
(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 1

Model based testing

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 2

Learning Objectives

• Understand the role of models in devising test
cases

• Principles underlying functional and structural test
adequacy criteria, as well as model-based testing

• Understand some examples of model-based
testing techniques

• A few of the most common model-based techniques,
representative of many others

• Be able to understand, devise and refine other
model-based testing techniques

• Grasp the basic approach and rationale well enough to
apply it in other contexts

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 3

Functional Specifications

Independently Testable Feature

ModelRepresentative Values

Test Case Specifications

Test Cases

Id
ent

ify

R ep
re

se
n ta

tiv
e

Va lu
e s

 I
d

en
ti

fy

In
d

e
p

e n
d

e
n

tl
y

T
e

s
ta

b
le

F
e

a
tu

r e
s

De rivea M
ode l

G
en era te T est- Case

Specifica tions Gen
er

a te
T es

t- C
as

e

S
pe

ci
fic

a tio
ns

G
e

n
e

ra
te

T
e

st
 C

a
s

e
s

Scaffolding

In
st

a
n

tia
te

T
e

s
t s

Brute

Force

Testing

Finite State Machine

Grammar

Algebraic Specification

Logic Specification

Control/Data Flow Graph

Semantic Constraints

Combinatorial Selection

Exaustive Enumeration

Random Selection

Test Selection Criteria

Manual Mapping

Symbolic Execution

A-posteriori Satisfaction

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 4

Why model-based testing?

• Models used in specification or design have
structure

• Useful information for selecting representative classes of
behavior; behaviors that are treated differently with
respect to the model should be tried by a thorough test
suite

• In combinatorial testing, it is difficult to capture that
structure clearly and correctly in constraints

• We can devise test cases to check actual
behavior against behavior specified by the
model

• “Coverage” similar to structural testing, but applied to
specification and design models

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 5

Deriving test cases from finite state
machines

A common kind of model for
describing behavior that depends on
sequences of events or stimuli

Example: UML state diagrams

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 6

From an informal specification…
Maintenance: The Maintenance function records the history of items undergoing
maintenance.
If the product is covered by warranty or maintenance contract, maintenance can be
requested either by calling the maintenance toll free number, or through the web site, or
by bringing the item to a designated maintenance station.
If the maintenance is requested by phone or web site and the customer is a US or EU
resident, the item is picked up at the customer site, otherwise, the customer shall ship the
item with an express courier.
If the maintenance contract number provided by the customer is not valid, the item follows
the procedure for items not covered by warranty.
If the product is not covered by warranty or maintenance contract, maintenance can be
requested only by bringing the item to a maintenance station. The maintenance station
informs the customer of the estimated costs for repair. Maintenance starts only when the
customer accepts the estimate.
If the customer does not accept the estimate, the product is returned to the customer.
Small problems can be repaired directly at the maintenance station. If the maintenance
station cannot solve the problem, the product is sent to the maintenance regional
headquarters (if in US or EU) or to the maintenance main headquarters (otherwise).
If the maintenance regional headquarters cannot solve the problem, the product is sent to
the maintenance main headquarters.
Maintenance is suspended if some components are not available.
Once repaired, the product is returned to the customer.

Multiple choices in the first step

...

... determine the possibilities

for the next step ...

... and so on ...

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 7

…to a finite
state

machine…

NO
Maintenance

 Maintenance
(no warranty)

e
s
ti
m

a
te

c
o

s
ts

re
quest a

t

maintenance statio
n

(n
o warra

nty)

request

by phone or web

[US or EU resident]

(contract num
ber)

Wait for
pick up

Repair
(maintenance

station)

pi ck up

re
q
u

e
s
t
a

t
m

a
in

te
n
a

n
c
e
 s

t a
ti
o
n

o
r

b
y
 e

x
p

re
s
s
 c

o
u
ri

e
r

(c
o

n
tr

a
c
t
n

u
m

b
e

r)

