
(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 1

Test Execution

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 2

Learning objectives

• Appreciate the purpose of test automation
– Factoring repetitive, mechanical tasks from

creative, human design tasks in testing

• Recognize main kinds and components of test
scaffolding

• Understand some key dimensions in test
automation design
– Design for testability: Controllability and

observability

– Degrees of generality in drivers and stubs

– Comparison-based oracles and self-checks

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 3

Automating Test Execution

• Designing test cases and test suites is creative

– Like any design activity: A demanding intellectual

activity, requiring human judgment

• Executing test cases should be automatic

– Design once, execute many times

• Test automation separates the creative human

process from the mechanical process of test

execution

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 4

Generation: From Test Case
Specifications to Test Cases

• Test design often yields test case

specifications, rather than concrete data

– Ex: “a large positive number”, not 420023

– Ex: “a sorted sequence, length > 2”, not “Alpha,

Beta, Chi, Omega”

• Other details for execution may be omitted

• Generation creates concrete, executable test

cases from test case specifications

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 5

Example Tool Chain for Test
Case Generation & Execution

• We could combine ...

– A combinatorial test case generation (like

genpairs.py) to create test data

• Optional: Constraint-based data generator to “concretize”

individual values, e.g., from “positive integer” to 42

– DDSteps to convert from spreadsheet data to JUnit

test cases

– JUnit to execute concrete test cases

• Many other tool chains are possible ...

– depending on application domain

Photo: (c) Scott Robinson (clearlyambiguous on Flickr) , creative commons attribution license (c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 6

Scaffolding

• Code produced to

support development

activities (especially

testing)

– Not part of the “product”

as seen by the end user

– May be temporary (like

scaffolding in construction

of buildings

• Includes

– Test harnesses, drivers,

and stubs

Image by Kevin Dooley under Creative Commons license

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 7

Scaffolding ...

• Test driver

– A “main” program for running a test

• May be produced before a “real” main program

• Provides more control than the “real” main program

– To driver program under test through test cases

• Test stubs

– Substitute for called functions/methods/objects

• Test harness

– Substitutes for other parts of the deployed

environment

• Ex: Software simulation of a hardware device

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 8

Controllability & Observability

GUI input (MVC “Controller”)

Program Functionality

Graphical ouput (MVC “View”)

Example: We want
automated tests, but
interactive input provides
limited control and graphical
output provides limited
observability

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 9

Controllability & Observability

GUI input (MVC “Controller”)

Program Functionality

Graphical ouput (MVC “View”)

API

Test driver

Capture wrapper

Log behavior

A design for automated test
includes provides interfaces
for control (API) and
observation (wrapper on
ouput).

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 10

Generic or Specific?

• How general should scaffolding be?

– We could build a driver and stubs for each test case

– ... or at least factor out some common code of the

driver and test management (e.g., JUnit)

– ... or further factor out some common support code,

to drive a large number of test cases from data (as

in DDSteps)

– ... or further, generate the data automatically from

a more abstract model (e.g., network traffic model)

• A question of costs and re-use

– Just as for other kinds of software

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 11

Oracles

• Did this test case succeed, or fail?

– No use running 10,000 test cases automatically if the

results must be checked by hand!

• Range of specific to general, again

– ex. JUnit: Specific oracle (“assert”) coded by hand

in each test case

– Typical approach: “comparison-based” oracle with

predicted output value

– Not the only approach!

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 12

Comparison-based oracle

• With a comparison-based oracle, we need predicted

output for each input

– Oracle compares actual to predicted output, and reports failure

if they differ

• Fine for a small number of hand-generated test cases

– E.g., for hand-written JUnit test cases

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 13

Self-Checking Code as Oracle

• An oracle can also be written as self-checks

– Often possible to judge correctness without predicting results

• Advantages and limits: Usable with large, automatically

generated test suites, but often only a partial check

– e.g., structural invariants of data structures

– recognize many or most failures, but not all

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 14

Capture and Replay

• Sometimes there is no alternative to human

input and observation

– Even if we separate testing program functionality

from GUI, some testing of the GUI is required

• We can at least cut repetition of human testing

• Capture a manually run test case, replay it

automatically

– with a comparison-based test oracle: behavior same

as previously accepted behavior

• reusable only until a program change invalidates it

• lifetime depends on abstraction level of input and output

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 15

Summary

• Goal: Separate creative task of test design from
mechanical task of test execution
– Enable generation and execution of large test suites

– Re-execute test suites frequently (e.g., nightly or
after each program change)

• Scaffolding: Code to support development and
testing
– Test drivers, stubs, harness, including oracles

– Ranging from individual, hand-written test case
drivers to automatic generation and testing of large
test suites

– Capture/replay where human interaction is required

