burstiness) and system parameters (e.g., epoch
duration). As a result, it is often challenging to determine an
appropriate value of target standard error σ before a query
is run. We address this challenge for the common scenario
where network administrators submit the same (or similar)
query (queries) in contiguous epochs by accepting relative
accuracy goals which we express using the coefficient of
variation (see III-B), call the target coefficient of variation,

and denote by cv . For queries submitted with cv (instead
of σ) as their accuracy goal, the DynATOS+ scheduler (see
Figure 2) maintains an internal estimated target standard error
σ̂. When making scheduling decisions before each epoch,
DynATOS+ uses the current value of σ̂ in place of σ in the
same methods described previously in this section and in § V.
After each epoch, DynATOS+ computes a new target standard
error σ̂′ = cv · t̂E and updates σ̂ to follow the new target using
EWMA (i.e., σ̂new = α·σ̂′+(1−α)·σ̂old). Note that, although
we could have directly adapted Equations 1-4 using the defi-
nition of cv , we found that doing so translated the inter-epoch
burstiness of the point estimate t̂E into nacc and nlat, making
them too unstable to drive consistent scheduling decisions. The
EWMA-based approach smooths over local burstiness while
still removing dependence of the target accuracy goal on the
relative magnitude of query results.
Correcting distinct operators. While the previous sections
discuss foundations for making sound approximations of
packet/byte counts, many useful queries also involve identi-
fying and counting distinct elements. To correct estimates for
a common class of such distinct queries (including the DDoS
query considered in § II-A), we leverage the Chao estimator
without replacement [41], [42]. The intuition behind the Chao
estimator is that the number of rare elements in the sample
(e.g., the number of flow keys observed exactly once or twice
across all subepochs of a query) give an approximation of the
number of rare elements in the underlying traffic and hence
can be used to remove the bias induced by flow keys missed
due to sampling. Similar to the cluster sampling estimators
described earlier in this section, the Chao estimator can be
used to obtain point and standard error estimates based only
on the observed samples. Due to limited space, we describe
details of how the Chao estimator is applied in Appendix B
of our Supplementary Materials.
Comparison with sketch-based methods. As discussed in
§ II-C, state-of-the-art telemetry systems primarily rely on
sketch-based approximation. However, we argue that the clus-
ter sampling method described in this section is preferred for
situations where traffic composition may change in unexpected
and unpredictable ways. Consider again the scenario described
in Example II.1 where the number of distinct sources observed
increases suddenly. Suppose another telemetry system was
using count-min sketch [20] (which computes similar point
estimates as the approach described in this section) in the
same scenario. The accuracy of query results produced by
count-min sketch is given by t̂i < ti + ε||t||1 where t̂i
is the estimated query result for the i-th distinct element
(source-destination pair in the example), ti is the ground-
truth query result, ||t||1 =

∑
i |ti| is the ground-truth L1-

norm of all observed elements, and ε is a constant based on
the number of sketch counters allocated. When the number of
sources observed increases, ||t||1 also increases proportionally
loosening the upper bound on t̂i. However, ||t||1 is a ground-
truth value (depending on ti, not the estimate t̂i) which must
be estimated offline and cannot easily be extracted from the
sketch counters. As a result, the network administrator would
receive no indication from the telemetry system that the error
of results may be critically compromised. On the other hand, in
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our approach each sampled subepoch will reflect the increased
number of sources and estimated query results (Equation 1)
and result accuracy (Equation 2) will continue to accurately
reflect observed traffic.

V. SCHEDULING IN DynATOS+

A. Optimization Formulation
We cast the task of generating query schedules as an

optimization problem and adapt well-known techniques to
generate schedules through this casting. We apply our opti-
mization formulation every epoch to determine which queries
should execute in each of the N subepochs as shown in
Algorithm 1. First, in line 2 we use the DISENTANGLE method
of Yuan et al. [43] to break the submitted queries Q into
disjoint traffic slices K (based on their filter predicates) and
save the mapping between queries and slices in si,k. Line
3 then computes the minimum number of stateful update
operations required by the reduce operators of all queries in
each particular slice. These steps ensure that, even when the
filter predicates of multiple submitted queries overlap, we can
use combined update operations in U and disjoint traffic slices
in K to compute all queries on a single switch hardware
stage. Next, lines 4 through 6 compute estimates of the
memory and subepoch requirements of each query. Finally line
7 creates and solves the optimization problem described below.
If a feasible solution cannot be found, line 9 falls back to a
heuristic scheduling method described in our Supplementary
Materials.

Algorithm 1 Method for determining subepoch schedule

1: procedure GET-SCHEDULE(Q, u, SE)
2: K, s← DISENTANGLE(Q)
3: U ← COMBINE-UPDATES(u,K, s)
4: m← ESTIMATE-MEMORY
5: nacc ← EQUATION 3(σ)
6: nlat ← EQUATION 4(σ,E)
7: d← SOLVE-OPTIMIZATION
8: if d is infeasible then
9: d← GET-HEURISTIC-SCHEDULE

10: end if
11: return d
12: end procedure

Inputs. Table II shows the particular inputs and outputs of
this optimization problem. Of the input variables, tk, ui, si,k,
T , A, and M are known exactly based on submitted query
requirements and available switch resources, while mi, nacc

i ,
and nlat

i must be estimated based on observation of past
epochs. Our current implementation uses EWMA to estimate
mi and s2tE (as required by nacc

i and nlat
i ) independently for

all update operation types. We leave exploration of more so-
phisticated estimation approaches to future work. Scheduling
decisions are encoded in the di,j indicator variables which
determine which queries should execute in each subepoch. We
do not consider the division of switch memory between queries
since memory is dynamically allocated during the aggregation
operation (see § III-F).