Wait for
acceptance

accept
estimate

Wait for
returning

reje
ct estim

a te

pi ck up

Repairedrepair completed

return

Repair
(regional

headquarters)

Repair
(main

headquarters)

su
cc

es
sfu

l r
epa

ir

un
ab

le to rep
a ir

(U
S
 or E

U
 r es

iden
t)

su
cc

e
ss

fu
l r

ep
a
ir

u
n
a
b

le
 to

re

p
a
i r

Wait for
component

la
ck

 c
om

pon
en

t (
a)

lack component (b)

lack component (c)
component
arrives (c)

component
arrives (b)

component
arrives (a)

invalid
cont ract

num
ber

unable to repair
(not US or EU resident)

1 2
3

0

4 5 6

7 8

9

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 8

…to a test suite

67

0

8 9 0857530TC4

069530TC3

654250TC2

01420TC1

Meaning: From state 0 to state

2 to state 4 to state 1 to state 0

Is this a thorough test suite?

How can we judge?

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 9 (c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 10

“Covering” finite state machines

• State coverage:

– Every state in the model should be visited by at least
one test case

• Transition coverage

– Every transition between states should be traversed
by at least one test case.

– This is the most commonly used criterion

• A transition can be thought of as a (precondition,
postcondition) pair

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 11

Path sensitive criteria?

• Basic assumption: States fully summarize history
• No distinction based on how we reached a state; this should be

true of well-designed state machine models

• If the assumption is violated, we may distinguish paths
and devise criteria to cover them
– Single state path coverage:

• traverse each subpath that reaches each state at most once

– Single transition path coverage:

• “” “” each transition at most once

– Boundary interior loop coverage:

• each distinct loop of the state machine must be exercised the
minimum, an intermediate, and the maximum or a large number
of times

• Of the path sensitive criteria, only boundary-interior is common

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 12

Testing decision structures

Some specifications are structured as
decision tables, decision trees, or flow

charts. We can exercise these as if
they were program source code.

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 13

from an informal specification..
Pricing: The pricing function determines the adjusted price of a configuration

for a particular customer.
The scheduled price of a configuration is the sum of the scheduled price of
the model and the scheduled price of each component in the configuration.
The adjusted price is either the scheduled price, if no discounts are
applicable, or the scheduled price less any applicable discounts.

 There are three price schedules and three corresponding discount schedules,
Business, Educational, and Individual.

 ….
• Educational prices: The adjusted price for a purchase charged to an

educational account in good standing is the scheduled price from the
educational price schedule. No further discounts apply.

…
• Special-price non-discountable offers: Sometimes a complete configuration

is offered at a special, non-discountable price. When a special, non-
discountable price is available for a configuration, the adjusted price is the
non-discountable price or the regular price after any applicable discounts,
whichever is less

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 14

…to a decision table …

SPT2SPT1SPNDSPEduout

TF------SP < T2

--TF----SP < T1

----TFTFSP < Sc

--------YP > YT2

TTFF----CP > CT2

--------YP > YT1

--TTFF--CP > CT1

FFFFFF--BusAc

FFFFFFTTEduAc

individualedu

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 15

…with constraints…

at-most-one (EduAc, BusAc)

at-most-one (YP < YT1, YP > YT2)

YP > YT2 -> YP > YT1

at-most-one (CP < CT1, CP > CT2)

CP > CT2 -> CP > CT1

at-most-one (SP < T1, SP > T2

SP > T2 -> SP > T1

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 16

…to test cases

• Basic condition coverage
– a test case specification for each column in the

table

• Compound condition adequacy criterion
– a test case specification for each combination of

truth values of basic conditions

• Modified condition/decision adequacy criterion
(MC/DC)
– each column in the table represents a test case

specification.

