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Abstract—Simulation is a compelling option for evaluating
Internet protocols, configurations and behaviors. While current
simulation tools have been used effectively to consider questions
in small-scale networks, they are incapable of evaluating large
scale phenomena such as routing configurations, DDoS attacks
and data center deployments. In this paper, we describe pfs,
a parallelized version of the fs flow-level simulator [1] that
offers the opportunity to conduct very large-scale simulations of
networks. Our approach to parallelization is based on decompos-
ing simulation configurations both spatially and temporally into
independent chunks that can be run simultaneously on massively
scalable, parallel processing infrastructures. We demonstrate the
capabilities of pfs through a series of experiments that highlight
both the speedup that can be achieved as well as the costs that
are incurred in terms of the accuracy of the simulation results.

Keywords—fs, parallelization, very large topology, flow-based
simulation.

I. INTRODUCTION

The ability to thoroughly test and evaluate new Internet
systems, protocols and configurations is a key component of
the design, development and deployment processes. Standard
requirements for testing include control and repeatability,
realism, efficiency (in terms of time required to specify and
conduct tests), visibility (in terms of being able to collect
data about the outcome of tests) and the ability to test at
an appropriate scale. Unfortunately no single test method can
satisfy all of these requirements, thus a combined approach is
typically taken.

Standard methods for test and evaluation of networked
systems include: analytic modeling, which is typically used
to examine idealized or asymptotic behaviors and is efficient,
but generally lacks realism and detail; testbed-based evalu-
ation, which is often used to test the details of prototype
implementations and offers control, repeatability, visibility and
a good measure of realism but lacks the ability to conduct
tests at scale; in-situ evaluation, which is typically used to
test more complete implementations and offers high realism
but lacks visibility, control and repeatability. Simulation offers
a compelling opportunity to complement other methods by
enabling tests to be conducted in an efficient, visible, realistic
and repeatable fashion.

While simulation has been widely used in prior research ef-
forts (e.g., the development of many variants of TCP), standard
network simulators like ns-2 [2] and its more recent variants
have well known, inherent limitations. In particular, ns-2 was
developed to capture the low-level packet interactions that lead
to congestion on end-to-end paths. While this level of detail is

critical for understanding congestion, it requires a simulation
engine that must operate at fine timescales. As a consequence,
the high computational demands of ns-2 precludes its use in
evaluations of large scale network phenomena such as routing
configurations, denial of service attacks or network service
deployments.

In prior work, the fs [1] simulator was developed to enable
test and evaluation of large networks. Instead of focusing
on packet-level behavior, fs is a flow-based simulator that
produces results consistent with ns-2 down to single second
aggregations. By focusing on higher-level behavior, fs achieves
significant reduction in processing overhead, enabling a wide
range of tests that are beyond the capability of packet-oriented
discrete event simulators such as ns-2. However, the current
implementation of fs is limited to a single system, which makes
it inappropriate for testing and evaluating very large networks
such as large service providers, data centers, ensembles of
networks, or large scale events.

In this paper, we describe pfs, a parallelized version of
fs developed to test and evaluate large networks and large
network events. The deployment target for pfs is any massively
scalable, parallel processing computational environments like
Hadoop [3], HTCondor [4], or Spark [5], each of which enable
large data sets to be efficiently processed in parallel. The
challenge in this work is to develop methods for decomposing
fs simulations in a way that enables parallel processing while
preserving accuracy in results.

We developed three different methods for decomposing fs
simulations for parallel evaluation. Temporal decomposition
divides the simulation into separate time chunks, which can
be run in parallel. Spatial decomposition divides the simu-
lation topology into separate chunks, which can be run in
parallel. Spatio-temporal decomposition, as the name suggests,
combines the other two methods and thus may offer the best
opportunity for speedup.

The key to parallelization in pfs is refactoring the traffic
generation process to ensure that the conditions in each chunk
are as close as possible to a serial simulation, which we refer
to as the baseline, or simply base, case. Refactoring is done in
a preprocessing function that establishes traffic and topological
pre-conditions for each chunk. This enables each chunk to
be run independently in massively-parallel computing infras-
tructures. By focusing on traffic effects at chunk boundaries,
pfs is able to maintain accuracy with minimal loss versus the
base case. This design choice is supported by the fact that
many classes of applications, including traffic engineering, rate
control and streaming, are tolerant to minimal loss.