Variable Description
Q index set of queries ready for execution
SE index set of subepochs
K index set of all disjoint traffic slices
Uk index set of all update operations in slice k
tk number of TCAM entries required by slice k
ui index of update operation required by query i
si,k indicator that query i requires slice k
mi memory required in each subepoch by query i
nacc
i number of subepochs required for accuracy goal for

query i (§ IV)
nlat
i number of subepochs required for latency goal for query

i (§ IV)
T total available TCAM entries
A total number of available switch ALUs
M total available SRAM counters
di,j indicator that query i executes in subepoch j

TABLE II: Variables used in optimization formulation of
scheduling problem. The sole outputs di,j determine the
schedule for the next epoch.

C1: ∀j ∈ SE,
∑

k∈K
tkI

[ ∨
i∈Q

di,jsi,k = 1

]
≤ T

C2: ∀j ∈ SE, k ∈ K,
∑

u∈Uk

I

[ ∨
i∈Q

di,jsi,kI [ui = u] = 1

]
≤ A

C3: ∀j ∈ SE,
∑
i∈Q

di,jmi ≤ M

C4: ∀i ∈ Q,
∑

j∈SE
di,j ≥ 2

TABLE III: Scheduling problem constraints to respect (C1)
TCAM capacity requirement, (C2) switch ALU capacity, (C3)
SRAM capacity, and (C4) query minimal progress require-
ment. I [] is the indicator function.

O1: minimize
∑
i∈Q

∣∣∣∣∣
( ∑

j∈SE
di,j

)
− nacc

i

∣∣∣∣∣
O2: minimize

∑
i∈Q

∣∣∣∣∣
( ∑

j∈SE
di,j

)
− nlat

i

∣∣∣∣∣
O3: minimize

∑
i∈Q,j∈SE

di,jmi

TABLE IV: Objective functions considered in the multi-
objective formulation.

Constraints. We impose the constraints shown in Table III
to satisfy two high-level requirements: (i) respecting switch
resource limits (C1, C2, C3) and (ii) forcing minimal progress
in each query and ensuring variance estimates are well-defined
(C4). Note that C2 captures the fact that if two queries rely on
the same update operation, they can be merged to use a single
ALU. In the case that the estimated quantity mi turns out to
be violated by traffic conditions in the subsequent epoch, we
simply drop new aggregation groups once the available switch
memory is totally consumed.
Objectives. In computing the schedule of each epoch, we
consider the objective functions listed in Table IV. O1 seeks
to satisfy accuracy goals by minimizing the distance to the
value of nacc computed in Equation 3, O2 seeks to satisfy
latency goals by minimizing the distance to the value of nlat

computed in Equation 4, and O3 seeks to limit the maximum
volume of data that needs to be returned from the switch
in a single subepoch. We expose the Pareto front of these
objective functions using linear scalarization which allows
administrators to express the importance of each objective by
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submitting weights and is computationally efficient.
Problem shape and size. Note that the only variables that are
solved during evaluation of the optimization problem are the
di,j which determine which queries execute in each subepoch.
Also, the number of constraints is linear in the maximum
of the number of subepochs and the number of queries. For
example, if 100 queries are to be executed in 8 subepochs, the
resulting optimization problem has 800 binary variables and
124 constraints. Overall, the on-line optimization problems in
DynATOS+ are much smaller and simpler compared to the
off-line optimization problems considered in, e.g., Sonata [2]
(since Sonata considers the product of all possible query
partitionings and different prefix-level refinement plans). We
observe that off-the-shelf optimization solvers (e.g., [44])
are able to solve DynATOS+’s problems in a number of
milliseconds (compared to the 20 minute time limit set on the
optimization solver in Sonata) making their use in our on-line
system feasible.

Additionally, since the number of queries ready for exe-
cution in each epoch is given by the particular query arrival
process, the only system parameter that impacts problem size
is the number of subepochs per epoch. Intuitively, configuring
DynATOS+ to run with more subepochs per epoch exposes
more opportunities in the optimization problem to multiplex
larger numbers of queries on the given processing resources.
However, the number of subepochs is directly linked with
both epoch duration and subepoch duration (in particular
epoch duration is subepoch duration times number of sube-
pochs). Assuming network administrators fixed epoch duration
based on their particular monitoring requirements (since epoch
duration fixes minimum latency across all queries), adding
more subepochs also leads to shorter subepochs reducing the
fraction of time spent actually monitoring traffic compared
to the fixed amount of time required to reconfigure switch
hardware betweeen each subepoch. In light of these facts,
the number of subepochs (or, equivalently, subepoch duration)
must be configured carefully to avoid either too constrained
optimization problems (too few subepochs) or too much
reconfiguration overhead (too many subepochs). We provide
an empirical illustration of this tuning requirement in § VI-E
which demonstrates that between 4 and 8 subepochs per epoch
achieves a sort of sweet spot between these two extremes
regardless of epoch duration.
Challenges of Online Optimization. DynATOS+ inherits
several techniques developed in DynATOS to deal with slow
and infeasible optimization problems. The details of these
techniques are described in [10] and Appendix C of our
Supplementary Materials.

