
An Architecture for IoT Clock Synchronization
Sathiya Kumaran Mani†, Ramakrishnan Durairajan#, Paul Barford†, Joel Sommers*

†University of Wisconsin - Madison #University of Oregon *Colgate University

Abstract
In this paper, we describe an architecture for clock synchro-
nization in IoT devices that is designed to be scalable, flexibly
accommodate diverse hardware, and maintain tight synchro-
nization over a range of operating conditions. We begin by
examining clock drift on two standard IoT prototyping plat-
forms. We observe clock drift on the order of seconds over
relatively short time periods, as well as poor clock rate stabil-
ity, each of which make standard synchronization protocols
ineffective. To address this problem, we develop a synchro-
nization system, which includes a lightweight client, a new
packet exchange protocol called SPoT and a scalable reference
server. We evaluate the efficacy of our system over a range of
configurations, operating conditions and target platforms. We
find that SPoT performs synchronization 22x and 17x more
accurately than MQTT and SNTP, respectively, at high noise
levels, and maintains a clock accuracy of within ∼15ms at
various noise levels. Finally, we report on the scalability of
our server implementation through microbenchmark and wide
area experiments, which show that our system can scale to
support large numbers of clients efficiently.

CCS Concepts
•Networks→Network protocol design; Time synchroniza-
tion protocols;
Author Keywords
Time; Internet of Things; SNTP; MQTT; Measurement;
Wireless

INTRODUCTION
Distributed Internet applications, including gaming, monitor-
ing and real-time control, require that participating hosts have
synchronized clocks. Such synchronized clocks on network-
connected devices enable shared experiences for users and
coordination of application behaviors and interactions at spec-
ified times.
Although the issue of clock synchronization in widely-
distributed systems has been studied for many years (e.g.,
see [23, 25, 26]), Internet of Things (IoT) devices introduce
several challenges. First, an objective in IoT device design is to
minimize costs. This implies the use of lower quality hardware
components including oscillators that generate clock signals
on those devices. Second, IoT devices are often deployed in
environments with a broad range of operating temperatures.
Low-quality clocks have been shown to run at widely varying

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IoT 2018, October 15-18, 2018, Santa Barbara, CA, USA

© 2018 ACM. ISBN 978-1-4503-2138-9. . . $15.00

DOI: http://dx.doi.org/xx.xxxx/xxxxxxx.xxxxxxx

rates depending on temperature [32]. Finally, IoT devices
often have limited computation and communication capabil-
ity, which can constrain their ability to participate in standard
clock synchronization protocols.

In this paper we consider the problem of synchronizing clocks
in IoT devices with a remote reference source.1 While Net-
work Time Protocol (NTP) would be a natural solution for
clock synchronization, typical configurations require stateful
client computation and on-going communication with refer-
ence source(s), which make Simple Network Time Protocol
(SNTP) and similarly lightweight mechanisms a more attrac-
tive choice.2 The goals of our work are to understand how
clocks operate on IoT devices and how they can be synchro-
nized in an accurate and efficient fashion.
The target platforms for our study are the well known Arduino
MKR1000 and the Raspberry Pi3, both of which are often
used for IoT prototyping. We begin by examining the drift
characteristics on these platforms using raw millisecond coun-
ters. Our experiments on the different Arduino devices show
inaccuracies in synchronization ranging from 700 ms to as
high as 1600 ms. Next, we test clock rate stability over a
range of temperatures that might be experienced for typical
IoT device deployments. We observe clock drift as high as 600
ms over relatively short time periods. Finally, we characterize
the stability of the clock hardware by measuring the Allan
variance [27]. We find that IoT clock hardware shows high
variability and less stability than traditional PC clock hardware.
These results motivate new synchronization mechanisms that
can accommodate lower clock stability and diverse clock drift
characteristics.

To improve synchronization of IoT devices, we develop a new
clock synchronization architecture that is designed to be scal-
able, lightweight and to enable synchronization on the order
of 10 ms over a range of operating conditions. The central
components in our design are (i) a lightweight implementation
for IoT devices/clients, (ii) a scalable implementation of refer-
ence servers that compute all key parameters (e.g., clock offset,
rate, etc.), and (iii) a packet exchange protocol that we call
Synchronization Protocol for ioT (SPoT). In our system, IoT
clients simply contact a SPoT server and adjust their clocks
to the value indicated in SPoT response packets with no addi-
tional computation required. This architecture allows SPoT
to be used for time synchronization in many IoT deployment
scenarios such as environmental sensing and early warning
systems, smart homes, smart grids, smart vehicles, factory
floor automation, gaming and IoT blockchain applications to
name a few.
1This differs from the problem of synchronizing clocks in a local
deployment such as sensor networks, which may not require synchro-
nization with a global reference.
2We are not aware of any NTP client implementations for IoT.

http://dx.doi.org/xx.xxxx/xxxxxxx.xxxxxxx


The key technical challenge in our work is to develop clock
synchronization algorithms that are robust to the wide range
of clock drift and offsets that are expected in large IoT de-
ployments. We address this problem by developing two novel
algorithms: one that synchronizes clock rates and one that ad-
dresses path asymmetry between client and server. The latter
is developed in conjunction with a standard filtering method
that allows packets with the best estimates to be selected.
We develop prototype implementations of the client and server
components of our system to evaluate its efficacy over a range
of configurations, operating conditions and target platforms.
First, we find that SPoT outperforms MQTT-based clock syn-
chronization mechanism and reports 16x, 19x, and 22x better
clock offsets in the presence of three different levels of noise.
Similarly, SPoT reported offsets are 3x, 10x, and 17x better
than SNTP. Next, we calculate the clock rate error (i.e., Root
Mean Squared Error (RMSE) values) using NTP-reported off-
sets values and find that SPoT consistently maintain accuracy
within ∼15 ms at different noise levels. Finally, we demon-
strate the scalability of our server implementation in a series
of micro-benchmark and wide area tests.
BACKGROUND AND ASSUMPTIONS
Clock synchronization errors
Synchronizing a client’s local clock with a reference time
source consists of calculating two interdependent components:
(i) clock offset; and (ii) clock skew or rate-error, which is the
difference in rate or frequency between the client’s clock and
the remote reference. While the offset synchronization (i.e.,
calculating offset) is sufficient for general coordination of
events among distributed clients, rate synchronization (i.e.,
calculating clock skew) is necessary to achieve tight synchro-
nization. Surprisingly, while skew is a predominant source
of synchronization error [29], it is occasionally overlooked in
distributed clock synchronization algorithms. As we discuss
below, inexpensive clock hardware is relatively unstable com-
pared to traditional PC clock hardware and significant clock
drift between synchronization requests exacerbates error.
Two-way synchronization method
A fundamental operation in distributed clock synchronization
is the timestamped exchange of packets between a client and a
reference, where exchanges are typically initiated by the client.
This method, known as the two-way exchange, often begins
with the client sending a request packet at time t1. The server
receives the packet at time t2 and sends a reply at time t3; the
reception time of the reply at the client is t4. Timestamps t1
and t4 are from the client’s clock, where as t2 and t3 are from
the server’s clock. The round trip time (RTT) of the exchange
is given by RT T = (t4− t1)− (t3− t2).