We demonstrate the capability of pfs in a series of case
studies. We begin with a simple network topology that we use
to show the tradeoffs between speedup and accuracy for tem-
poral, spatial and spatio-temporal decomposition. Our results
show that simulation times can be reduced by several orders
of magnitude at the cost of some reduction in accuracy when
spatio-temporal parallelization is used. We then demonstrate
speedup and accuracy on a larger network topology. Using
spatio-temporal parallelization, the results show that simulation
times can be reduced by nearly two orders of magnitude.

The remainder of this paper is organized as follows. In
Section II, we provide an overview of the fs simulator. In
Section III, we describe the details of the pfs implementation.
The case study evaluations of temporal, spatial and spatio-
temporal parallelization in pfs are described in Section IV. We
describe related studies in Section V. We summarize, conclude
and discuss future directions for our work in Section VI.

II. fs OVERVIEW

fs is a Python-based system developed for the purpose
of generating network flow records and interface counters à
la SNMP [1]. Although it was not originally designed for
simulating network activity, it uses discrete-event simulation
techniques for synthesizing the network measurements that it
produces. We illustrated in our initial work on fs that it not
only generates measurements extremely fast compared with
identical setups in the ns-2 [2] packet-level simulator, but
that the measurements it produces are accurate down to 1-
second timescales. More recently, we extended fs to support
simulation and debugging of software-defined networking ap-
plications [6], [7].

fs is designed with four key considerations in mind. First
is the goal to generate representative network measurements
similar to those that can be collected from operational routers
today. In particular, fs generates flow export records (e.g.,
Cisco Netflow records [8]) and SNMP-like counters (e.g.,
packet and byte counters from router interfaces). In addition to
exporting commonly-used measurements, fs employs a familiar
and easy-to-use method of configuration. In particular, fs uses
a declarative configuration style using a syntax based on
Graphviz DOT files [9].

The second goal is to ensure sufficient realism in the
measurements that fs generates. fs is designed to generate
measurements from benign flows as well as particular types of
anomalous flows. For benign flows, fs builds on the Harpoon
model for traffic generation [10]. Similar to Harpoon, fs
creates flows between a given source and destination that have
particular distributional properties. Namely, flows are initiated
between a source and destination according to one distribution,
and flow sizes are drawn from another distribution. It further
leverages existing TCP throughput models (i.e., [11] and [12])
to simulate individual TCP flows. More generally, fs includes
the capability to generate a broad range of simulated traffic
conditions through its flexible configuration format.

The third goal of fs is to scale to large network
configurations—not only to generate measurements quickly,
but to use modest memory resources while doing so. Because
the kinds of measurements that fs can generate do not contain
fine-grained information (e.g., packet-level timings), we ignore

many packet-level details. This design decision results in major
computational and memory savings while generating realistic
data over time scales of 1 second and longer, as shown below.

The main reason why fs exhibits good scaling properties
has to do with the fact that the key network abstraction it
operates on is not the packet, but a higher-level notion called
a flowlet. A flowlet refers to the volume of a flow emitted
over a given time period, e.g., 100 milliseconds, which may
be 1 or more packets. By raising the level of abstraction and
thus the entity around which most simulator events revolve,
fs achieves much higher speed and efficiency than existing
packet-level simulators, like ns-2 [2] and ns-3 [13]. fs’s better
scaling properties are particularly relevant to this work, since
our longer-term goal is to scale to networks with millions of
nodes 1. In this work, we greatly extend the scalability of fs
by adapting it to run in a parallelized cluster setting.

The fourth goal of fs is to enable prototyping and evaluating
new SDN-based applications accurately, at large scale, and
in a way that enables incorporation of real SDN controllers
and applications. The SDN extensions to fs seamlessly allow
use of any standard Openflow controller, and include switch
components that can be controlled and configured through
the Openflow protocol. As a result, controller components
developed for standard SDN platforms can be used directly
and without modification in fs.

