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Abstract
Hazard monitoring systems rely on micro datacenters (Mi-

croDCs) for local data processing and real-time response in

resource- and energy-constrained environments. These Mi-

croDCs often host diverse, multitenant applications—such as

object detection and sensor data ingestion—that contend for

shared memory. Through a case study of compute-intensive

and I/O-intensive applications, we show that different appli-

cations use memory differently (e.g., heap vs. OS-managed

page cache), leading to asymmetric performance degradation

under memory pressure. Our findings highlight the limita-

tions of existing OS-level resource management approaches

and motivate the need for cross-layered coordination be-

tween applications and the operating system to treat all

memory uses as first-class citizens and adapt to changing

workload demands in MicroDCs.

CCS Concepts
• Software and its engineering → Main memory; Allo-
cation / deallocation strategies; Operating systems; •
Hardware → Energy metering.
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1 Introduction
Hazard monitoring systems are critical to the early detection

and response to natural disasters, helping safeguard lives and

infrastructure. These systems are composed of diverse envi-

ronmental sensors—ranging from wildfire detection cameras

to weather and seismic monitors—connected to distributed

computing nodes calledmicro datacenters (MicroDCs). These

MicroDCs are designed for near-sensor processing, enabling

real-time analytics and low-latency during emergencies.

MicroDCs are typically small-scale compute clusters, de-

ployed remotely and often constrained by limited power,

cooling, and hardware availability. Their configurations range

from CPU-only systems to those equipped with GPUs to sup-

port workloads like image recognition and data-intensive log-

ging. These systems must run multiple applications concur-

rently ranging from ML inference for wildfire detection (e.g.,

YOLO [21]) to data ingestion and storage (e.g., RocksDB [3])

while minimizing latency and energy usage. As such, multi-

tenancy is not a design choice but a requirement, driven by

the need to support heterogeneous tasks on limited infras-

tructure.

Unlike cloud-scale data centers, MicroDCs cannot rely

on resource overprovisioning or cross-node scheduling to

balance workloads. They are often oversubscribed: resource

demands from applications consistently exceed the available

CPU, GPU, and memory capacity. This oversubscription, cou-

pled with highly dynamic workloads (e.g., sudden spikes in

video uploads during wildfire events), creates acute pressure

on shared resources—particularly memory.

Memory is a critical shared resource across applications

in hazard monitoring MicroDCs. It serves GPU-based ap-

plications like YOLO (for heap-allocated batch inference),

CPU-bound applications like RocksDB (which rely heavily

on page cache), and communication-intensive services that

buffer data in memory before sending it to the cloud. These

diverse and conflicting usage patterns make static partition-

ing approaches—such as those enforced by virtual machines

or containers—ineffective. Static limits often lead to underuti-

lization during periods of low activity and critical contention

during bursts, degrading performance and increasing energy

usage.
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Consider current deployments such as the SAGE Contin-

uum [4, 5], whereMicroDCs support various tenants engaged

in real-time hazard analysis. During calm periods, system

activity remains moderate; however, when environmental

events are detected, applications may rapidly enter high-

throughput modes, requiring more compute and memory.

Static memory allocation in these scenarios often fails to

respond in time, resulting in application interference, de-

graded performance, and data loss at the sensor edge due to

backpressure.

Prior efforts to improve resource sharing in traditional

data centers (e.g., PARTIES [6], AWARE [20]) rely on con-

tinuous monitoring and resource availability, i.e., conditions

that MicroDCs often cannot guarantee. Moreover, these sys-

tems treat memory regions differently (e.g., heap vs. cache vs.

buffer), lacking coordination across OS layers and application

phases.

