
(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 1

Automating Analysis and Test

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 2

Learning objectives

• Understand the main purposes of automating

software analysis and testing

• Identify activities that can be fully or partially

automated

• Understand cost and benefit trade-offs in

automation

• Separate publicity from important features in

descriptions of commercial A&T tools

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 3

Three Potential Roles of Automation

• Necessary for introducing a task

– example: coverage tools enable measuring structural

coverage of test suites

• Useful to reduce cost

– example: capture and replay tools reduce the costs

of reexecuting test suites

• Useful to increase (human) productivity

– example: software inspection is a manual activity,

but tools to organize and present information and

manage communication increase the productivity of

people

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 4

Approaching Automation

• Prioritize automation steps based on

– variations in impact, maturity, cost, scope of the

technology

– fit and impact on the organization and process

• Three (non-orthogonal) dimensions for

automation

– value and current cost of the activity

– extent to which the activity requires or is made less

expensive by automation

– cost of obtaining or constructing tool support

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 5

Automation Costs Vary Enormously

• Some tools are so simple to develop that they are

justifiable even if their benefits are modest

– example: generate test cases from finite state machine models

• Some tools that would be enormously valuable are

simply impossible

– example: identify exactly which parts of a program can never

be executed (a provably undecidable problem)

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 6

Costs May Depend on Scope

• Sometimes a general-purpose tool is only marginally

more difficult to produce than a tool specialized for

one project

– example: general capture and replay for Windows applications

vs capture and replay for a specific Windows application

– Investment in the general-purpose tool, whether to build it or

to buy it, can be amortized across projects

• In other cases, simple, project-specific tools may be

more cost effective

– Tool construction is often a good investment in a large project

– example: simulators to permit independent subsystem testing

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 7

Focusing Where Automation Pays

• Simple repetitive tasks are often straightforward to
automate
– humans are slow and make errors in repetitive tasks

• But ...judgment and creative problem solving remain
outside the domain of automation

• Example: Humans are
– Very good at identifying relevant execution scenarios that

correspond to test case specifications

– Very inefficient at generating large volumes of test cases or
identifying erroneous results within a large set of outputs from
regression tests

• Automating the repetitive portions of the task reduces
costs, and improves accuracy as well

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 8

Planning: The Strategy Level

• Prescribes tools for key elements of the quality process

• Can include detailed process and tool prescriptions

• Recommends different tools contingent on aspects of a
project
– (application domain, development languages, size, overall

quality,...)

• Often included in the A&T strategy: tools for
– Organizing test design and execution

– Generating quality documents

– Collecting metrics

– Managing regression test suites

• Less often included: tools for
– Generating test cases

– Dynamic analysis

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 9

Planning: The Project Level

• The A&T Plan Indicates
– Tools inherited from the strategy

– Additional tools selected for that project
For new or customized tools, the A&T plan must include

• Costs (including training)

• Implied activities

• Potential risks

• The plan positions tools within the development
process and the analysis and test methodology
– Avoid waste of cost and effort from lack of contextualization

of the tools

– Example: tools for measuring code coverage

• simple and inexpensive

• (if not properly contextualized) an annoyance, producing data not
put to productive use

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 10

Process Support:
Planning & Monitoring

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 11

Automation in Process Management

• Managing a process involves ...
– planning a set of activities with appropriate cost and quality

trade-offs

– monitoring progress to identify risks as early as possible

– avoiding delays by adjusting the plan as needed

• ... and requires ...
– human creativity and insight for which no tool can substitute

• Tools can support process management and improve
decision making by
– organizing and monitoring activities and results

– facilitating group interaction

– managing quality documents

– tracking costs

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 12

Classic Planning Tools

• Facilitate task scheduling, resource allocation, and cost
estimation by arranging tasks according to resource and
time constraints

• Can be specialized to A&T management with features
for deriving relations among tasks, launching tasks, and
monitoring completion of activities

• Examples: tools to
– recognize delivery of a given artifact

– schedule execution of a corresponding test suite

– notify test designer of test results

– record the actual execution time of the activity

– signal schedule deviations to the quality manager

• Most useful when integrated in the analysis and test
environment

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 13

Version and Configuration Control Tools

• Analysis and testing involve complex relations

among a large number of artifacts

• Version and configuration management tools

– relate versions of software artifacts

– trigger consistency checks and other activities

– support analysis and testing activities like they

control assembly and compilation of related modules

• example: trigger execution of the appropriate test suites

for each software modification

• Improve efficiency in well-organized processes

– not a substitute for organization

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 14

Monitoring

• Integrated quality tracking
– improves efficiency in a well-structured process,

– does not by itself bring order out of chaos

• Progress must be monitored in terms of
– schedule (actual effort and completion times vs

plan)

– level of quality

• Quality of the final product
– cannot be directly measured before its completion

– but we can derive useful indications
• example: orthogonal defect classification [see chapter 20]

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 15

Quality Tacking

• Essential function: recognize deviations from expectation as early
as possible to reduce consequences

• Proxy measures

– must be computed early

– must be interpreted in a way that avoids misleading conclusions or
distorted incentives