Some synchronization protocols (e.g., SNTP) assume a sym-
metric forward (i.e., client-to-server) and reverse (i.e., server-
to-client) delay. That is, they calculate One Way Delay (OWD)
to be half of the RTT. Hence at true time t2, the client’s
time (Tclient) and offset with respect to t2 are expressed as
Tclient(t2) = t1+owd and o f f set(t2) = t2− (t1+owd).

The key takeaway is that the accuracy of the two-way exchange
in calculating the clock offset at the client depends on the
validity of the assumption that the forward and reverse delays
are symmetric and specifically that the forward delay is half of

RTT. When this assumption is invalid due to path asymmetry,
the delay gets added to the calculated offset as error. To
illustrate the issue, consider an example in which the RTT of
the exchange is 600 ms, with the forward delay being 400 ms
and the reverse delay being 200 ms. If the client’s clock is
behind the reference by 20 ms, the correct offset that needs to
be calculated from this exchange should be +20 ms. Because
of the assumption of symmetric forward and reverse delays,
however, the forward OWD is calculated as 300 ms with an
underestimation error of 100 ms (which is half of the path
asymmetry of 200 ms). This error in the calculation of the
OWD is reflected in the offset calculation: +120 ms instead
of the expected value of +20 ms. Similarly, if the forward and
reverse delays are 200 ms and 400 ms, the calculated offset
would be -80 ms due to the overestimation of the forward
OWD by 100 ms. It can be shown that the error in offset
calculation is bounded by 0.5 * RTT.

In wireline hosts, OWD asymmetry can occur due to path
dynamism and variable switching delays, among other rea-
sons. Such variability is often more pronounced in wireless
hosts due to wireless effects such as interference and channel
noise [21]. Given that the asymmetry error is bound by half of
RTT, synchronization protocols typically address the error by
preferring samples with smaller RTTs over others. Moreover,
synchronization protocols treat this as a statistical variability
problem, hence their filtering approaches require multiple sam-
ples to pick the best RTT. For instance, NTP addresses this
problem by collecting measurements from multiple reference
servers and picking the server with the least RTT dispersion.
From all the samples from that server, NTP selects the sample
with the smallest RTT. Similarly, RADClock [34], which has
been shown to outperform NTP in terms of accuracy, maintains
a moving window of measurements and uses a weighted sum
of measurements within the window to calculate the offset.
Specifically, the samples with RTTs closer to the minimum
RTT are weighted more than those that are much larger. Both
protocols require multiple measurements for every offset cal-
culation, extensive tuning, and in the case of the RADclock, a
lot of state. Approaches like Kalman filtering attempt to ad-
dress these errors by modeling the clock in order to calculate
the offset from noisy measurement samples. In addition to the
difficulty of accurately modeling clock hardware, particularly
for inexpensive hardware like those used by IoT devices, it
is also computationally intensive, limiting scalability. In ad-
dition, Kalman filtering has been shown to exhibit degraded
performance in the presence of non-Gaussian outliers [19].

Assumptions
Our architecture assumes that: (1) IoT devices are capable of
connecting to a cloud server, and (2) IoT protocols support
heterogeneous protocol stacks. Our architecture accommo-
dates both WiFi-enabled devices that can connect directly to
the cloud or that can function as a bridge.

To support a wide range of IoT devices, we do not assume
availability of unlimited compute power and/or processing
capability. Although our experiments target specific IoT plat-
forms, we assume that the IoT device may have a very low-
quality oscillator (e.g., ceramic instead of crystal [31]) and a
limited energy source. Lastly, we assume that IoT devices can



respond to incoming packets and can adjust their clocks based
on offset values sent to them. In our ongoing work, we are ex-
amining how to efficiently and accurately synchronize devices
that are intermittently connected, or may be disconnected over
long durations. Finally, we do not specifically address security
issues in this paper. Similar to other protocols, we assume that
IoT devices will initiate time synchronization to a specified
set of servers, which provides a minimal level of assurance.
We posit that additional modes of packet exchanges, including
secure hashes (e.g., to detect man-in-the-middle attack) and
encryption could be used without affecting the accuracy or
correctness of our synchronization approach. We intend to
develop a more complete security model in future work.
Applicability of SPoT for IoT deployments
Given the design goals and the architecture of SPoT, we argue
that it is applicable in a wide range of IoT applications and we
describe several deployment scenarios that would be able to
utilize our architecture. Consider a smart cloud manufacturing
(S-CM) [30] shop floor environment that requires tight clock
synchronization between sensors, controllers and tools in order
to assure quality and productivity and provide real-time moni-
toring. Further, to gain insights into telemetry data fused from
globally distributed manufacturing sites, time synchronization
with a global time reference such as coordinated universal
time (UTC) becomes crucial; SPoT is an ideal candidate in
such a scenario. Another example is earthquake detection IoT
networks [2, 10] that use cloud-connected devices to detect
earthquakes in real-time. Tight time synchronization with a
global time source enables the development of sophisticated
real-time earthquake detection algorithms, and such low-cost
IoT networks could utilize SPoT for accurate time synchro-
nization. Yet another example is IoT deployments that utilize
public blockchains to ensure trust and accountability [14, 12,
13]. Blockchain implementations require time synchroniza-
tion for protocol correctness [7, 11] and preliminary code
inspections reveal that popular blockchain implementations
use SNTP [1] which is shown to perform poorly under noisy
network conditions (see below and [21]). In such deploy-
ments, SPoT can facilitate accurate time synchronization.
TIME SYNCHRONIZATION IN IoT ECOSYSTEM

Experimental setup
IoT devices. In our experiments we use four different Arduino
MKR1000 devices (to compare instances of the same device),
a commonly used platform for IoT prototyping [3], and one
Raspberry Pi3 (to contrast with the Arduino). In all our wide
area experiments, we use Amazon’s AWS IoT cloud, and the
message broker is colocated with the cloud server.