III. PARALLELIZING fs

In this section we provide an overview of the objectives,
challenges and approaches to parallelize fs, and discuss the
design, implementation, and features of pfs

A. Design Objective

The main objective of pfs is to enhance the scalability
of fs by temporal, spatial and spatio-temporal parallelization
of simulations. Temporal parallelization splits network sim-
ulations into multiple smaller simulation chunks based on
time. Spatial parallelization splits network simulations into
multiple smaller simulation chunks based on topology. Spatio-
temporal parallelization is a combination of both temporal and
spatial parallelizations. Using pfs, network simulations can be
run on any parallel processing infrastructure by splitting the
simulations into various temporal, spatial or spatio-temporal
chunks. Our main objective is to significantly enhance speedup
through parallelization with minimal loss in accuracy.

B. Parallelization in pfs

pfs consists of two components: the parallelization unit
and cluster manager. The overall architecture is illustrated in
Figure 1, and we describe each part below.

The parallelization unit consists of algorithms (described
below) for temporal, spatial and spatio-temporal decomposi-
tion and is implemented as a pre-processing step in simulation
execution. This pre-processing step in pfs takes a standard
fs configuration file (known as a scenario file) as input
and divides the traffic generation specifications temporally

1We believe that goal is entirely feasible although it will require supporting
systems that enable representative network configurations to be generated.
Such capabilities are the focus of future work.



Fig. 1: Architecture of pfs.

and/or spatially, thus producing a new set of configuration
files (known as sub-scenario files). These new configuration
files describe independent temporal or spatial chunks of the
original simulation, and can be run in parallel since they
have no dependencies on each other. The original simulation
is divided in such a way that the network measurements
generated through each chunk can be effectively aggregated to
give a complete and accurate picture of the full network. The
parallelization unit is implemented as a lightweight extension
of the fs simulator in approximately 600 lines of Python code.

The cluster manager acts as a simulation coordinator and
has the twin goals of (i) scheduling scenario and sub-scenario
files for execution, and (ii) merging the simulation results.
First, to enable parallel simulations, the cluster manager packs
individual sub-scenario files with fs binaries (created using
cx Freeze [14]) and creates platform-agnostic executables.
These executables can be directly executed in a variety of
parallel processing environments like Hadoop, HTCondor, and
Spark. In our evaluation, we leverage HTCondor clusters. Next,
the aggregation modules in the cluster manager keeps track
of sub-scenario simulation statistics and merge them at the
end. The cluster manager is implemented in approximately 200
lines of shell script.

C. Temporal Parallelization

Algorithm 1 shows the key steps of Temporal Paralleliza-
tion. The inputs to the algorithm are the original scenario file,
the amount of time to simulate, and the desired number of
temporal simulation chunks. Pre-processing (steps 1 to 11)
for temporal parallelization configures the traffic modulator to
generate flows. The traffic generator component of fs is run in
temporal pre-processing (steps 2 and 3), however, flows are not
actually generated. Instead, start times for each flow created
by each traffic generator in a given topology are stored (step
4), where the start time is taken as the current simulator time.
When all flow start times have been captured, they are divided
into different temporal chunks. Flows are segregated into a
particular temporal chunk depending upon start time (step 6
and 7). For instance, if a simulation is to be run for T seconds
and the number of temporal chunks is n, then flows starting
from 0 to T/n are put in chunk one and flows starting after T/n
or before 2*T/n are put into second chunk, and so on. After
flows are distributed across n temporal chunks, simulations are
run in parallel across different chunks (steps 10 to 12).

D. Spatial Parallelization

Algorithm 2 shows the key steps of Spatial Paralleliza-
tion. Pre-processing (steps 1 to 15) for spatial parallelization
involves splitting the original network topology into various
sub-topologies, which can be run in parallel. The inputs to
the algorithm are the original scenario file, simulation time,

Algorithm 1: Algorithm for Temporal Parallelization
input: scenario = original config file
input: simTime = simulation time
input: n chunk = number of temporal chunks

1 preStart = Pre-processing start time;
// Simulator is run in temporal

pre-processing mode to generate flows
tagged with flow start times

2 sim = Simulator(’temporal preprocessing’, scenario,
simTime, NULL);