In this position paper, we argue that efficient and
adaptive memory sharing in MicroDCs requires a prin-
cipled, cross-layer design that integrates application-
level awareness with OS-level memory policies.We pro-

pose PAMS, a Performance and Energy Adaptive Multi-Tenant
Resource Management Framework, that goes beyond static

knobs and isolation boundaries. PAMS introduces three core

design principles: (1) equal treatment of diverse memory

types depending on application phase and system state, (2)

application-aware adaptation to react to workload-specific

triggers such as sensor surges during wildfire detection, and

(3) intelligent resource allocation using predictive models

and energy-aware scheduling.

To motivate our design, we study two representative ap-

plications (YOLO for wildfire detection and RocksDB for

environmental data logging) co-running under multitenancy

in a MicroDC. We show that traditional container-based par-

titioning leads to performance and energy inefficiencies. Our

results highlight the nonlinear tradeoffs between memory

allocation, application performance, and energy consump-

tion—underscoring the need for dynamic, context-aware

memory sharing strategies tailored to the constraints of Mi-

croDCs.

2 Background and Related Work
2.1 Resource Sharing in MicroDCs
In MicroDCs deployed for hazard monitoring, applications

are often connected through a network of diverse sensors

to a shared local infrastructure. These applications, running

concurrently, demand efficient multitenancy support across

shared hardware components, especially memory, compute,

storage, and I/O subsystems. As MicroDCs are tasked with

executing real-time detection, data logging, compression,

communication, and decision-making, the need to dynami-

cally manage these resources becomes critical.

In this position paper, we focus on memory as a first-class

resource for multitenancy due to its broad and essential role

across multiple application domains. Memory is a shared

and critical component for GPU-based applications such

as YOLO (for wildfire detection), CPU-bound applications

like NoSQL databases, and communication-intensive appli-

cations that interact frequently with remote cloud services

or other MicroDCs. These workloads exhibit differing usage

patterns (heap-intensive computation, cache-driven I/O ac-

cess, and buffer-based communication), all contending for

limited physical memory.

While compute isolation is generally well-managed, mem-

ory isolation remains a significant challenge. Containeriza-

tion, although widely adopted, does not suffice in MicroDCs

due to the diverse and fluctuating memory demands of colo-

cated applications. Static memory partitioning fails to cap-

ture dynamic behavior, leading to underutilization or con-

tention at runtime.

Further complicating memory management is the system-

wide role of shared OS-level memory, including page caches,

driver allocations, and kernel data structures. These mem-

ory regions, although managed by the OS, are often depri-

oritized under pressure, negatively impacting application

performance.

A natural solution is to expand memory capacity, such

as by incrementally adding dual in-line memory modules

(DIMMs) over time, particularly when weighed against the

potential cost of failing to mitigate a wildfire. However, we

argue that this approach is not scalable for MicroDC deploy-

ments. These systems typically operate with tight energy

budgets, often relying on solar power or intermittent grid

access. Increasing physical memory not only raises opera-

tional energy consumption but also contributes to the em-

bodied carbon footprint—both of which run counter to the

sustainability objectives of hazard-monitoring infrastructure

[13, 15]. Additionally, cost constraints in deploying large-

scale MicroDC networks make provisioning excess memory

impractical.

Thus, this paper argues for a dynamic, adaptive memory-

sharingmechanism that treats all types ofmemory use—heap,

cache, buffer—as equally important depending on workload

context. Efficient memory sharing is not only essential for

maintaining performance but also for achieving energy and

carbon efficiency in MicroDCs. This calls for principled sys-

tem support that can reason across layers -from the intent of

the application to the OS’s memory policies, while respond-

ing to workload dynamics and environmental constraints.



2.2 Related Work
A huge body of prior work have proposed techniques to

improve multitenant resource management in traditional

data centers and containerized environments. However, few

directly address the constraints and dynamics faced by Mi-

croDCs.