VI. EVALUATION

A. Experimental Setup
Setting. In our prior work, we evaluated DynATOS on a
BCM 56470 series [45] System Verification Kit (SVK) switch
running BroadScan [46] which implements the telemetry oper-
ations described in § III-F. We extend our previous evaluation
in this work using packet-level simulation.
Default parameters. We use five-second scheduling epochs
to allow sufficient measurement duration without incurring

excessive delay of results which must wait for epoch bound-
aries. We divide epochs into N = 8 subepochs so that the
schedule has sufficient options for arranging queries without
making subepochs too short to generate useful samples. We
set objective weights to balance between priorities and sup-
pose queries will get all future subepochs when evaluating
Equation 4. We set the target CV to cv = 5% by default. We
set α = 1/2 in the EWMA estimation described in § V-A.
Unless indicated, points show median and error bars show 5th

and 95th percentiles over all epochs of the trace.
Query workloads. As shown in Table V, we use DynATOS+
to implement four of the telemetry queries originally intro-
duced by Sonata [2] and used in several recent efforts. We
report the accuracy of approximate implementations of these
queries as F1 score (the harmonic mean of precision and
recall) by comparing against ground truth computed offline.
In addition to static queries, we generate dynamic query
workloads based on random processes to evaluate DynATOS+.
To simulate workloads with different levels of bursty query
arrivals, we use a fractional Poisson process [47], [48] to
generate query arrival times. Fractional Poisson processes
generalize the classic Poisson process by adding a parameter
µ which controls the spread of the inter-arrival distribution.
When µ = 1 the fractional Poisson process converges to the
classic Poisson process. As µ goes to zero, the inter-arrival
distribution spreads out inducing long-term dependencies or
burstiness in the query arrival rate. To illustrate, Figure 8
shows synthetically generated fractional Poisson processes
with the same mean rate, but different value sof µ. We
normalize query arrival times so that all workloads have a
mean query arrival rate of 1 query per second over a 900
s workload duration. Our workloads are publicly released
at [49] to support validation of our results and to facilitate
benchmarking of similar systems in the future.

Query Name Description # in [50]
DDoS Find dests. that recv. from large

number of sources.
5

Port Scan (PS) Find sources that send to large
number of ports.

4

Super Spreader
(SS)

Find sources that send to large
number of dests.

3

TCP New Cons.
(TNC)

Find dests. that recv. large number
of TCP SYN packets.

1

TABLE V: Queries used in this evaluation.

μ = 0.5 μ = 0.7 μ = 0.9 μ = 1

0 20 40 0 20 40 0 20 40 0 20 40
0

50
100

Epoch (5 s)

# 
qu

er
ie

s

Fig. 8: Number of queries submitted each 5-second epoch
for example fractional Poisson query arrival processes with
different “burstiness” parameter µ. (Only first 50 epochs are
shown for clarity.)
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Traces. To understand how DynATOS+ performs on a wider
variety of representative traffic, we took a simple random
sample of 28 days from MAWILab’s [34] 2015 dataset. Each
day consists of a 15 min trace starting at 2 pm. To illustrate
changes in traffic composition, we compute the CV of number
of keys per-epoch and number of packets per-epoch for each
trace. Figure 9 shows the distribution of CVs over all traces
in our sample. The distribution of key-based CVs (Figure 9a)
and count-based CVs (Figure 9b) are wider for 2015 compared
to other recent years indicating these traces provide higher
diversity in traffic composition for evaluating DynATOS+.
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PS DDoS/SS TNC

(a) Number of distinct keys per
epoch.
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0.50
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1.00

8 10 12 14 16
CV (%)

C
D

F

(b) Number of packets per
epoch.

Fig. 9: Distribution of CVs over our sample of 28 traces from
MAWILab [34].

Implementation. We implement the DynATOS+ scheduler in
∼14k lines of C and C++. Following ProgME [43], we use
BDDs to represent query filter conditions in our implementa-
tion of the DISENTANGLE algorithm (§ V-A). We use the open
source CBC implementation [44] to solve the optimization
problems described in § V-A. Our implementation also defers
some result processing operations to the time spent waiting
for results from switch hardware to improve efficiency. The
simulation used in this section is built on the same software
components implemented for our hardware prototype system.
At a high-level the only modification we make is to substitute
a separate software module which implements the same inter-
faces as the switch hardware controller. This software module
also simulates the impact of time spent reconfiguring hardware
by dropping r seconds worth of traffic each time it is re-
programmed. Based on our previous evaluation of hardware
latency overheads [10], we set r to be 10 ms.