– we add columns that differ in one input row and in
outcome, then merge compatible columns

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 17

Example MC/DC
C.10C.1bC.1aC.1

SP**Eduout

----SP > T2

----SP > T1

TTFFSP > Sc

----YP > YT2

----CP > CT2

F---YP > YT1

F---CP > CT1

T---BusAc

-TFTEduAc

Generate C.1a and

C.1b by flipping one

element of C.1

C.1b can be merged

with an existing

column (C.10) in the

spec

Outcome of

generated columns

must differ from

source column

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 18

Flowgraph based testing

If the specification or model has both
decisions and sequential logic, we can

cover it like program source code.

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 19

from an informal spec (i/iii)...
• Process shipping order: The Process shipping order

function checks the validity of orders and prepares
the receipt
A valid order contains the following data:
– cost of goods: If the cost of goods is less than the minimum

processable order (MinOrder) then the order is invalid.

– shipping address: The address includes name, address, city,
postal code, and country.

– preferred shipping method: If the address is domestic, the
shipping method must be either land freight, expedited land
freight, or overnight air; If the address is international, the
shipping method must be either air freight, or expedited air
freight.

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 20

...(ii/iii)...

– a shipping cost is computed based on
• address and shipping method.

• type of customer which can be individual, business,
educational

– preferred method of payment. Individual customers
can use only credit cards, business and educational
customers can choose between credit card and
invoice

– card information: if the method of payment is credit
card, fields credit card number, name on card,
expiration date, and billing address, if different than
shipping address, must be provided. If credit card
information is not valid the user can either provide
new data or abort the order

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 21

...(iii/iii)

• The outputs of Process shipping order are

• validity: Validity is a boolean output which indicates
whether the order can be processed.

• total charge: The total charge is the sum of the value
of goods and the computed shipping costs (only if
validity = true).

• payment status: if all data are processed correctly and
the credit card information is valid or the payment is
invoice, payment status is set to valid, the order is
entered and a receipt is prepared; otherwise validity =
false.

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 22

…to a

flowgraph
preferred shipping method = land freight,

OR expedited land freight OR overnight air

Process shipping order

CostOfGoods < MinOrder

shipping address

no

yes

domestic

preferred shipping method = air

freight OR expedited air freight

international

calculate domestic shipping chargecalculate international shipping charge

total charge = goods + shipping

individual customer no

yes

obtain credit card data: number, name
on card, expiration date

method of payement

credit card

invoice

billing address = shipping address

obtain billing address

no

yes

valid credit card

information

no

yes

payement status = valid

enter order
prepare receipt

invalid order

nono

abort order?

no

yes

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 23

...from the flow graph to test cases

No (no

abort) -CC - - -NoTC-9

No (abort) -CC - - -NoTC-8

 -YesCC - - -NoTC-7

 - -InvEdu - -NoTC-6

 - - - -LandIntNoTC-5

 - - - -AirDomNoTC-4

 - - - - - -YesTC-3

 - - - -LandDomNoTC-2

YesNoCCBusAirIntNoTC-1

CC valid

Same

Address

Pay

Method

Cust

Type

Ship

Method

 Ship

Where

 Too

SmallCase

Branch testing: cover all branches

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 24

Grammar-based testing

Complex input is (or can) often be
described by a context-free grammar

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 25

Grammars in specifications

• Grammars are good at:

– Representing inputs of varying and unbounded size

– With recursive structure

– And boundary conditions

• Examples:

– Complex textual inputs

– Trees (search trees, parse trees, ...)
• Note XML and HTMl are trees in textual form

– Program structures
• Which are also tree structures in textual format!

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 26

Grammar-based testing

• Test cases are strings generated from the
grammar

• Coverage criteria:
– Production coverage: each production must be used

to generate at least one (section of) test case

– Boundary condition: annotate each recursive
production with minimum and maximum number of
application, then generate:

• Minimum

• Minimum + 1

• Maximum - 1

• Maximum

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 27

from an informal specification (i/iii)...

• The Check-configuration function checks the
validity of a computer configuration.

• The parameters of check-configuration are:

– Model

– Set of components

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 28

... (ii/iii)...