Testbed. Our testbed includes three components: (1) a wire-
less access point (WAP), (2) IoT device, and (3) a monitor
node (MN, Macbook pro laptop). The IoT device connects to
the IoT cloud through the WAP. The MN is connected to the
IoT device over a serial port interface and is used to collect
timestamps (and other relevant statistics) from the device. In
the experiments described below, the NTP-corrected system
clock of the MN is used as the reference clock to benchmark
the internal system clock of the IoT device. That is, the MN
is synchronized with 0.pool.ntp.org before the start and
throughout the duration of experiment, which is 1 hr. We

run the experiment for 24 hrs to collect clock offset (for all
devices), which we use in our trace-driven analysis for testing
SPoT’s scalability (§SPoT Evaluation).
Drift characteristics of clock hardware
To gain perspective on IoT clock synchronization we exam-
ine the drift characteristics of different Arduino hardware
instances. We also consider clock drift under different am-
bient temperature conditions. Our experiments gather a pair
of timestamps every second. The first timestamp is obtained
using the NTP-disciplined system clock of the monitor node.
The second is a raw millisecond counter value obtained from
the IoT hardware’s clock over the serial port. We then calculate
clock offsets using the timestamps measured from the IoT de-
vice’s raw counter and from the NTP-corrected monitor node.
We run the experiments at three different locations: (a) L1: a
temperature-controlled server room maintained at ∼14 ◦C, (b)
L2: an office room setting at ∼21 ◦C, and (c) L3: a residential
apartment at ∼27.5 ◦C. We consider these temperatures as
representative of common real-world IoT deployments.

Figure 1 shows the calculated clock offsets throughout the ex-
periment for different hardware instances at locations L2 (left)
and clock offsets of the same hardware instance at all three
locations L1, L2 and L3 (middle). Visually, we observe that
different hardware instances of the same prototyping platform
show quite different drift characteristics and drift rates and
hence different values of clock offset for the same duration
of the experiment. Further, even the same hardware instance
exhibits different clock drift rates depending on the ambient
temperature. The plots show that the difference in behav-
ior due to the differences in ambient temperature is apparent
even for small durations (i.e., 10 min). The variability in drift
characteristics implies that accurate synchronization will be
challenging for any mechanism that expects a uniform drift
characteristic from all IoT devices. Moreover, for mechanisms
that expect to model the clock hardware and that involve the
use of training data, we posit that clock synchronization will
be resource intensive due to the need to model/train on a wide
range of drift characteristics at different temperatures [18, 17].
Stability of clock hardware
Next, we compare the stability of clock hardware on the Ar-
duino devices with the Raspberry Pi3. A typical measure of
oscillator stability (and hence clock stability) is the Allan vari-
ance [27]. Given a series of consecutive offset measurements
of a clock at certain measurement interval τ , the fractional
frequency or instantaneous clock skew is the rate of change of
offset calculated using consecutive offset measurements. The
Allan variance is an estimator of the variance of the clock skew
for the given measurement interval. Since the rate stability of
a clock is a function of τ , often the square root of the Allan
variance called the Allan deviation is plotted as a function of
τ on a log-log curve to study clock stability [34].

The Allan deviation curve of typical PC clock hardware when
viewed on a log-log plot is often made up of two lines: (a)
the line with a slope of -1, dominated by white phase noise,
which is the measurement noise characteristic of the channel;
and (b) the line with slope of +0.5, dominated by the random
walk noise, which is characteristic of the clock wander. The
intersection of these two lines—which is also the inflection



0 500 1000 1500 2000 2500 3000 3500 4000

Time from start of experiment (s)

−200

0

200

400

600

800

1000

1200

1400

1600

C
lo
ck

 o
ff
se

t 
(m

s)

IoT device 1

IoT device 2

IoT device 3

IoT device 4

0 100 200 300 400 500 600 700 800

Time from start of e periment (s)

−200

−100

0

100

200

300

400

500

600

C
lo
ck
 o
ff
se
t 
(m

s)

IoT device 4 at L1

IoT device 4 at L2

IoT device 4 at L3

100 101 102 103 104

Tau (s)

10-7

10-6

10-5

10-4

A
lla
n
 D
e
v
ia
ti
o
n

IoT Device 1

IoT Device 3

Raspberry Pi3

Figure 1: Comparison of drift characteristics of different Arduino devices (left) and same Arduino device under different
ambient temperatures (middle) and comparison of Allan deviation plots of Arduino devices 1 and 3 and Pi3 (right).

point in the curve—is called the Allan intercept. The Allan
intercept characterizes the given clock hardware and network
path: that is, it represents the measurement interval where the
error due to the measurement noise from the network path
and the frequency error due to the wander of the clock would
be minimal. Thus, it is an important statistic that influences
the design of rate synchronization and polling behavior of
many time synchronization protocols such as NTP [28] and
RADClock [34]. These protocols expect to see the intercept
in the range of τ = 1000 s.