Multitenant Resource Management in Data Centers:
Systems such as PARTIES [6] and Heracles [16] target per-

formance isolation in large-scale servers by leveraging of-

fline profiling and online, feedback-based control. While

effective in stable, high-capacity environments, they assume

predictable resource availability and do not address energy

or carbon constraints. These systems also lack considera-

tion in tolerating multiple latency-critical (LC) tasks with

best-effort (BE) tasks, such as high throughput tasks, simul-

taneously. Heracles only enables co-running 1 LC task with

many BE tasks. Meanwhile, PARTIES only focuses on allow-

ing multiple LC tasks. These systems focus on completing

individual tasks in large-scale servers where microservices

are highly independent of each other. On the other hand,

MicroDCs workloads are dynamic, requiring both types of

LC task and BE tasks to co-exist and to achieve the goal.

In addition, there are many approaches for automated re-

source management based on reinforcement learning (RL)

[14, 18–20, 22, 23, 25]. For example, AWARE [20] focuses

on adaptive memory management in containerized clusters

using memory access profiling and online RL. These systems

rely on extensive monitoring and resource availability, which

is often impractical in resource-constrained MicroDCs.

Memory Management and Co-scheduling: OS-level
policies for page cache and heap prioritization have been

studied extensively. For example, MemVerge [2] and Elasti-

cOS [9] offer strategies for dynamic memory movement or

disaggregation, while Dyno [1] and TMO [24] tackle mem-

ory prioritization and task migration in multitenant setups.

However, these systems often do not provide mechanisms

to consider different types of memory usage (heap, cache,

buffer) as equal citizens, nor are they designed with energy

efficiency and cross-layer cooperation in mind.

MicroDC and Edge Resource Management: Several
recent works have explored resource allocation in edge and

MicroDC environments. Projects such as Seer [12] and Edge-

Bench [8] explore dynamic scheduling and performancemod-

eling at the edge. While these systems highlight the variabil-

ity of workloads and constraints in edge computing, they

do not propose cross-layer mechanisms that reason across

application states and OS-level memory pressure.

Energy and Sustainability-Aware Systems:Work on

energy-aware scheduling (e.g., Pegasus [11]) and carbon-

aware infrastructure (e.g., ZeroCarbonCloud [7], CO2-aware
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Figure 1: System resource sharing across (a) RocksDB and (b)
YOLO ML inference performance on baremetal system. Iso-
lated indicates running applications without resource shar-
ing; Shared denotes sharing CPU and memory. The x-axis
incrementally reduces memory.

scheduling) provides critical background for designing sus-

tainable systems. However, these solutions focus on macro-

level power capping or inter-DC scheduling and do not ad-

dress fine-grained memory sharing in power-constrained

MicroDC deployments.

Our proposed design,PAMS, complements these efforts by

proposing a framework that unifies diverse memory abstrac-

tions, integrates application-aware triggers, and optimizes

resource allocation using predictive models, all tailored to

the constraints and variability of MicroDCs used in hazard

monitoring.

2.3 Case Study and Analysis
Our case study evaluates the impact of multitenancy in Mi-

croDC environments using two representative applications:

YOLO [21], a widely-used ML-based computer vision frame-

work, and RocksDB, a reliable NoSQL key-value store. These

applications reflect real-world deployments in wildfire haz-

ard monitoring MicroDCs. YOLO, built on PyTorch [17], per-

forms real-time inference over wildfire camera data using a

convolutional neural network (CNN). Multiple YOLO pro-

cesses run in parallel, each handling image batches that fit

into available GPU memory. RocksDB manages large vol-

umes of sensor data, including wildfire imagery and logs

from weather stations, wildlife monitors, and temperature

sensors.

Our MicroDC experimental setup consists of a single-

socket system with 48GB DRAM, a 16-core 2.1GHz Intel(R)

Xeon(R) Silver 4110 processor, a 512GB NVMe SSD, and a

Nvidia Quadro P5000 16GB GPU. The system runs Linux

5.15 and suppports both training and inference pipelines

for YOLO. We explore three primary objectives: (1) analyz-

ing YOLO’s inference and RocksDB’s performance under re-

source contention, (2) evaluating training-time multitenancy

effects, and (3) quantifying energy and carbon implications.
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Figure 2: Containerized applications (a) RocksDB and (b)
YOLO ML inference performance. Isolated shows running
applications without resource sharing; Shared shows sharing
CPU and memory; x-axis incrementally reduces memory.