B. Impact of Traffic Dynamics

To evaluate the impact of traffic dynamics, we run each
query from Table V over each of the 28 traces sampled
from MAWILab. To demonstrate the tradeoff between accu-
racy (F1 score) and load on collector (tuples, bytes) each
query is run over each trace for four settings of target CV
cv ∈ {0.1, 0.5, 1.0, 1.5}.

Figure 10 shows load on collector as a percentage of total
number of bytes required to compute ground truth (y-axis)
against F1 score (x-axis) for each setting of cv summarized
over all 28 traces. With the exception of the TCP new
connections query, all queries achieve similar accuracy ranges
for each cv value. For example, at cv = 1.5 DDoS and

super spreader achieve median F1 score of ∼0.9 while port
scan achieves median F1 score of ∼0.8 for ∼20% median
reduction in bytes sent to the collector. As shown in Figure 9a,
the underlying CV of the number of keys observed in each
epoch is much higher for TCP new connections (median of
∼84%), likely a product of how this query only looks at SYN
packets and each SYN packet is typically associated with a
new flow. As a result, the relationship between cv and F1
score is quantitatively different, though qualitatively follows
a similar pattern as for the other queries. For example, at
cv = 0.5 TCP new connections achieves median F1 score
of ∼0.9 and an ∼11% reduction in bytes sent to the collector.
Overall, as a rule-of-thumb, we note that for distinct-count
queries (e.g., DDoS, Port Scan, and Super Spreader), cv of up
to 1.5 results in reasonable accuracy whereas for count-based
queries like TCP new connections, cv should be kept lower
(e.g., up to 0.5).
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Fig. 10: Performance tradeoff for single queries over sample of
28 15-minute MAWILab traces for different target CV goals
(colors show different target cv).

Given that Figure 10 shows a relatively large range of
F1 scores over all traces for each particular cv , we further
investigate how different properties of the underlying traces
impact F1 score. In particular, we compute the CV of the
number of keys in each epoch across each trace in our sample
as a metric to summarise the trace’s level of traffic composition
dynamics.

Figure 11 compares the level of dynamics in each trace
(x-axis) with the F1 score achieved by DynATOS+ for a
fixed setting of cv = 0.1 (we observe qualitatively similar
trends for other values of cv). As expected, different queries
observe different levels of traffic composition dynamics (e.g.,
CV between 0.03 and 0.42 for DDoS compared to 0.38
and 1.15 for TCP new connections). We note that for most
queries, F1 score is only weakly correlated with underlying
trace dynamics demonstrating DynATOS+’s ability to provide
consistent accuracy in the face of trace dynamics. The TCP
new connections query is again a bit of an exception for
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Fig. 11: Performance for single queries at a fixed CV goal
(0.1). Each point compares F1 score and CV of the number
of keys per epoch (relative to each particular query type) for
a single trace from our sample.

similar reasons as in Figure 10: since each key is typically
only associated with a single SYN packet, when the number
of keys varies, DynATOS+ has little opportunity to catch keys
that arrived during un-sampled subepochs.

C. Impact of Query Workload Dynamics

To evaluate the impact of query workload dynamics on
DynATOS+, we run dynamic query workloads generated by
a fractional Poisson arrival process as described in § VI-A.
To minimize the impact of trace dynamics, we use a single
trace from our sample with relatively low CV across all query
key types (in particular we use the trace from Feb. 22). We
configure DynATOS+ to target cv = 0.1 and compare against
DynATOS with fixed σ set based on baseline measurements of
observed standard deviation in the trace as in [10].
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Fig. 12: Query satisfaction, bytes sent to collector each epoch,
and number of queries each epoch as a function of workload
burstiness (smaller µ indicates more bursty workloads) for
a single trace showing the improvement of DynATOS+ over
DynATOS.

Figure 12 shows query satisfaction (defined as the fraction
of queries in the workload that achieve standard error less than
σ) over 10 independent query workloads generated at each
setting of arrival burstiness parameter µ. In addition to query
workload satisfaction (top), we also plot the number of bytes
returned to the collector (middle) and the number of queries
executed per epoch (bottom). We observe that by automatically
adjusting σ based on the target cv , DynATOS+ finds a more
optimal value for σ and is able to achieve consistently higher
satisfaction compared to DynATOS (a median difference of
18% to 21% for all workload burstinesses) while inducing
minimal increased load on collector (a median difference of
less than 8 KB per epoch for all workload burstinesses). Note
that the number of queries per epoch is larger for burstier
workloads because we ignore epochs where no queries were
run. Also, in some cases the query workload consists of a
single burst of queries over the entire 15 m trace so that
DynATOS+ does not have a sufficient number of epochs in
which to tune the cv to σ translation. This causes the lower
error bar for DynATOS+ at µ = 0.5 compared to DynATOS
which uses a fixed (in this case higher) σ. In a real deployment
where DynATOS+ is run for longer periods (e.g., several
hours), we expect query satisfaction would converge closer
to the median in these plots.