Figure 1 (right) shows the Allan deviation plots for the Rasp-
berry Pi3 and two Arduino devices (i.e., IoT devices 1 and 3)
used in our experiments, all using offset measurements col-
lected at location L2. The shape of the Allan deviation curve
and the Allan intercept around 1000 s for Pi3 is consistent with
prior studies[24]. From the figure, it is clear that the stability
of Arduino clock hardware is much lower and does not satisfy
the stability assumptions made by other clock synchronization
protocols. The Allan deviation is in between 10−4 and 10−5,
that is, the variability of the clock frequency/rate is in the range
of 10s of ms even for short measurement intervals, which is
consistent with our earlier observations (see Figure 1). Also
the flatter Allan deviation curves indicate that the clock wander
effects start to dominate much earlier that 1000 s. It should be
noted that the Allan deviation of Pi3 is slightly higher than the
one seen in [24], which is simply because of our measurement
setup where we measure Pi3 offsets from across a LAN us-
ing the monitor node in our setup discussed in §Experimental
setup—an observation consistent with prior studies [28]. From
Figure 1 (right) it is evident that IoT hardware do not meet
the design assumptions used by synchronization protocols like
NTP, RADClock, etc., signaling the need for synchronization
mechanisms that can accommodate lower clock stability and
diverse clock drift characteristics. This lower observed sta-
bility also implies that the estimation of Allan intercept as
part of the synchronization mechanisms would be quite chal-
lenging and calls for simpler methods to estimate the stability
of the clock and to pick suitable measurement/polling inter-
vals. These insights are key to our proposed approach for rate
synchronization and varying the polling interval.
SYNCHRONIZATION PROTOCOL FOR ioT
SPoT Architecture
Our synchronization algorithms are designed to be lightweight
and scalable. The basic design components include software
that runs on clients and a server infrastructure that runs in
a cloud environment. To support IoT devices with different

computational capabilities, our architecture allows two types
of synchronization clients namely, thick clients and thin clients.
Thick clients run the lightweight synchronization algorithms
with the polling interval between synchronization requests,
which are determined by the algorithms. The server simply
responds to the timestamped message exchanges initiated by
these clients. For thin clients with limited compute capabilities,
the synchronization algorithms are run on the server. Thin
clients respond to timestamped message exchange requests
sent from the server and use the offset and the clock skew
provided by the server. Further, the energy limitations of the
IoT devices can be addressed by choosing different polling
regimes and by setting the Error Margin (EM) accordingly.
Beyond the core components, our system includes algorithms
for offset and rate synchronization, described below.
Offset synchronization in SPoT
The key to achieving good offset synchronization is to directly
address asymmetry errors. This is accomplished by identify-
ing the direction (i.e., is the asymmetry on the forward or the
reverse path?) and magnitude of the asymmetry. Once these
have been identified, SPoT corrects for the asymmetry error
in the offset calculation. To identify the direction of the asym-
metry for a given measurement, we consider how the offset
is affected by a particular measurement. Given an expected
offset, from the earlier discussion, it is clear that an asymmetry
in the forward direction (i.e., client-to-server) increases the
expected offset by an amount equal to half of the magnitude of
asymmetry; similarly, an asymmetry in the reverse direction
(i.e., server-to-client) decreases the offset by an amount equal
to half the magnitude of the asymmetry. Hence by comparing
the computed offset to the expected offset, the direction of the
asymmetry can be inferred. This insight forms the basis of
SPoT’s filtering approach. The magnitude of the asymmetry
is estimated to be the difference between the minimum RTT
of all samples seen so far and the RTT of the current sample.

SPoT uses the offset synchronization algorithm to correct
the error introduced by asymmetric path delays. Given the
clock skew, last known offset and its measurement time, the
algorithm calculates an estimate of the current clock offset
and the magnitude of the asymmetry. If the measured offset is
significantly greater than the estimated offset, the asymmetry
is determined to be on the forward path and the measured
offset is corrected accordingly. Similarly, correction is also
applied for reverse path asymmetry. If both the tests are not
satisfied, the additional delay is inferred to be a symmetric
additional delay and the measured offset is accepted without



any correction. The test to check if the measured offset is
significantly greater or lesser than the estimated offset is based
on a user tunable threshold called the EM, which is set to 10ms
in our experiments.3 Further details of the offset algorithm
can be found in [20].
Rate synchronization in SPoT
An important input in our system is the clock skew, which is
required for calculating an estimated clock offset. For devices
with lower-quality clock hardware that can drift significantly
between synchronization points (see §Time Synchronization
in IoT Ecosystem), the clock skew is also necessary for cor-
recting for the clock drift when reading time on the device
between synchronization points. Estimating and updating the
clock skew is the problem of rate synchronization. SPoT’s
rate synchronization algorithm works in conjunction with its
offset estimation algorithm.

The accuracy of the calculated clock skew depends on the
stability of the clock hardware and the duration between subse-
quent measurements. For stable clock hardware, the calculated
clock skew will remain valid and accurate for longer durations
and hence the polling intervals could be large. For hardware
that is less stable, the clock skew should be updated more of-
ten and hence the reference should be polled more frequently.
Further, the accuracy of the clock skew has an impact on the
accuracy of the offset algorithm. SPoT’s rate synchronization
algorithm uses this insight to determine the stability of the
clock hardware and picks the best possible polling interval
between measurements.

The rate synchronization is run every time the offset algorithm
is executed. The frequency of running the offset algorithm
and hence the frequency of polling or measuring the clock
offset is controlled by the polling interval as determined by the
rate synchronization algorithm, which calculates the absolute
error between the estimated offset and the corrected offset for
every offset synchronization point. For an observation time
(set to 5 minutes in our experiments) or at least until 5 such
absolute errors have been observed, which ever is longer, the
algorithm calculates a running mean of these absolute errors.
Once the observation time has expired, the mean absolute error
is compared against the EM. If the mean absolute error is less
than twice the EM, the clock is determined to be stable and
hence the polling interval is increased. Similarly, if the mean
absolute error is greater than twice the EM, the clock is deemed
to be unstable and the polling interval is decreased accordingly.
Further, higher quality samples, where the measured offset and
corrected offset are same, are used to update the clock skew.
The amount of increase or decrease applied to the polling
interval depends on the polling style chosen by the user.