• Model: A model identifies a specific product and
determines a set of constraints on available
components. Models are characterized by logical slots
for components, which may or may not be implemented
by physical slots on a bus. Slots may be required or
optional. Required slots must be assigned with a
suitable component to obtain a legal configuration,
while optional slots may be left empty or filled
depending on the customers' needs
– Example: The required ``slots'' of the Chipmunk C20 laptop

computer include a screen, a processor, a hard disk, memory,
and an operating system. (Of these, only the hard disk and
memory are implemented using actual hardware slots on a
bus.) The optional slots include external storage devices such
as a CD/DVD writer.

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 29

... (iii/iii)

• Set of Components: A set of [slot,component] pairs, which must
correspond to the required and optional slots associated with the
model. A component is a choice that can be varied within a model,
and which is not designed to be replaced by the end user.
Available components and a default for each slot is determined by
the model. The special value empty is allowed (and may be the
default selection) for optional slots. In addition to being
compatible or incompatible with a particular model and slot,
individual components may be compatible or incompatible with
each other.

– Example: The default configuration of the Chipmunk C20 includes 20
gigabytes of hard disk; 30 and 40 gigabyte disks are also available.
(Since the hard disk is a required slot, empty is not an allowed
choice.) The default operating system is RodentOS 3.2, personal
edition, but RodentOS 3.2 mobile server edition may also be selected.
The mobile server edition requires at least 30 gigabytes of hard disk.

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 30

…to a grammar

::= <OptionalComponent> <optCompSequence> |

empty

<optCompSequence>

::= string<ComponentValue>

::= string<ComponentType>

::= string<modelNumber>

::= <ComponentType><OptionalComponent>

::= <ComponentType> <ComponentValue><Component>

::= <Component> <compSequence> | empty<compSequence>

::= <modelNumber> <compSequence>

<optCompSequence>

<Model>

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 31

…to a grammar with limits

::= empty<optCompSequence>optCompSeq2

::= empty<compSequence>compSeq2

CompVal

CompTyp

modNum

OptComp

Comp

optCompSeq1 [0,

16]

compSeq1 [0, 16]

Model

::= <OptionalComponent>

<optCompSequence>

<optCompSequence>

::= string<ComponentValue>

::= string<ComponentType>

::= string<modelNumber>

::= <ComponentType><OptionalComponent>

::= <ComponentType> <ComponentValue><Component>

::= <Component> <compSequence><compSequence>

::= <modelNumber> <compSequence>

<optCompSequence>

<Model>

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 32

…to test cases

• “Mod000”
– Covers Model, compSeq1[0], compSeq2, optCompSeq1[0],

optCompSeq2, modNum

• “Mod000 (Comp000, Val000) (OptComp000)”
– Covers Model, compSeq1[1], compSeq2, optCompSeq2[0],

optCompSeq2, Comp, OptComp, modNum, CompTyp, CompVal

• Etc…

• Comments:
– By first applying productions with nonterminals on the right side, we

obtain few, large test cases

– By first applying productions with terminals on the right side, we
obtain many, small test cases

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 33

Grammar vs. Combinatorial Testing

• Combinatorial specification-based testing is
good for “mostly indepedendent” parameters
– We can incorporate a few constraints, but complex

constraints are hard to represent and use

– We must often “factor and flatten”
• E.g., separate “set of slots” into characteristics “number of

slots” and predicates about what is in the slots (all
together)

• Grammar describes sequences and nested
structure naturally
– But some relations among different parts may be

difficult to describe and exercise systematically,
e.g., compatibility of components with slots

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 34

Summary: The big picture

• Models are useful abstractions
– In specification and design, they help us think and

communicate about complex artifacts by
emphasizing key features and suppressing details

– Models convey structure and help us focus on one
thing at a time

• We can use them in systematic testing
– If a model divides behavior into classes, we probably

want to exercise each of those classes!

– Common model-based testing techniques are based
on state machines, decision structures, and
grammars

• but we can apply the same approach to other models