D. Interaction Between Traffic and Query Workload Dynamics

To understand the interaction between traffic dynamics and
query workload dynamics, we run the same query workloads
used in Figure 12 over all 28 traces in our sample from
MAWILab. Figure 13 summarises the results by showing the
minimum and maximum median query satisfaction and bytes
sent to the collector over all 28 traces for each workload
burstiness setting µ. As in Figure 12, quantiles (shown here as
different colors) are over the same 10 independently-generated
workloads at each µ.
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Fig. 13: Minimum and maximum over all traces of query sat-
isfaction (for same quantiles as in Figure 12). The differences
between different workload burstiness (across x-axis) is much
larger compared the the differences among different traces (y-
axis ranges) indicating workload burstiness has more impact
on DynATOS+’s performance.
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Similar to Figure 12, we observe that burstier workloads
achieve lower satisfaction (∼73% for µ = 0.5 compared
to ∼89% for µ = 1.0). On the other hand, the distance
between minimum and maximum satisfaction across all traces
(vertical height of the bars in Figure 13) is relatively consistent
and small for all query workloads (an absolute difference of
median from ∼4% to ∼13% for all workload burstinesses).
The relatively larger range of bytes returned to the collector
(∼68% difference in median across all workload burstinesses)
demonstrates how DynATOS+’s sampling method automati-
cally adjusts load on the collector to meet the different number
of keys in different traces. Considering the fact that the per-
epoch CV of number of keys considered ranges from ∼0.04 to
∼0.4 across the traces in our sample, these results indicate the
methods in DynATOS+ are more robust to dynamics of traffic
composition compared to burstiness of query workloads. We
envision developing new methods to improve DynATOS+’s
handling of bursty query workloads as future work.

E. Sensitivity to Epoch and Subepoch Duration

The two most critical parameters in DynATOS+ are the
duration of epochs and the duration of subepochs. Since epoch
duration determines the lower bound on how quickly query
results can be delivered, we assume network administrators
fix epoch duration based on their particular monitoring re-
quirement. The key remaining parameter is then the duration
of subepochs or equivalently the number of subepochs per
epoch.

To understand the impact of subepoch duration on
DynATOS+’s performance, we run DynATOS+ over the same
trace considered in § VI-C and the ten independent query
workloads with µ = 1. To expose the impact of query
operation multiplexing, we limit the number of queries that can
be assigned to run in a single epoch to twice the mean expected
number of queries (e.g., because the mean query arrival rate is
1 per second, for 8 s epochs we limit to 16 concurrent queries
in each subepoch). Our query workload driver does not attempt
to resubmit queries that are rejected when DynATOS+ is in
“fail-safe” mode leading to some fraction of queries going
unanswered in some runs.

Figure 14 shows the resulting F1 score (top), bytes sent
to the collector (middle), and fraction of queries submitted
by the workload that actually receive answers, regardless of
their accuracy goals (bottom). Note that due to the minimal
progress constraint (C4 in Table III), we are limited to a
minimum of two subepochs per epoch. Overall, F1 score
is not significantly impacted by epoch duration indicating
that network administrators can confidently choose the epoch
duration best suited for their monitoring requirements without
impacting DynATOS+’s performance.

Subepoch duration has a more complex effect on all metrics
observed. First, longer subepochs tend to yield slightly higher
accuracy (e.g., median F1 scores increases from 90% to
94% for 8 s epochs) for queries that receive an answer.
Second, shorter subepochs cause more bytes to be sent to
the collector each epoch because intermediate results must
be sent after each subepochs (e.g., from 81K up to 192K
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Fig. 14: Impact of epoch and subepoch duration on query
accuracy, volume of traffic to collector each epoch, and
fraction of queries answered.

for 8 s epochs). These two facts may seem to suggest that
simply setting subepoch duration as long as possible yields
optimal performance. However the bottom plot in Figure 14
exposes the cost of having fewer longer subepochs: due to the
limited ability to multiplex query operations, a larger number
of queries are rejected due to DynATOS+ being in “fail-safe”
mode. Moreover, fewer queries are answered for shorter epoch
durations (e.g., with two subepochs, a median of ∼90.8% for
1 s epochs compared to ∼99.9% for 8 s epochs) due to the
fact that longer epoch durations smooth over bursts of queries
that otherwise lead to infeasible scheduling problems at shorter
epoch durations. In summary, we find that using between 4 and
8 subepochs exposes a sweet spot between (i) higher error and
traffic to collector with more than 8 subepochs and (ii) reduced
possibilities for multiplexing which cause more queries to go
unanswered with fewer than 4 subepochs.

F. Comparison with Sketch Methods

ElasticSketch. To illustrate the challenge of switching be-
tween multiple queries with ElasticSketch [7] we consider a
simple query workload which runs the DDoS query for 7.5
minutes, then switches to the TCP new connections query for
the next 7.5 minutes. Note that this workload represents a wide
range of scenarios where two or more queries with different
filter conditions and different keys are required to run in
sequence. We run two independent instances of ElasticSketch
in parallel (one for each query). Since ElasticSketch doesn’t
support runtime reconfiguration on switch hardware, both
instances run throughout the workload even though only one
query output is used at a time. DynATOS+, on the other hand,
can simply switch between queries after 7.5 minutes so only
one query is run at a time.