3 sim.run();
4 f lows = getTimes(sim.flows);
5 clusters = initialize temporal clusters;
6 foreach cnt in n chunk do
7 foreach flow in flows do
8 if flow.startTime lies in the current temporal

cluster then
9 clusters[cnt].append(flow)

10 preEnd = Pre-processing end time;
11 record ‘preEnd – preStart’ as pre-processing time;

// Simulator is run on pre-processed temporal
chunks in parallel

12 foreach count in n chunk do
13 sim = Simulator(‘temporal’, scenario,

simTime/n chunk, cluster[count]);
14 sim.run();

and the number of desired spatial simulation chunks. Similar
to temporal parallelization, traffic generators are run in spatial
pre-processing mode (steps 3 and 4). However, in this case, the
focus is on identifying source-destination pairs for each flow.
In particular, each flow is tagged with the hop-by-hop path that
each flow would have taken in order to reach their respective
destination nodes. If the number of desired spatial simulation
chunks is greater than the total number of flows generated by
the simulator, then we assign each source-destination pair to a
separate sub-scenario and run those sub-scenarios in separate
chunks (step 5) i.e., one flow per source-destination pair.
Otherwise, source-destination pairs are uniformly distributed
among various spatial clusters (steps 7 to 9). Once we have
flows segregated into different spatial clusters, sub-scenario
files are created for them (steps 10 to 13). We parse the original
input configuration file and copy all the nodes and links
associated with flows present in the current spatial cluster into
the sub scenario file associated with it. Finally, simulations are
run in parallel on different spatial chunks with their respective
sub-scenario file as the input configuration file (steps 15 to
17).

E. Spatio-Temporal Parallelization

Spatio-Temporal Parallelization is a combination of both
temporal and spatial parallelizations described above. First,
the simulations are spatially parallelized, that is, they are
divided into multiple simulation chunks based on topology
using Algorithm 2. Next, these spatially parallelized chunks
are further temporally parallelized using Algorithm 1, that is,



Algorithm 2: Algorithm for Spatial Parallelization
input: scenario = original config file
input: simTime = simulation time
input: n chunk = number of spatial chunks

1 clusters = Initialize spatial clusters;
2 preStart = Pre-processing start time;
// Simulator is run in spatial pre-processing

mode to generate flows per SD pair
3 sim = Simulator(’spatial preprocessing’, scenario,

simTime);
4 sim.run();
// If number of chunks > total flows, assign

each SD pair into a separate sub-scenario
5 sp chunk = min(len(sim.flows), n chunk);
// Uniformly distribute SD pairs across

spatial clusters
6 cnt = Initialize cnt to 0;
7 foreach flow in sim.flows do
8 clusters[cnt%sp chunk].append(sim.flows[flow]);
9 cnt = cnt + 1;

10 foreach i in sp chunk do
11 f = Create sub-scenario file;
12 foreach flow in clusters[i] do
13 Get associated nodes and links and write into f;

14 preEnd = Pre-processing end time;
15 record ‘preEnd – preStart’ as pre-processing time;

// Simulator is run on pre-processed spatial
chunks in parallel

16 foreach count in sp chunk do
17 sim = Simulator(‘spatial’, sub scenario(count),

simTime);
18 sim.run();

they are sub-divided into even smaller simulation chunks based
on flow start times.

F. Parallelization Challenges

Central to the issue of parallelization is how to maintain
close correspondence between the parallelized simulation and
the baseline serialized simulation. The specific problem that
arises is discontinuity of traffic flows at boundaries of the
spatial and temporal chunks. We considered multiple methods
for attempting to maintain exact consistency across boundaries.
These techniques either significantly increased preprocessing
time or required dependencies between chunks. We ultimately
decided to sacrifice aspects of consistency across boundaries
(and therefore accuracy) in order to maximize speedup. We
argue that this design choice is supported by the fact that pfs
is focused on large scale simulations where behaviors such
as individual congestion events are of less importance. Many
classes of applications are tolerant to a modest reduction in
the accuracy in simulation results including traffic engineering,
rate control, data analytics, and image/audio/video stream-
ing [15].