The polling style could be Additive Increase and Multiplicative
Decrease (AIMD) or Multiplicative Increase and Multiplica-
tive Decrease (MIMD) depending on the accuracy require-
ments and energy budget of the device. For devices with lower
energy budget (e.g., operating on battery power) and lower
accuracy requirements, MIMD could be used. MIMD is ag-
gressive in increasing the polling interval in order to reduce the
3This threshold was determined experimentally and proved to be
robust across our evaluations. We do not include a sensitivity analysis
due to space limits.

number of offset synchronization measurements for slightly
reduced accuracy. EM could also be increased by the user to
further decrease the polling cost incurred by the synchroniza-
tion algorithms in lieu of synchronization accuracy. Further
details of the rate synch algorithm can be found in [20].
SPoT Implementation
To accommodate both thick and thin clients, SPoT implemen-
tation consists of four major components: (1) the core library
implementing synchronization algorithms for thick clients,
(2) the scalable reference server implementation that supports
both thick clients and thin clients, (3) a reference implementa-
tion for a thin client, and (4) a client emulator that can support
multiple thin clients on a single physical node, used in our scal-
ability experiment (see §SPoT Evaluation). The core library
is implemented in ∼400 lines of C and can be directly used
by thick clients and the reference server implementation. The
library is designed to be lightweight even for thick clients and
maintains only 15 variables to manage the synchronization.
SPoT’s lightweight implementation makes it well-suited for
resource-constrained IoT platforms, some of which do not
allow tasks to run in a dedicated thread [9]. Existing synchro-
nization systems that run in dedicated daemon processes [5,
34] would simply not be possible on such platforms.
SPoT EVALUATION
Experimental Approach
To test the synchronization accuracy of SPoT and to compare
SPoT to other protocols such as SNTP, MQTT, and filtering
methods used by MNTP [21] and ntpdate [8], we add obser-
vational noise to the collected offsets and perform trace driven
analysis. We compare SPoT with these protocols due to their
widespread adoption in the Internet [21] and the preference
among developers to use these protocols for a surprisingly
wide range of scenarios from popular mobile applications [4,
6] to blockchain clients [1]. We use a trace driven approach
since the addition of noise in live tests is extremely difficult to
control. The observational noise is drawn from a normal distri-
bution with zero mean and a given standard deviation, which
we set at different levels in our experiments. To ensure that
both noisy and noiseless offset observations are equally proba-
ble, we add the observational noise to each offset measurement
in the trace with probability 0.5. To generate RTT measure-
ments corresponding to the noisy offset measurements, we
begin with the observation that the two-way method halves
the actual noise and the actual noise is simply additive delay
on top of the path RTT. That is, we start with a given path
RTT and add twice the absolute value of the corresponding
observational noise as an additive delay. The path RTT which
is set to 300 ms4 in our analysis can be set to any nominal
value without affecting the results of the analysis. We do not
consider network errors such as packet drops, duplicates etc.,
since the mechanisms to handle these errors such as retries
and timeouts are implementation details that do not affect the
correctness or accuracy of our algorithms. We do not consider
scenarios like extended periods of loss of connectivity and
plan to address this as part of our future work.

Using the traces, we compare SPoT to other protocols at three
levels of noise: low, medium, and high; where the standard
4We selected this value to approximate the RTT between an IoT
device and a cloud-based reference server.



deviations of the noise distribution are set to 50 ms, 150 ms,
and 250 ms respectively. We run the different synchronization
protocols on the 24-hr trace and collect statistics including
RMSE, minimum, maximum, and standard deviation of offset
errors. In our results, we report error statistics averaged over
100 runs. In all of our experiments, we run SPoT with AIMD
polling behavior and with error margin set to 10 ms. Moreover,
in addition to comparing SPoT with widely-used IoT-specific
synchronization protocols, we also compare SPoT with two
other mechanisms. (1) Consensus is the offset filtering method
used in [21] for bootstrapping the synchronization mechanism
with high quality measurements. To report each offset, the
Consensus method makes 8 measurements, each 15s apart.
Outliers are eliminated and the average of the remaining mea-
surements are used. (2) MinRTT is the filtering approach
used by the standard ntpdate implementation where an off-
set measurement with a minimum RTT among 8 samples is
selected [8]. In our evaluations we do not compare thick and
thin implementations since they offer the same accuracy.
SPoT vs. other protocols
Offset errors. Table 1 compares the RMSE among different
synchronization protocols at different noise levels. The values
in parenthesis are the RMSE values obtained from raw offset
measurements without any filtering. Since SNTP and MQTT
have no filtering capabilities, their offsets are the same as raw
offsets. From the table we observe that SPoT performs con-
sistently well by maintaining the same level of accuracy (∼10
ms), even under high noise levels, where as the accuracy of
other protocols deteriorate with increasing noise levels. Specif-
ically, SPoT performs 16x, 19x, and 22x better than MQTT in
low, medium, and high noise levels. Similarly, SPoT provides
3x (low), 10x (medium) and 17x (high) better accuracy versus
SNTP. Of all the protocols examined, MQTT has the lowest
clock synchronization accuracy followed by SNTP. Although
Consensus and MinRTT methods perform well with low noise
levels, their accuracy is affected by increases in noise levels.
Table 1: Comparison of synchronization RMSE (ms) val-
ues at different noise levels.

Protocol Low noise Medium noise High noise
SPoT 10.0 (35.6) 9.3 (102.1) 8.9 (173.4)
SNTP 36.2 (36.2) 105.5 (105.5) 161.7 (161.7)
MQTT 162.5 (162.5) 196.6 (196.6) 225.7 (225.7)

Consensus 9.1 (34.5) 27.0 (109.8) 42.5 (175.7)
MinRTT 8.7 (34.8) 21.8 (107.0) 41.9 (177.5)

Figure 2 shows the offsets reported by SPoT for the first hour
of the experiment under high noise level for IoT devices 1
(top) and 2 (bottom). From this figure, we first observe that
SPoT is effective in correcting offset measurements in the face
of high noise levels, whereas the unfiltered offsets produced by
SNTP are as high as 600 ms. Second, we see that clock skew
estimates produced by SPoT’s rate synchronization algorithm
follow the original ground truth offset, despite the different
non-linear clock drift trends of devices.