We run this scenario over traffic from the May 29 trace in
our sample since this trace has relatively dynamic composition
(as measured by CV of number of keys per epoch). We set
cv = 0.1 and adjust the size of ElasticSketch to achieve
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Fig. 15: Performance of DynATOS+ and ElasticSketch on
dynamic query scenario where the network administrator
changes between DDoS and TCP New Connections queries.
ElasticSketch requires sending >2× more bytes to the collec-
tor while achieving lower accuracy compared to DynATOS+
because it cannot adapt to the change in queries.

slightly lower accuracy compared to DynATOS+ as measured
by F1 score. Figure 15a shows the actual F1 score achieved
(top) as well as the number of bytes sent to the collector
(bottom) over all epochs for the two methods described above.
Even though it achieves lower accuracy for both queries, the
overheads of maintaining parallel sketches in ElasticSketch
require sending over 2× more bytes to the collector compared
to DynATOS+ (∼240KB compared to ∼110KB). As shown
in Figure 15b, DynATOS+ achieves lower load on collector
by only sending results for one query at a time. In general,
this example illustrates that even for simple dynamic query
workloads, the ability to switch between queries at runtime
leads to significantly lower overheads.
Newton. Newton [3] develops methods to dynamically change
queries on-the-fly (similar to DynATOS+), but the Newton
dataplane uses fixed-size sketch-based primitives which cannot
adapt to changes in traffic composition.5 To illustrate, we
consider a scenario where the network administrator runs the
Port Scan query over a trace from our MAWILab sample
with pronounced changes in traffic composition (in particular
Aug. 12). In particular, this trace has a relatively constant
number of keys per epoch (∼18K) until the 135-th epoch when
the number of keys spikes up by an order of magnitude (to
∼273K). We set the sketch sizes in Newton to achieve high
accuracy on the first part of the trace and choose cv = 1.5 so
that DynATOS+ achieves slightly lower accuracy compared to
Newton for the first part of the trace.

Figure 16 shows, for each epoch of the trace (x-axis), the
F1 score (top), fraction of bytes sent to collector compared
to ground-truth (middle), and total number of keys in the
underlying (ground-truth) traffic (bottom). Before the change
in composition at epoch 135, Newton achieves high F1
score (median of 1.0) compared to DynATOS+ (median of
0.8). However, when the number of keys changes, Newton’s
sketches become full leading to a significant reduction in F1
score (median of 0.24). The middle plot shows that the root
cause of this is the relatively smaller number of bytes Newton

5In particular, the Port Scan query considered here uses a Bloom filter [51]
with a fixed number of bits to approximate the first “distinct” operator.
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Fig. 16: Performance of DynATOS+ and Newton running the
Port Scan query on a excerpt from our sample of MAWILab
traces with heavy traffic dynamics. Even though Newton is
tuned for high accuracy, when the number of keys in the
underlying traffic changes it suffers significant accuracy loss.

sends to the collector compared to ground truth. DynATOS+,
on the other hand, achieves consistent F1 score (median of
0.8) during the increase in number of keys by maintaining a
consistent load on collector w.r.t. the total number of ground-
truth keys that need to be reported.

VII. CONCLUSION AND FUTURE WORK

Current approaches to telemetry system design struggle to
efficiently satisfy dynamism in query workloads and traffic
workload composition. This work extends our previous effort
on reframing telemetry systems as resource schedulers to
develop efficient approximation and scheduling algorithms that
expose accuracy and latency tradeoffs with respect to query
execution to reduce hardware resource usage. In particular,
this work adds a more intuitive form of target error to
our scheduling method and presents an in-depth empirical
evaluation of tradeoffs and system performance over a variety
of traffic scenarios.

While we investigate the common sources of dynamics,
both a horizontal scheduling problem (i.e., how to design a
scheduler to deal with those dynamics for multiple switch
hardware stages or multiple distributed switches) and a ver-
tical scheduling problem (i.e., incorporation of computing
resources, such as stream processing clusters and GPUs—both
locally and at remote cloud data centers—into the pool of
resources schedulable for telemetry tasks) remain. This opens
up a wider question of where, not just when and for how long,
telemetry queries should be executed. We plan to investigate
this question as part of future work.
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[11] S. Gangam, J. Chandrashekar, Í. Cunha, and J. Kurose, “Estimating TCP
latency approximately with passive measurements,” in Proceedings of
the International Conference on Passive and Active Measurement (PAM).
Springer, 2013, pp. 83–93.

[12] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “DREAM: Dy-
namic resource allocation for software-defined measurement,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 4, pp. 419–
430, 2014.

[13] Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin, V. Braver-
man, M. Yu, and V. Sekar, “Jaqen: A high-performance switch-native
approach for detecting and mitigating volumetric ddos attacks with
programmable switches,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021.

[14] “Intel ethernet switch FM6000 series product brief,”
https://www.intel.com/content/dam/www/public/us/en/documents/
product-briefs/ethernet-switch-fm6000-series-brief.pdf.