The main challenge in temporal parallelization of f s is
the ability to identify flows that will be active at the chunk

boundaries and flow start times at different times during the
simulation. For the latter, we have added the capability in pfs
to append timestamps with each flow generated during the
pre-processing phase. For the former, we estimate the flows
which will be active at the chunk boundary by examining the
flow distribution and number of temporal chunks selected by
the user. To account for flows that would have been active
in the original fs simulation, flows are initiated at the start
of each temporal chunk. We also need to estimate various
network states at different points throughout the simulation.
This state information includes (1) size of input queue buffer,
(2) flowlet arrival times at various nodes and links in the
network topology, and (3) size of the flowlets. All these are
estimated in pre-processing prior to running the simulations
on temporal chunks.

The main challenge in spatial parallelization is to accu-
rately estimate the load imposed by flows on shared links.
A link is considered shared if it is traversed by more than
one flow. In order to run the simulations on a spatial chunk,
we need to identify and account for the load on shared links
caused by flows from other sub-scenarios. To do this we need
to isolate the hop-by-hop path of flows such that there is no
interference of flows from one sub-scenario on flows in other
sub-scenario. We also need a method for clustering paths from
simulation configurations with potentially millions of source-
destination pairs.

IV. EVALUATION

In this section, we describe a series of tests that demon-
strate the performance of pfs. Our focus is on highlighting
speedup and accuracy versus baseline for the three paralleliza-
tion methods described in Section III. We begin by conducting
tests on a simple network configuration, followed by tests on a
more complex configuration and conclude with tests on large
and very large topologies.

A. Simulation Methodology

Since simulation performance is directly tied to the com-
plexity of the configuration, we initially use a simple net-
work configuration to elucidate the basic aspects of speedup
and accuracy in pfs. Results from the simple configuration
should thus be considered conservative. Experiments with a
more complex configuration are designed to demonstrate what
might be achieved by pfs in a more typical configuration.
We conclude with tests on large and very large topologies to
demonstrate the scalability of pfs.

The simple configuration is a dumbbell network topology
shown in Figure 2. In this topology, nodes A and E are
sources i.e., traffic is sent from these nodes, nodes D and F
are destinations i.e., traffic terminates at these nodes, and B-C
is the link that is shared by all traffic in the baseline case.
We configure the Harpoon traffic generators to start at time
0 and to have a modulation profile such that 10 sources will
be active for 60 seconds, then 20 nodes will be active for 60
seconds, then 30 for 120 seconds, 20 for 60 seconds, 10 for 60
seconds, and to then repeat the same pattern. While a Harpoon
generator is active, a new flow is started after a time duration
chosen from an exponential distribution with λ equal to 100,
and a random flowsize chosen from Pareto distribution, with
offset as 10000 and α equal to 1.2.
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Fig. 2: Simple network topology used to test pfs.

For the large and very large configurations, we use two
topologies: an extension of the dumbbell topology from the
simple configuration (above) and new linear topologies with
a sizable number of nodes. For each of these n-node config-
urations, we configure the Harpoon traffic generator to start
at time 0. To have a modulation profile such that n/3 sources
and n/3 destinations are always active, a new flow is started
after a time duration chosen from exponential distribution with
λ equal to 150, and a random flowsize chosen similar to the
simple configuration.

In each test, we record the wall clock time for the baseline
case i.e., serial simulation in fs. We also record wall clock
time for preprocessing and simulation in pfs. Simulations
for simple and complex configurations (for both fs and pfs)
are run on a quad-core Intel-based machine with 2.66 GHz
clock speed and 8 GB main memory. For larger topologies
(Section IV-F and IV-G), simulations are run on HTCondor
clusters comprised of heterogeneous machines where each
scenario and sub-scenario files, along with the fs binary, are
scheduled on the next available CPU in the HTCondor cluster
environment by the cluster manager.

To assess the accuracy of the simulations, we measure the
Root Mean Square Error (RMSE) for the data (bytes) received
at destination nodes. RMSE compares the baseline with pfs.
Specifically, we calculate the total bytes received per second
by all the destination nodes over the entire simulation time
(T). Then, we calculate the RMSE at each simulation second
using the formula:

Root Mean Square Error =

√
1
n

n

∑
i=1

(P f s(KBs)i − f s(KBs)i)2

where n is equal to five, i.e., the number of simulation runs.
Once, we have RMSE of data received (in KBs) per second
by all the destination nodes in the topology for the simulation
time (T), we calculated the average RMSE by dividing RMSE,
obtained as above, by T. While it could be argued that other
metrics should also be considered (e.g., flows-per-second), we
argue that bytes received is a good metric since bytes-per-
second are often used in research and in operations to assess
network state and behavior.