(1) Multitenancy Performance for Inference: Figure 1
shows the inference performance of YOLO and RocksDB

under shared memory conditions on a bare-metal system. As

memory availability drops, RocksDB’s throughput degrades

sharply (over 40% at 24GB) due to its reliance on OS-level

page cache, which is deprioritized under pressure. In contrast,

YOLO, with heap-reserved memory, sees less than 10% degra-

dation. These results highlight the need to treat I/O-intensive

applications and their memory use (such as page caches) as

first-class resources in memory-constrained MicroDCs.

(2) Containerized Inference Under Static Partitioning:
Figure 2 compares the performance of containerized YOLO

and RocksDB applications under isolated and shared exe-

cution across different memory capacities. In the isolated

setup, each application runs independently within its own

container, while in the shared configuration, both containers

run concurrently, sharing CPU and memory. Based on pro-

filing, we statically determined that YOLO requires 8GB of

memory to maintain its best isolated performance. Accord-

ingly, we assign 8GB to the YOLO container and allocate the

remaining memory to RocksDB. As system memory is re-

duced from 40GB to 24GB, YOLO inference latency increases

modestly by just over 10% while RocksDB throughput suffers

a more substantial drop of nearly 40% under shared condi-

tions. These results show that static partitioning (e.g., even

with container-based isolation) cannot adequately prevent

memory contention, particularly for I/O-intensive applica-

tions like RocksDB.

(3) Multitenancy Performance for Training: Figure 3

compares the training performance of YOLO and RocksDB

under shared and isolated execution as system memory is re-

duced from 48GB to 40GB. RocksDB’s throughput degrades

by up to 20% under shared conditions, while YOLO’s training

runtime increases by approximately 15%. Unlike inference,

the performance degradation is more closely aligned across
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Figure 3: Analysis of system resource sharing across (a)
RocksDB and (b) YOLO ML training performance. Isolated
indicates running applications without resource sharing;
Shared denotes sharing CPU and memory. The x-axis in-
crementally reduces memory.

both applications. This is because YOLO training involves

reading large batches of images per iteration, making it par-

tially reliant on the OS-level I/O cache. Consequently, both

applications compete for cache-backed memory resources,

which disproportionately impacts RocksDB due to its fully

I/O-bound nature.

(4) Energy and Carbon Impact of CPU and Memory
Sharing: Figure 4 presents power and carbon analysis when

YOLO and RocksDB co-run, focusing on CPU and DRAM.

We measure power using Intel RAPL counters and calculate

carbon emissions using CPU and DRAM intensity factors

from [10]. GPU energy and carbon are excluded, as our anal-

ysis centers on host-level resource sharing between the two

applications.

Panels (a) and (b) show power breakdowns when RocksDB

and YOLO are co-executed. Despite co-running, power in-

creases aremodest (<6%) due to overlapping idle/active cycles

and baseline system activity from daemons. Panel (c) reports

total carbon emissions. For the isolated case, we measure

YOLO and RocksDB independently and sum their emissions;

for shared runs, we measure joint execution. Notably, multi-

tenancy reduces total carbon emissions compared to isolated

runs—by nearly 50% in some configurations. This reduction

comes from better utilization of static power and amortiza-

tion of embodied system costs, reinforcing the sustainability

part of efficient resource sharing in MicroDCs.

In summary, the results underscore the importance of

treating cache-backed I/O and heap memory as first-class,

application-aware resources when managing memory under

multitenancy.
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Figure 4: Power and carbon analysis from resource sharing
between YOLO ML training and RocksDB. For the carbon
analysis in 4c, the isolated baseline shows the sum of the
carbon footprints of RocksDB and YOLO. We use the CPU
and DRAM carbon footprint values from [10].