We also compared the performance of SPoT, MNTP, and SNTP
using a separate trace-based experiment. In this experiment,
we assume the client is running in an IoT bridge environment
since MNTP makes certain assumptions about clock drift that
make it inappropriate to use directly on an IoT device that
may exhibit non-linear drift [21]. The trace used was of SNTP
packet exchanges every 5s, used in our prior work [21]. Since

SPoT uses a variable polling interval, we interpolated the raw
SNTP measurements by using the same value for any time
during a given 5s interval. The maximum synchronization
RMSE (ms) for SPoT, MNTP, and SNTP, was 0.72, 6.172, and
51.89, respectively, showing that SPoT’s algorithms provide a
significant boost in accuracy over the other techniques.

0 500 1000 1500 2000 2500 3000 3500 4000
−600

−400

−200

0

200

400

600

800

1000

R
e
p
o
rt
e
d
 O

ff
se

t 
(m

s)

Unfilte ed offsets

Clock offset (g ound t uth)

SPoT offsets

0 500 1000 1500 2000 2500 3000 3500 4000

Time f om sta t of expe iment (s)

−200

0

200

400

600

800

1000

1200

1400

R
e
p
o
 t
e
d
 o

ff
se

t 
(m

s)

Figure 2: Offsets of IoT devices 1 (top) and 2 (bottom)
reported by SPoT from the first hour of the experiment
with high noise level.

Error statistics. To complement Figure 2, Table 2 shows the
minimum, maximum and standard deviation of offset errors
for the different synchronization protocols for high noise level.
We make two key observations: (1) since MQTT is a push-
based mechanism that simply publishes the timestamps to IoT
clients, a major source of error is the uncorrected OWD in the
published timestamps; and (2) none of the synchronization
mechanisms, except SPoT, provide rate synchronization and
simultaneous variation of polling interval based on stability of
device’s clock (i.e., they run with a default polling value of 128
s). The minimum error of 0 ms for all protocols except MQTT
is due to their ability to identify/use noiseless measurements
in/from a noisy environment. While Consensus and MinRTT
protocols reduce the maximum error with respect to the raw
unfiltered offset measurements, it is clear that SPoT is more
effective: it bounds the maximum error to be within 50 ms.
Furthermore, the standard deviation of offset errors for SPoT
is lower than other protocols (i.e., within 10 ms).

Next, we calculate the rate errors at each synchronization point
by estimating an offset using the clock skew provided by SPoT
in comparison with the ground truth offset value. Hence these
errors provide a bound for worst case offset errors incurred
by using the clock skew estimates that are produced by the
rate synchronization process. We observe that SPoT’s rate
synchronization is able to achieve RMSE values of 14.7 ms,
13.3 ms and 13.5 ms under conditions of low, medium and high
noise. It is clear that SPoT’s rate synchronization accuracy
is consistent under all noise levels (i.e., rate errors are less
than 15 ms). Since the rate synchronization mechanisms vary
the polling interval depending on the stability of the clock
hardware, we note that SPoT’s polling is adaptive and robust
to all noise levels.

SPoT’s polling behavior. Figure 3 compares the AIMD and
MIMD polling behaviors of SPoT on the Arduino hardware.
The figure shows that MIMD is more aggressive in increasing



0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Time from start of experiment (s)

0

50

100

150

200

250

300

P
o
lli
n
g
 i
n
te
r 
a
l 
(s
)

Polling inter al

−2000

0

2000

4000

6000

8000

10000

12000

14000

R
e
p
o
rt
e
d
 o
ff
se
t 
(m

s)

Unfiltered offsets

SPoT offsets

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Time from start of experiment (s)

0

200

400

600

800

1000

1200

P
o
lli
n
g
 i
n
te
r 
a
l 
(s
)

Polling inter al

−2000

0

2000

4000

6000

8000

10000

12000

14000

R
e
p
o
rt
e
d
 o
ff
se
t 
(m

s)

Unfiltered offsets

SPoT offsets

Figure 3: Comparison of polling behaviors of SPoT on Arduino hardware with AIMD (left) and MIMD (right).

the polling interval. The RMSE error incurred by AIMD is
8.9 ms while the RMSE for MIMD is 14.7 ms. The number
of offset measurements made by AIMD for a period of 24 hr
is 953 and 545 for MIMD. This shows that IoT devices that
have a strict energy budget but lower synchronization accuracy
requirements should opt to use MIMD instead of AIMD.

Table 2: Comparison of offset error statistics under high
noise level.

Protocol Minimum (ms) Maximum (ms) Standard Deviation (ms)
SPoT 0.0 (0.0) 47.5 (771.36) 7.8 (142.4)
SNTP 0.0 (0.0) 709.0 (709.0) 133.8 (133.8)
MQTT 150.0 (150.0) 781.7 (781.7) 107.6 (107.6)

Consensus 0.0 (0.0) 253.1 (896.6) 32.3 (144.9)
MinRTT 0.0 (0.0) 417.7 (855.1) 40.2 (147.6)

Similarly Figure 4 shows the difference in behavior between
AIMD and MIMD for SPoT running on the Raspberry Pi3.
The relatively stable clock hardware of the Pi3 can be seen
from the total clock drift of about 200 ms for a period of 24
hr compared to a drift of about 12,000 ms on the Arduino
hardware. As designed, SPoT is able to exploit the relatively
higher stability of Pi3 hardware and reduce both offset and rate
sync RMSE even in the presence of high noise. The RMSE
for offset synchronization is 1.5 ms for AIMD and 3.0 ms
for MIMD. Similarly, the rate synchronization RMSE values
are 2.9 ms and 3.0 ms for AIMD and MIMD respectively. It
is also clear that given the relative stability of Pi3, SPoT is
effective in increasing the polling interval; MIMD is able to
reach the maximum polling value of 1024 s very rapidly so the
number of offset measurements made by AIMD for a period
of 24 hr is 269 and that of MIMD is only 132.