B. Temporal Parallelization Results

To evaluate temporal parallelization using the simple topol-
ogy, we conduct tests for 600 simulated seconds. We assess
speedup and accuracy by dividing the simulation configuration
into temporal chunks of size 2, 4, 8, 16, 30 and 60. Figure 3
shows time series graphs for total number of bytes received
(per second) for 2 (left) and 60 (right) temporal chunks.

Fig. 3: Data time series graphs for dumbbell topology using
temporal parallelization for 2 (left) and 60 (right) temporal
chunks.

The figure shows that in the 2 chunk case, pfs achieves a
high level of correlation with the baseline simulation run
without parallelization. There is a decrease in correlation at
the chunk boundaries because of our our approach for flow
time estimation. The graph for the 60 chunk test shows that
while the general characteristics remain similar, there is more
pronounced divergence between pfs and the baseline.

Figure 4 (left) shows the speedup achieved for different
levels of temporal parallelizations. We can see that the pre-
processing time remains fairly constant for different temporal
chunks and simulation time can be decreased by about 85%
when 60 temporal chunks are used. The accuracy achieved
by pfs is depicted in Figure 4 (right). The figure shows how
RMSE values increase as the number of temporal chunks
grows. Selecting the best position in the design space is clearly
dependent on user requirements and the details of individual
tests. However, these results suggest that meaningful speedups
and high accuracy can be achieved via temporal parallelization
using a small number of chunks.
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Fig. 4: Speedup (left) and Accuracy (right) achieved by tempo-
ral parallelization for different temporal chunks for dumbbell
topology.

C. Spatial Parallelization Results

To evaluate spatial parallelization using the simple topol-
ogy, we conduct tests for 100 simulated seconds. In these
tests, traffic load is generated in such a way that there is no
congestion on the shared bottleneck link B-C. Figure 5 shows
the data time series graphs for total data (in KBps) received
by destination nodes D (left) and F (right) after running
simulations on pfs and f s. The graph shows that there is perfect
correlation in the traffic time series. When we increase the
traffic load, correlation decreased somewhat, but still remained
quite high (graphs omitted due to space constraints).

To further assess spatial parallelization, we extended the
dumbbell topology in Figure 2 to include eight source-
destination nodes. We then ran simulations over a period



Fig. 5: Time series graphs of data transmitted in the dumbbell
topology with two source-destination pairs using spatial par-
allelization. Data received (in KBps) by destination nodes D
(left) and F (right).
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Fig. 6: Speedup achieved by Spatial Parallelization for different
spatial chunks for dumbbell topology 8 source-destination
pairs

of 600 simulated seconds. Figure 6 shows speedup achieved
for different numbers of spatial chunks. The figure shows
that preprocessing time is constant and extremely small for
different degrees of spatial parallelization. The reason that
preprocessing is so small is that analyzing S/D pairs for
traffic generation and subsequent spatial decomposition of the
topology is simple and efficient. The figure also shows that
the simulation time decreases by up to 90% when 8 spatial
chunks are used, with essentially negligible loss in accuracy.

D. Spatio-Temporal Parallelization Results

Next, we evaluate the speedup and accuracy achieved by
combining the spatial and temporal parallelization. We ran the
simulations for 600 seconds for the extended dumbbell eight
source destination pairs. Since spatial parallelization achieves
maximum speedup when the number spatial chunks is equal
to the number of source destination pairs in the topology, as
shown above, we use the number of spatial chunks to be equal
to 8. We ran the temporal parallelization preprocessor on each
of those chunks and varied the number of temporal chunks (2,
4 and 8).