[15] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[16] X. Chen, S. Landau-Feibish, M. Braverman, and J. Rexford, “Beaucoup:
Answering many network traffic queries, one memory update at a time,”
in Proceedings of the conference of the ACM Special Interest Group on
Data Communication (SIGCOMM), 2020, pp. 226–239.

[17] J. Xing, K.-F. Hsu, M. Kadosh, A. Lo, Y. Piasetzky, A. Krishnamurthy,
and A. Chen, “Runtime programmable switches,” in 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22), 2022, pp. 651–665.

[18] Y. Feng, Z. Chen, H. Song, W. Xu, J. Li, Z. Zhang, T. Yun, Y. Wan, and
B. Liu, “Enabling in-situ programmability in network data plane: From
architecture to language,” in 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), 2022, pp. 635–649.

[19] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “SCREAM: Sketch
resource allocation for software-defined measurement,” in Proceedings
of the ACM Conference on emerging Networking EXperiments and
Technologies (CoNEXT), 2015, p. 14.

[20] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[21] H. C. Zhao, A. Lall, M. Ogihara, O. Spatscheck, J. Wang, and J. Xu, “A
data streaming algorithm for estimating entropies of OD flows,” in Pro-
ceedings of the ACM SIGCOMM conference on Internet measurement
(IMC), 2007, pp. 279–290.

[22] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high speed links,” in Proceedings of the ACM SIGCOMM
conference on Internet measurement (IMC), 2003, pp. 153–166.

[23] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” in Proceedings of the 2016 ACM SIGCOMM Conference.
ACM, 2016, pp. 101–114.

[24] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Trumpet: Timely
and precise triggers in data centers,” in Proceedings of the conference of
the ACM Special Interest Group on Data Communication (SIGCOMM),
2016, pp. 129–143.

[25] Q. Huang, H. Sun, P. P. Lee, W. Bai, F. Zhu, and Y. Bao, “Omnimon:
Re-architecting network telemetry with resource efficiency and full
accuracy,” in Proceedings of the conference of the ACM Special Interest
Group on Data Communication (SIGCOMM), 2020, pp. 404–421.

[26] P. Tammana, R. Agarwal, and M. Lee, “Distributed network monitoring
and debugging with SwitchPointer,” in Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2018, pp. 453–456.

[27] Q. Huang, X. Jin, P. P. Lee, R. Li, L. Tang, Y.-C. Chen, and G. Zhang,
“Sketchvisor: Robust network measurement for software packet process-
ing,” in Proceedings of the conference of the ACM Special Interest Group
on Data Communication (SIGCOMM), 2017, pp. 113–126.

[28] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Fried-
man, and V. Sekar, “Nitrosketch: Robust and general sketch-based
monitoring in software switches,” in Proceedings of the conference of
the ACM Special Interest Group on Data Communication (SIGCOMM),
2019, pp. 334–350.

[29] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-storm:
Resource-aware scheduling in storm,” in Proceedings of the Annual
Middleware Conference, 2015, pp. 149–161.

[30] T. Li, J. Tang, and J. Xu, “Performance modeling and predictive
scheduling for distributed stream data processing,” IEEE Transactions
on Big Data, vol. 2, no. 4, pp. 353–364, 2016.

[31] A. Shukla and Y. Simmhan, “Model-driven scheduling for distributed
stream processing systems,” Journal of Parallel and Distributed Com-
puting, vol. 117, pp. 98–114, 2018.

[32] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov,
“Spanedge: Towards unifying stream processing over central and near-
the-edge data centers,” in Proceedings of the IEEE/ACM Symposium on
Edge Computing (SEC), 2016, pp. 168–178.

[33] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation
and delay-tolerance,” in Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2017, pp. 377–
392.

[34] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab: Combin-
ing Diverse Anomaly Detectors for Automated Anomaly Labeling and
Performance Benchmarking,” in Proceedings of the ACM Conference on
emerging Networking EXperiments and Technologies (CoNEXT), 2010.

https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf


16

[35] S. L. Lohr, Sampling: Design and Analysis: Design And Analysis. CRC
Press, 2019.

[36] X. Zhu, G. Wu, H. Zhang, S. Wang, and B. Ma, “Dynamic count-min
sketch for analytical queries over continuous data streams,” in 2018
IEEE 25th International Conference on High Performance Computing
(HiPC). IEEE, 2018, pp. 225–234.

[37] H. Zhu, Y. Zhang, L. Zhang, G. He, and L. Liu, “Cbfsketch: A
scalable sketch framework for high speed network,” in 2019 Seventh
International Conference on Advanced Cloud and Big Data (CBD).
IEEE, 2019, pp. 357–362.

[38] X. Chen, S. L. Feibish, Y. Koral, J. Rexford, and O. Rottenstreich,
“Catching the microburst culprits with snappy,” in Proceedings of the
ACM Workshop on Self-Driving Networks, 2018, pp. 22–28.

[39] S. Gangam, P. Sharma, and S. Fahmy, “Pegasus: Precision hunting for
icebergs and anomalies in network flows,” in Proceedings of the IEEE
International Conference on Computer Communications (INFOCOM),
2013, pp. 1420–1428.

[40] K. Borders, J. Springer, and M. Burnside, “Chimera: A declarative
language for streaming network traffic analysis,” in Proceedings of the
USENIX Security Symposium, 2012, pp. 365–379.