3 Proposed Design
To address the challenges of multitenant resource manage-

ment in MicroDCs for hazard monitoring systems, we pro-

pose PAMS, a Performance and Energy Adaptive Multi-

tenant Resource Management Framework. The primary ob-

jective of PAMS is to establish a principled, cross-layered

design that bridges application-level characteristics with

operating system-level resource management to optimize

performance, energy efficiency, and sustainability under con-

strained and dynamically changing conditions.

Unified Treatment of Memory Type:MicroDCs host di-

verse applications that rely on different types of memory:

RocksDB benefits from page cache to optimize I/O through-

put, YOLO uses heap memory for continuous inference, and

communication stacks depend on kernel and network buffers.

However, current OSmemorymanagers treat page cache as a

second-class citizen compared to heapmemory, leading to un-

predictable eviction and performance loss for I/O-intensive

tasks.

PAMS introduces a unified memory classification model

that dynamically promotes different memory regions (e.g.,

page cache, heap, network buffers) as “first-class" citizens

based on active workload characteristics. Implementation

involves extending OS-level memory tracking (e.g., using

cgroup-level memory pressure and page fault statistics) and

associating priority labels with virtualmemory regions. These

priorities inform eviction and reclamation policies during

memory contention, ensuring that memory critical to active

workloads is retained.

Application-Level Triggers: MicroDC workloads, espe-

cially those for hazard monitoring, exhibit time-varying crit-

icality. For instance, YOLO continuously processes imagery

but requires urgent resource boosts when wildfire-like pat-

terns are detected. Similarly, databases may operate in low-

activity logging mode but must handle bursts of data inges-

tion or queries during an emergency. PAMS aims to inte-

grate hooks and telemetry at the application level to detect

such transitions. Triggers include internal signals (e.g., clas-

sification confidence in YOLO, ingestion rate in RocksDB)

and system events (e.g., user annotations or external alerts).

Applications communicate their state transitions to the OS

through a shared trigger interface (e.g., via extended cgroups

or sysfs signals). The OS scheduler responds with recon-

figuration, for example, increasing CPU shares, increasing

cache retention, tuning swappiness, or migrating tasks to

higher-performance cores.

Predictive and Adaptive Resource Allocation: In addi-

tion to the cross-layered application/runtime and the OS

design, we aim to develop an intelligent resource allocation

engine that blends predictive modeling with multi-objective

optimization. Using historical performance logs and cur-

rent telemetry, PAMS forecasts future resource demand (e.g.,

spikes in CPU usage during wildfire detection) and proac-

tively adjusts allocations. It solves a multi-objective problem,

balancing performance metrics (e.g., latency, throughput)

against energy and carbon constraints. The allocation en-

gine built atop a lightweight machine learning model would



augment with an online reinforcement learning (RL) loop.

RL agents are trained to adjust knobs (e.g., memory shares,

CPU limits, I/O bandwidth quotas) in response to application

and system state. This dynamic feedback loop allows the

system to adapt continuously to environmental variability

and workload dynamics.

4 Summary and Future Work
This position paper identifies the challenges of multitenant

memory sharing in resource- and energy-constrained Mi-

croDCs used for hazard monitoring. Through a case study,

we show that diverse memory usage patterns lead to un-

equal performance degradation under contention, which tra-

ditional isolation mechanisms fail to address. Our findings

motivate a cross-layered approach where the OS and ap-

plications coordinate to manage memory dynamically. Our

on-going/future work will focus on lightweight monitor-

ing, energy-aware coordination, and adaptive policies that

respond to workload shifts. We will also explore whether

PAMS can be implemented in eBPF, Kubelet controller, or

user-space daemons without significant changes to the host

OS for wider deployment.
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