Table 3: Memory and CPU profile of SpoT server.
No. of clients 1 10 100 1 k 10 k 100 k 1 M

Instruction count 669 k 699 k 719 k 1 M 4 M 34 M 332 M
Execution time (ms) 0.02 0.02 0.04 0.18 0.72 6.53 64.07

Memory (B) 7 KB 7 KB 7 KB 33 KB 312 KB 3 MB 30 MB

Scalability of SPoT. We conduct a series of tests in the wide
area to examine the scalability of SPoT. We note that our
implementation uses a single node to serve all thin clients,
which we use as a baseline. We use two cloud nodes, one
on the east coast and another on the west coast of the U.S.
One of them runs the SPoT server, while the other runs the
client emulator. Since the SPoT server maintains no state
for thick clients its operation is essentially the same as the
NTP reference server, thus we examine server scalability for
thin clients only. Both the server and the client emulator
have their clock disciplined by NTP. That is, their expected
offset throughout the experiment is 0 ms. We use several
benchmarking runs, each with 1, 10, 100, 1k, 5k, 10k and
15k clients. In each run, we synchronize thin clients with the
server for 5 min and calculate the average RMSE of offsets.

In our detailed results (not shown due to space constraints), all
clients had avg. RMSE < 2 ms, indicating that synchroniza-
tion accuracy remains consistent as the number of clients grow.
We expect similarly consistent results with larger number of
clients as they are deployed across multiple servers.

To understand the resource consumption of SPoT we conduct
micro-benchmark experiments that measure the CPU and the
memory usage. Table 3 shows the average number of machine
instructions and execution time (ms) required by the server to
complete one round of synchronization for different numbers
of clients when running on a Ubuntu 17.10 server with a
quad-core 1.8 GHz Intel i5-3337U processor and 3.7 GiB
memory, averaged over 100 runs. Total memory required
by the SPoT server for different number of thin clients is
also shown, which includes both the state information used
by SPoT’s synchronization algorithms as well as the book-
keeping information required by the server to keep track of
all clients. From the table we observe that the SPoT server’s
footprint is light on the CPU (execution time and instruction
count) and memory usage, even for a high number of clients.
Table 4: SPoT server throughput (PPS) required to sup-
port thin client.

No. of clients 1 10 100 1 k 10 k 100 k 1 M
Arduino-AIMD 0.01 0.1 1 11 110 1.1 k 11 k

Pi3-AIMD 0.003 0.03 0.3 3 31 311 3.1 k
Arduino-MIMD 0.006 0.06 0.63 6 63 630 6.3 k

Pi3-MIMD 0.001 0.01 0.1 1.5 15 152 1.5 k
Finally, using the number of packets exchanged by different
polling methods of SPoT for Arduino devices and Pi3 for a
period of 24 hr, we estimate the server throughput (packets/sec
(PPS)) required to synchronize different number of thin clients.
From Table 4 we can see that the network overhead to run the
SPoT server is low, with only a required throughput of about
6k PPS for 1M Arduino devices and about 1.5k PPS for stable
hardware such as Pi3.
RELATED WORK
Our work relates most closely to prior studies that have ex-
amined environmental effects on oscillator performance and
clock drift, as well as synchronization protocols for sensor net-
work platforms and other constrained environments. Schmid
et al. [32] extensively evaluate the problem of clock drift in
low-end oscillators in a variety of conditions. In a somewhat
similar vein, there are a number of unpublished investigations
by IoT prototypers and hobbyists (e.g., [31]) who provide
anecdotal evidence of the effects of environmental conditions
on different types of oscillators available on Arduino-based
IoT platforms. These studies inform our work by highlighting
the challenges of addressing drift on low-end devices.

Wireless sensor networks (WSNs) typically consist of a large
set of relatively homogenous nodes, with significant energy,



0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Time from start of experiment (s)

0

100

200

300

400

500

600

700

P
o
lli
n
g
 i
n
te
r 
a
l 
(s
)

Polling inter al

−600

−400

−200

0

200

400

600

800

R
e
p
o
rt
e
d
 o
ff
se
t 
(m

s)

Unfiltered offsets

SPoT offsets

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Time from start of experiment (s)

0

200

400

600

800

1000

1200

P
o
lli
n
g
 i
n
te
r 
a
l 
(s
)

Polling inter al

−600

−400

−200

0

200

400

600

800

R
e
p
o
rt
e
d
 o
ff
se
t 
(m

s)

Unfiltered offsets

SPoT offsets

Figure 4: Comparison of polling behaviors of SPoT on Pi3 hardware with AIMD (left) and MIMD (right).

bandwidth, and computational constraints. While IoT devices
are typically constrained in different ways than WSNs, there
have been a number of time synchronization methods devel-
oped in the WSN context (Sundraraman et al. provide a survey
of these methods in [33]) that have a bearing on our work,
including [15, 16, 22]. The protocols developed for WSN
domain exploit characteristics of the broadcast MAC layer to
avoid network inconsistencies that cause time synchronization
errors. Hence, to synchronize to a global timescale such as
UTC, these techniques require a UTC time source to be part of
the same broadcast domain. Finally, Kalman filters have been
used in the context of time synchronization in order to model
clock offset and skew, and to handle missing information [18,
17]. These methods that model clock hardware become highly
challenging and resource intensive at scales introduced by the
IoT domain, due to huge variability in drift characteristics
exhibited by IoT hardware under different ambient tempera-
ture conditions, as discussed in §Drift characteristics of clock
hardware and §Stability of clock hardware.
SUMMARY
In this paper, we consider the question of how to synchronize
clocks in an Internet of Things. We begin by investigating
clock drift in two standard prototyping platforms over a range
of operating conditions that would be typical for an IoT device.
We find clock drift on the order of seconds over relatively
short time periods. This level of variation makes standard
protocols such as SNTP and those based on MQTT ineffective.
We address this problem by developing a new architecture for
synchronizing clocks on IoT devices. We develop a prototype
implementation of our design to evaluate efficacy over a range
of configurations, operating conditions and target platforms.
Our results show that SPoT outperforms MQTT and SNTP
by a factor of 22 and 17 respectively, in the presence of high
noise levels, and maintains a clock accuracy of within 15ms at
various noise levels. Finally, we report on the scalability of our
server implementation through microbenchmark experiments
and show that our system can scale to support large numbers
of clients with minimal resource utilization.
Acknowledgements
This work is supported by NSF grants CNS-1703592, DHS
BAA 11-01, AFRL FA8750-12-2-0328. The views and conclu-
sions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of NSF, DHS,
AFRL or the U.S. Government.
REFERENCES

1. Fast, light, robust Ethereum implementation. Link. (????).
2. IoT: Sensing Earthquakes before hand with Grillo. Link. (????).
3. Maker Madness: The Best IoT Boards of 2016. Link. (????).
4. 2010. SNTP implementation for iOS. Link. (2010).