Figure 7 (left) shows the speedup achieved by using 8
spatial chunks and different numbers of temporal chunks. This
further shows that significant speedups can be achieved—
reducing simulation times by two orders of magnitude. Fig-
ure 7 (right) depicts the RMSE values of the data received
by the destination nodes in the spatio-temporal tests. We can
tune the number of spatial and temporal chunks to achieve
desired level of speedup and accuracy. If we increase the
number of spatial chunks to be more than the number of source
destination pairs in the given input topology, then there is
no further benefit of spatial parallelization. We can achieve
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Fig. 7: Speedup (left) and Accuracy (right) achieved by
spatio-temporal parallelization for different temporal chunks
for dumbbell topology with 8 source-destination pairs.

more speedup by increasing the temporal chunks in that case,
but that comes at a cost of loss in accuracy. When there is
no congestion, we suggest that if the number of S/D pairs is
relatively small, maximum speedup can be achieved without
any loss of accuracy by selecting the number of spatial chunks
to be equal to the number of flows. After that, the number of
temporal chunks can be tuned to achieve further speedup, but
at the cost of accuracy.

Practical use of spatio-temporal parallelization depends on
the details of the target simulation. Specifically, selecting the
number of spatial chunks depends on the number of source-
destination pairs. Likewise, selecting the number of temporal
chunks depends on simulation length and the characteristics of
baseline traffic profiles. In each case, the user must consider the
decrease in accuracy that results from increased parallelization.
This suggests an iterative process where RMSE is compared
across configurations.

E. Parallelization Results for Complex Topology

We conducted tests on a larger network topology to provide
further perspective on pfs. We use NTT’s network topology
(obtained from Internet Topology Zoo [16]) as the starting
point for these tests. NTT’s network consists of 45 nodes
and 216 edges. We randomly generate flows across 7 source-
destination pairs in the topology. We ran the simulations
for 600 seconds using seven spatial chunks and varying the
number of temporal chunks (2, 4 and 8).

Figure 8 (left) show the speedup achieved by pfs for the
complex topology. The figure shows that significant speedups
are possible. The accuracy of pfs versus the baseline is shown
in Figure 8 (right). Similar to results reported above, accuracy
is inversely and speedup is directly proportional to the number
of temporal chunks. We also observe some degradation in
accuracy due to an increased number of shared links with the
larger topology, an issue we intend to investigate in future
work.

F. Parallelization Results for Large Topologies

Next, we evaluate the speedup achieved by spatial, tem-
poral and spatio-temporal parallelizations for larger config-
urations. We ran the simulations for 100 seconds for both
dumbbell and linear topologies by increasing the number of
nodes in logarithmic scale.

Figure 9 shows the speedup achieved by pfs for large
dumbbell (left) and linear (right) topologies with varying
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Fig. 8: Speedup (left) and Accuracy (right) achieved by spatio-
temporal parallelization for different temporal chunks for sim-
ulations of the NTT network topology.

number of nodes. In both topologies, all three decomposi-
tions show an order of magnitude speedup. In particular, the
spatial and spatio-temporal decompositions are significantly
faster than the base with an order of magnitude fewer nodes.
We hypothesize that since multiple flows, e.g., in congestion
scenarios, potentially end up in the same temporal chunk,
temporal parallelization can incur additional simulation time
compared to the other two decompositions.

G. Parallelization Results for Very Large Topologies

Finally, we test the speedup achieved by all three par-
allelizations by scaling the number of nodes further in the
large configuration. For these very large topologies, which
are atypical in the Internet [17], our simulation goal is to
demonstrate the scalability and successful completion of pfs
for sizable number of nodes. To that end, we ran tests for
100 seconds for both dumbbell and linear 10K topologies,
and Table I shows the completion times achieved by pfs for
the different decompositions. While the original scenario in
the very large configuration did not finish, the parallelized
sub-scenarios completed in reasonable time demonstrating the
scalability of pfs.

Spatial Temporal Spatio-temporal
Dumbbell 2610.62 6862.46 1704.90

Linear 9614.38 20151.03 8679.53

TABLE I: Completion time (in seconds) for 10K dumbbell
and linear topologies achieved by pfs for spatial, temporal and
spatio-temporal parallelizations.