• Example: lines of code
• useful as a simple proxy for productivity

• must be carefully interpreted to avoid creating both an incentive for
verbosity and a disincentive for effective reuse

• Example: number of faults detected
• useful to detect deviations from the norm

• one should be as concerned about the causes of abnormally low numbers
as high

• Collection, summary, and presentation of data can be automated

• Design and interpretation cannot be automated

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 16

Managing People

• People may work

– in different groups

– in different companies

– distributed across time zones and continents

• A large proportion of a software engineer's time

is devoted to communication

• We need to

– facilitate effective communication

– limit disruptions and distractions of unmanaged

communication

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 17

Managing Communication

• Simple general-purpose tools (e-mail, chat, forum, ...)
– balance synchronous with asynchronous communication

– examples

• When excessive interruptions slow progress, we may replace
synchronous with asynchronous communication

• Conversely, when communication is splintered into many small
exchanges punctuated by waits for reply, we may replace
asynchronous with synchronous communication

• Communication is most effective when all parties have
immediate access to relevant information
– Task-specific tools can improve on general-purpose support

– Example: tools for distributed software inspections

• Extend chat interfaces or forum with

– Managed presentation of the artifact to be inspected

– Appropriate portions of checklists and automated analysis results

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 18

Measurement

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 19

Metrics

• Measuring progress & results is necessary for

managing processes

• ... but often we cannot measure what we really

care about

– e.g., actual progress toward goals or effort

remaining; projected reliability; ...

• Metrics are proxy measures (rough guides)

based on what we can measure

– Anything that is correlated with the real measure of

interest under typical conditions

– Usually require calibration to local conditions

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 20

Static Metrics: Size

• Static metrics measure some software properties, often
to estimate other properties (i.e., as proxies for things
we can’t measure)

• Size is the most basic property
– strongly correlated with schedule and cost

– several possible variations, depending on white space,
comments, programming style

• Course measures include counts of modules or
interfaces
– functions, methods, formal parameters, etc

• Many more complex measures ...
– but lines of code is about as good (or bad) as complex measures

for judging effort

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 21

Measuring Complexity

• Intuitive rationale: If we could measure how
complicated a program or its parts were, we
could ...
– Focus test & analysis on most error-prone parts of a

system

– Make better plans and schedules

– Consider redesign of excessively complex subsystems

• But we can’t measure true (logical) complexity
directly.

• Control flow complexity is a proxy.

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 22

Cyclomatic complexity

• Among attempts to measure complexity, only

cyclomatic complexity is still commonly collected

cyclomatic complexity V(g)

=

number of independent paths through the control flow

graph

=

e - n + 2

(edges - nodes + 2)

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 23

Cyclomatic metrics and complexity

V(g) = 1 - 2 + 2 = 1

V(g) = 5 - 6 + 2 = 1

CFG1 CFG2 CFG3

V(g) = 8 - 6 + 2 = 4

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 24

Interpreting Cyclomatic Complexity

• V(g) < 20
– Low to moderate cyclomatic complexity

– simple program

• V(g) > 20
– high cyclomatic complexity

– complex programs

• V(g) > 50
– very high cyclomatic complexity

– programs very difficult or impossible to thoroughly test

• Cyclomatic vs logical complexity
– sign of complex control flow structure

– does not capture other aspects of logical complexity that can
lead to difficulty in testing

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 25

Metrics & Quality Standards

• Quality standards

– May be prescribed (e.g., by contract)

– May be adopted voluntarily as guidance

• A quality standard like ISO/IEC 9126 requires

measurement of user-perceived quality

– but doesn’t say how to measure it

• To implement ...

We must find objective indicators (metrics) for

each required quality

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 26

ISO/IEC 9126 Metrics (level 1)

Ability to be executed in different environments

and interoperate with other software
Portability

Ability to be updated, corrected, and modifiedMaintainability

Efficiency

Usability

Reliability

Functionality

Ability to guarantee required performance

under given conditions

Ease of understanding, teaching, and using

Ability to provide the required level of service

when the software is used under appropriate

conditions

Ability to meet explicit and implicit functional

requirements

Broad qualities require refinement and mapping to
objectively measurable properties

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 27

Automating Program Analysis, Test
Case Generation, and Test Execution

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 28

Test Case Generation and Execution

• Automation is important because

– It is large fraction of overall test and analysis costs

– can become a scheduling bottleneck near product

delivery deadlines

• Designing a test suite

– involves human creativity

• Instantiating and executing test cases

– is a repetitive and tedious task

– can be largely automated to

• reduce costs

• accelerate the test cycle

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 29

Automated Testing - Stages

• Push the creative work as far forward as

possible

– E.g., designing functional test suites is part of the

specification process

– At each level, from systems requirements through

architectural interfaces and detailed module

interfaces

• Construct scaffolding with the product

• Automate instantiation and execution

– So they are not a bottleneck

– So they can be repeated many times

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 30

Static Analysis and Proof

• Effective for

– Quick and cheap checks of simple properties

• Example: simple data flow analyses can identify anomalous

patterns

– Expensive checks necessary for critical properties

• Example: finite state verification tool to find

synchronization faults

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 31

Design for Verification

• Decompose Verification Problems

– Design: enforce design rules to accommodate

analysis

• example: encapsulate safety-critical properties into a

safety kernel

– Verification: focus on encapsulated or simplified

property

• example:

• prove safety properties of the (small) kernel

• check (cheaply, automatically) that all safety-related

actions are mediated by the kernel

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 32

Undecidability and Automated Analysis

• Some tools report false alarms in addition to real violations of the
properties they check
– example: data flow analyzers

• Some tools avoid false alarms but may also fail to detect all
violations
– example: bug finders

• Some tools are heavyweight with respect to requirement for
skilled human interaction and guidance to provide strong assurance
of important general properties
– examples

– Finite state verification systems (model checkers)
• can verify conformance between a model of a system and a specified

property

• require construction of the model and careful statement of the property

– Theorem provers
• execute with interactive guidance

• requires specialists with a strong mathematical background to formulate
the problem and the property interactively select proof strategies

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 33

Complex analysis tools

• Verifiers based on theorem proving

– verify a wide class of properties

– require extensive human interaction and guidance

• Finite state verification tools

– restricted focus

– execute completely automatically

– almost always require several rounds of revision to

properly formalize a model and property to be

checked

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 34

Simple analysis tools

• Restricted to checking a fixed set of simple properties
– do not require any additional effort for specification

• Type checkers
– typically applied to properties that are syntactic = enforce a

simple well-formedness rule

– violations are easy to diagnose and repair

– Often rules are stricter than one would like

• Data flow analyzers
– sensitive to program control and data flow

– often used to identify anomalies rather than simple,
unambiguous faults

• Checkers of domain specific properties
– Web site link checkers

– …

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 35

Cognitive Aids

Supporting creative, human processes

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 36

Cognitive Aids: Problems to Address

• Nonlocality

– Information that requires a shift of attention

– Example: following a reference in one file or page to

a definition on another

– creates opportunities for human error

• Information clutter

– Information obscured by a mass of distracting

irrelevant detail

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 37

Cognitive Aids: Approaches

• Nonlocality and clutter
– increase the cognitive burden of inspecting complex

artifacts (requirements statements, program code,
test logs,…)

– decrease effectiveness and efficiency

• Can be reduced by automatically focusing and
abstracting from irrelevant detail

• Browsing and visualization aids
– Often embedded in other tools and customized to

support particular tasks
• Pretty-printing and program slicing

• Diagrammatic representations

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 38

Diagrammatic Representations
Example: Code Crawler

Characteristics of classes in

class hierarchy summarized
and represented by color,

width, and height

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 39

Related Tools: Version control,
Debugging

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 40

Version Control

• Record versions and releases of each part of an evolving
software system
– From very simple version management (CVS, SVN) to very

complex configuration management systems

• Useful for maintaining test artifacts (plans, test cases,
logs, etc.)
– Test artifacts are versioned with the product

• Integrate with process support
– E.g., it is possible to trigger re-testing on changes, or require

successful test before committing to baseline

• Provide historical information for tracing faults across
versions and collecting data for improving the process

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 41

Debugging Testing

• Testing = detecting the presence of software faults

• Debugging = locating, diagnosing, and repairing faults

• Responsibility for testing and debugging typically fall to

different individuals

• Debugging starts with a set of test cases

– A small, simple test case that invariably fails is far more

valuable in debugging than a complex scenario, particularly

one that may fail or succeed depending on unspecified

conditions

– larger suites of single-purpose test cases are better than a

small number of comprehensive test cases

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 42

Run-time Debugging Tools

• All modern deguggers ...

– Allow inspection of program state

– Pause execution

• at selected points (breakpoints)

• when certain conditions occur (watchpoints)

• after a fixed number of execution steps

– Provide display and control at the level of program source code

• Specialized debugging support may include

– Visualization (e.g., for performance debugging)

– Animation of data structures

– Differential debugging compares a set of failing executions to

other executions that do not fail

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 43

Automation Strategy

(summary)

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 44

Choosing and Integrating tools

• Tools and approaches must fit ...
– development organization, process, and application domain

• Simple rule: Identify significant costs (money or
schedule) for automation
– Example: automated module testing

• of little use for organizations using the Cleanroom process

• essential for organizations using XP

– Example:

• organizations building safety-critical software can justify
investment in sophisticated tools for verifying the properties of
specifications and design organization that builds rapidly evolving
mass market applications is more likely to benefit from good
support for automated regression testing

• Also consider activities that require automation
– Missed by analysis of current testing & analysis costs

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 45

Think Strategically

• Evaluate investments in automation beyond a

single project and beyond the quality team

• Reusing common tools across projects reduces

– cost of acquiring and installing tools

– cost of learning to use them effectively

– impact on project schedule

• Think globally

– Often quality tools have costs and benefits for other

parts of the software organization

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 46

Summary

• Automation

– Can improve the efficiency of some quality activities

– Is a necessity for implementing others

– Os never a substitute for a rational, well-organized

quality process

– Can incrementally improve processes that makes the

best use of human resources

– Must be carefully evaluated to balance costs and

benefits