[41] A. Chao and C.-W. Lin, “Nonparametric lower bounds for species rich-
ness and shared species richness under sampling without replacement,”
Biometrics, vol. 68, no. 3, pp. 912–921, 2012.

[42] A. Chao and C.-H. Chiu, “Species richness: estimation and comparison,”
Wiley StatsRef: Statistics Reference Online, pp. 1–26, 2014.

[43] L. Yuan, C.-N. Chuah, and P. Mohapatra, “ProgME: towards pro-
grammable network measurement,” IEEE/ACM Transactions on Net-
working, vol. 19, no. 1, pp. 115–128, 2011.

[44] “COIN-OR Branch-and-cut MIP solver,” https://zenodo.org/badge/
latestdoi/30382416.

[45] “Trident3-X4 / BCM56470 Series,” https://www.broadcom.com/
products/ethernet-connectivity/switching/strataxgs/bcm56470-series.

[46] “BCM56275 Gb/s Programmable Multilayer Switch Product Brief,”
https://docs.broadcom.com/doc/56275-PB.

[47] N. Laskin, “Fractional poisson process,” Communications in Nonlinear
Science and Numerical Simulation, vol. 8, no. 3-4, pp. 201–213, 2003.

[48] M. Politi, T. Kaizoji, and E. Scalas, “Full characterization of the
fractional poisson process,” EPL (Europhysics Letters), vol. 96, no. 2,
p. 20004, 2011.

[49] “ONRG: DynATOS,” https://onrg.gitlab.io/projects/dynatos/.
[50] “sonata-queries/sonata-queries,” https://github.com/sonata-queries/

sonata-queries, accessed: Nov. 2022.
[51] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

Chris Misa is a PhD student at the University
of Oregon. His research interests include design
and implementation of network traffic monitoring
systems and statistical characterization of network
traffic structure. Chris’s work has been recognized
by several research fellowships including a Ripple
graduate fellowship.

Ramakrishnan Durairajan is an Associate Profes-
sor in the Department of Computer Science at the
University of Oregon. His research has been rec-
ognized with multiple NSF awards, including NSF
CAREER, Ripple faculty fellowship, UO faculty
research award, several best paper awards, and has
been covered in several fora.

Reza Rejaie Reza Rejaie is currently a Professor and
head of Computer Science Department at the Univer-
sity of Oregon (UO). Before joining UO, he worked
at AT&T Labs-Research in Menlo Park, California
from 1999 to 2002. He received a NSF CAREER
Award for his work on Peer-to-Peer streaming in
2005 and a European Union Marie Curie Fellow-
ship in 2009. Reza has been a visiting professor
at IMDEA Networks Institute, the Politecnico di
Torino, and Sorbonne University. Reza is also a
founding associated director of Oregon Cybersecu-

rity Center of Excellence. Reza received his Ph.D. degree from the University
of Southern California in 1999, and his B.S. degree in Electrical Engineering
from the Sharif University of Technology in 1991. Reza is a Fellow of IEEE
(2017) and a Distinguished member of the ACM (2022).

Walter Willinger is Chief Scientist at NIKSUN,
Inc. Before joining NIKSUN, he worked at AT&T
Labs-Research and at Bellcore Applied Research.
He is a Fellow of ACM (2005), Fellow of IEEE
(2005), AT&T Fellow (2007), and Fellow of SIAM
(2009), co-recipient of the 1995 IEEE Communi-
cations Society W.R. Bennett Prize Paper Award
and the 1996 IEEE W.R.G. Baker Prize Award, co-
recipient of the 2005 and 2016 ACM/SIGCOMM
Test-of-Time Paper Awards, and recipient of the
2024 IEEE Internet Award.

https://zenodo.org/badge/latestdoi/30382416
https://zenodo.org/badge/latestdoi/30382416
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56470-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56470-series
https://docs.broadcom.com/doc/56275-PB
https://onrg.gitlab.io/projects/dynatos/
https://github.com/sonata-queries/sonata-queries
https://github.com/sonata-queries/sonata-queries

	Introduction
	Background & Motivation
	Dynamic Telemetry Use Cases
	Telemetry System Requirements
	State-of-the-art and their Limitations

	DynATOS+@汥瑀瑯步渠 System Design
	Overview
	Difference between DynATOS+@汥瑀瑯步渠 and DynATOS@汥瑀瑯步渠 
	Scheduling horizon.
	Design Challenges
	Our Solutions
	Limitations and Assumptions

	Time-Division Approximation in DynATOS+@汥瑀瑯步渠 
	Scheduling in DynATOS+@汥瑀瑯步渠 
	Optimization Formulation

	Evaluation
	Experimental Setup
	Impact of Traffic Dynamics
	Impact of Query Workload Dynamics
	Interaction Between Traffic and Query Workload Dynamics
	Sensitivity to Epoch and Subepoch Duration
	Comparison with Sketch Methods

	Conclusion and Future Work
	References
	Biographies
	Chris Misa
	Ramakrishnan Durairajan
	Reza Rejaie
	Walter Willinger