V. RELATED WORK

Developing techniques to improve the execution speed of
network simulations has been an area of ongoing research for
quite some time. One set of approaches has focused on network
simulation at a higher level of abstraction than the packet
such as a network flow. In this vein, one approach is to use
fluid-flow models to simulate aggregate network flow behavior,
e.g., [18]. This technique has been recently used in large-
scale data center networking studies (e.g., [19], [20]). Two
key limitations of fluid-flow models are (1) that they assume
unrealistically infinite end-to-end flows, and (2) that for them
to be most scalable, they must operate an open-loop manner.
Indeed, Liu et al. found that in congested network scenarios,
fluid-flow simulation can be more expensive than packet-level
simulation because of overheads in accommodating network
feedback.

A different flow-level simulation approach is exemplified
by fs [1] in which a higher-level abstraction is used (the
flowlet), but one that relates directly to real networking features
(e.g., discrete packets). Models of TCP throughput behavior
are typically used to drive these types of simulators (e.g., [11],
[12]), and because they operate at a higher-level of abstraction
than the packet, they offer significant speed advantages.

While flow-level simulation is appropriate for some types
of experiments, some studies require simulation of low-level
packet behavior. In these systems, the main approach toward
achieving high performance has been to parallelize the sim-
ulation either through spatial or temporal partitioning of the
simulation scenario. The key challenge in either approach is to
ensure correct temporal ordering of packet-level events across
different partitions either by enforcing particular constraints, or
by detecting ordering violations and “recovering” from those
violations [21], [22]. These approaches have led to highly
scalable packet-level simulators, e.g., [23]–[25]. For example,
in [23] scenarios involving 1,536 nodes and very high (simu-
lated) packet rates were reported. Commonly used packet-level
network simulators such as ns-2 and ns-3 have received par-
allelization efforts (typically through spatial decomposition),
and substantial speedups are typically reported [24], [26].

Our work differs from all these prior efforts in that
we address parallelization for flow-level simulation. While
simulating at the flow-level already offers efficiency gains
over packet-level simulation, further improvements are clearly
possible as we show in this paper. The partitioning approach
we take is based on the work of Yao et al. [27], which
fundamentally differs from prior parallelization approaches
(cf. [22]). We further apply the approach of Yao et al. to the
new context of flow-level simulation.

VI. CONCLUSIONS AND FUTURE WORK

A key challenge in assessing new Internet systems, proto-
cols and configurations is understanding how they will behave
when broadly deployed. This calls for the ability to test and
evaluate at scale in a representative and repeatable fashion.
While simulation would appear to be ideally suited for these
kinds of tests, standard network simulators such as ns-2 are
unable to fulfill this need due to their basic architecture, which
is focused on packet dynamics at fine time scales.

In this paper, we describe pfs, a set of extensions to the fs
network simulator, which is based on a higher-level abstraction
called a flowlet and enables highly accurate simulations of
large networks. pfs enables simulations to be parallelized and
run in massively-parallel computational environments, which
are widely available. The goal of pfs is to enable simulations
of very large networks such as would be found in large
enterprises, service providers and data centers. Spatial and
temporal decomposition in pfs is performed by careful analysis
and reconfiguration of the traffic generation process for a given
simulation.

We conducted a series of tests that demonstrate the capa-
bility of pfs. Using a very simple dumbbell network topology,
we show that the preprocessing step in pfs has a very modest
overhead, and that temporal, spatial or spatio-temporal par-
allelization all result in significant speedup. These tests also
highlight the tradeoff between speedup and accuracy versus
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Fig. 9: Speedup for dumbbell (left) and linear (right) topologies achieved by pfs for spatial, temporal and spatio-temporal
parallelizations.

a baseline serial simulation. We evaluate pfs using a larger
network topology that is representative of a service provider
network, and with large topologies of up to 10K nodes. Results
from these tests also show that pfs can provide a reduction in
simulation time of at least two orders of magnitude.

While we believe that pfs offers unique capabilities to
simulate very large networks, there are number of issues that
we will address in future work. First, we plan to continue to
focus on improving simulation accuracy when simulating very
large networks. Next, we will focus on the practical problem
of how to specify, configure and evaluate simulations of very
large networks e.g., by creating canonical configurations that
can be used by both researchers and practitioners. Finally, we
also plan to benchmark the changes in results by evaluating pfs
with a wide variety of relatively complex network and typical
large-scale data center topologies.
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