5. 2014. NTP Daemon. Link. (2014).
6. 2016. Snapchat coding error nearly destroys all of time for the

internet. Link. (2016).
7. 2017. How do I set the time to be synchronized on Parity? Link.

(2017).
8. 2017. ntpdate Documentation. Link. (2017).
9. 2017a. Particle Docs - system threads. Link. (2017).

10. 2017. ShakeAlert: Implementing Public Earthquake Early
Warning for the U.S. Link. (2017).

11. 2017b. Your clock is not in sync. Link. (2017).
12. 2018a. Blockchain IoT - IBM Watson IoT. Link. (2018).
13. 2018. Hyperledger - Open source blockchain for businesses -

IBM Blockchain. Link. (2018).
14. 2018b. Using blockchain to secure the internet of things. Link.

(2018).
15. J. Elson and others. 2002. Fine-grained Network Time

Synchronization Using Reference Broadcasts. In Usenix OSDI.
16. S. Ganeriwal and others. 2003. Timing-sync Protocol for Sensor

Networks. In ACM SenSys.
17. B.R. Hamilton and others. 2008. ACES: Adaptive Clock

Estimation and Synchronization using Kalman Filtering. In
ACM Mobicom.

18. H. Kim and others. 2012. Tracking Low-precision Clocks with
Time-varying Drifts using Kalman Filtering. IEEE/ACM TON
(2012).

19. J. Levine. 2016. IEEE Trans Ultrason Ferroelectr Freq Control
63 (Jan-04-2016 2016), 561 – 570. DOI:Link

20. S.K. Mani and others. 2018. A System for Clock
Synchronization in an Internet of Things. Link. (2018).

21. S.K. Mani, R. Durairajan, P. Barford, and J. Sommers. 2016.
MNTP: Enhancing Time Synchronization for Mobile Devices.
In ACM IMC.

22. M Maróti, B Kusy, G Simon, and Á Lédeczi. 2004. The
Flooding Time Synchronization Protocol. In ACM SenSys.

23. K. Marzullo and S. Owicki. 1983. Maintaining the Time in a
Distributed System. In ACM PODC.

24. P. Membrey and others. 2016. Time to Measure the Pi. In ACM
IMC. DOI:Link

25. D.L. Mills. 1981. DCNET Internet Clock Service. Link. (April
1981).

26. D.L. Mills. 1985. Algorithms for Synchronizing Network
Clocks. Link. (1985).

27. D.L. Mills. 1996. The network computer as precision
timekeeper. Technical Report. DELAWARE UNIV NEWARK
DEPT OF ELECTRICAL ENGINEERING.

28. D.L. Mills. 1998. Adaptive hybrid clock discipline algorithm for
the network time protocol. IEEE/ACM Trans. Netw. 6, 5 (Oct
1998), 505–514.

29. S.B. Moon, P. Skelly, and D. Towsley. 1999. Estimation and
removal of clock skew from network delay measurements. In
Proceedings of INFOCOM’99.

30. Lei S.P. Wang Z.Z. Qu, T. and others. 2016. Int J Adv Manuf
Technol 84, 1 (01 Apr 2016), 147–164. DOI:Link

31. J. Rantwijk. Arduino clock frequency accuracy. Link. (????).
32. T. Schmid and others. 2008. Exploiting Manufacturing

Variations for Compensating Environment-induced Clock Drift
in Time Synchronization. ACM SIGMETRICS (2008).

33. B. Sundararaman and others. 2005. Clock Synchronization for
Wireless Sensor Networks: A Survey. Adhoc networks (2005).

34. D. Veitch and others. 2004. Robust Synchronization of Software
Clocks Across the Internet. In ACM IMC. DOI:Link

https://github.com/paritytech/parity/blob/master/dapps/node-health/src/time.rs#L22-L31
https://electronicsofthings.com/expert-opinion/iot-sensing-earthquakes-before-hand-with-grillo/
https://blog.hackster.io/maker-madness-the-best-iot-boards-of-2016-cfc2382daf64
https://github.com/jbenet/ios-ntp
https://www.eecis.udel.edu/~mills/ntp/html/ntpd.html
https://www.theregister.co.uk/2016/12/21/snapchat_coding_error_nearly_destroys_all_of_time_for_the_internet/
https://ethereum.stackexchange.com/questions/23599/how-do-i-set-the-time-to-be-synchronized-on-parity
http://doc.ntp.org/4.1.1/ntpdate.htm
https://docs.particle.io/reference/firmware/photon/#system-thread
https://www.wmo.int/pages/prog/drr/documents/mhews-ref/posters-pdfs/2.49 - Given D ShakeAlert MHEWC 2017 poster.pdf
https://github.com/paritytech/parity/issues/6684
https://www.ibm.com/internet-of-things/spotlight/blockchain
https://www.ibm.com/blockchain/hyperledger.html
https://theconversation.com/using-blockchain-to-secure-the-internet-of-things-90002
http://dx.doi.org/10.1109/TUFFC.2015.2495014
http://arxiv.org/abs/1806.02474
http://dx.doi.org/10.1145/2987443.2987476
https://tools.ietf.org/html/rfc778
https://tools.ietf.org/html/rfc956
http://dx.doi.org/10.1007/s00170-015-7220-1
http://jorisvr.nl/article/arduino-frequency
http://dx.doi.org/10.1145/1028788.1028817

	Introduction
	Background and Assumptions
	Clock synchronization errors
	Two-way synchronization method
	Assumptions
	Applicability of SPoT for IoT deployments

	Time Synchronization in IoT Ecosystem
	Experimental setup
	Drift characteristics of clock hardware
	Stability of clock hardware

	Synchronization Protocol for ioT
	SPoT Architecture
	Offset synchronization in SPoT
	Rate synchronization in SPoT
	SPoT Implementation

	SPoT Evaluation
	Experimental Approach
	SPoT vs. other protocols

	Related work
	Summary
	References 

