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Finite State Verification
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Learning objectives

• Understand the purpose and appropriate uses of

finite-state verification (fsv)

– Understand how fsv mitigates weaknesses of testing

– Understand how testing complements fsv

• Understand modeling for fsv as a balance

between cost and precision

• Distinguish explicit state enumeration from

analysis of implicit models

– And understand why implicit models are sometimes

(but not always) more effective
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Limits and trade-offs

• Most important properties of program execution

are undecidable in general

• Finite state verification can automatically

prove some significant properties of a finite

model of the infinite execution space

– balance trade-offs among

• generality of properties to be checked

• class of programs or models that can be checked

• computational effort in checking

• human effort in producing models and specifying properties
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Resources and results

Properties to
be proved

Computational
costhigh

complex

low

simple

control

and data flow 

models

symbolic execution

and formal reasoning

finite state

verification

applies techniques from

symbolic execution

and formal verification

to models that abstract

the potentially infinite state space

of program behavior

into finite representations
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Cost trade-offs

• Human effort and skill are required
– to prepare a finite state model

– to prepare a suitable specification for automated analysis

• Iterative process:
– prepare a model and specify properties

– attempt verification

– receive reports of impossible or unimportant faults

– refine the specification or the model

• Automated step
– computationally costly

• computational cost impacts the cost of preparing model and
specification, which must be tuned to make verification feasible

– manually refining model and specification less expensive with
near-interactive analysis tools
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Analysis of models

PROGRAM or DESIGN

MODEL

PROPERTY OF INTEREST

No concurrent 

modifications of 
Table 1

...

public static Table 1 

getTable 1() {

    if (ref == null ) { 

synchronized (Table 1) {

           if (ref == null ){

ref = new Table 1(); 

ref .initialize (); 

            }

     }

}

return ref ;

}...

(a)

(b)

(c)

(e)

(d)

(f)

(x)

(y)

Derive models

of software
or design

Algorithmic check  

of the model for the property
PROPERTY OF THE MODEL

Implication

never(<d>and <y>)

Direct check of source /design

(impractical or impossible )
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Applications for Finite State Verification

• Concurrent (multi-threaded, distributed, ...)

– Difficult to test thoroughly (apparent non-

determinism based on scheduler); sensitive to

differences between development environment and

field environment

– First and most well-developed application of FSV

• Data models

– Difficult to identify “corner cases” and interactions

among constraints, or to thoroughly test them

• Security

– Some threats depend on unusual (and untested) use

(c) 2007 Mauro Pezzè & Michal Young  Ch 8, slide 8

Defining the global state space –
Concurrent system example

• Deriving a good finite state model is hard

• Example: finite state machine model of a

program with multiple threads of control

– Simplifying assumptions

• we can determine in advance the number of threads

• we can obtain a finite state machine model of each thread

• we can identify the points at which processes can interact

– State of the whole system model

= tuple of states of individual process models

– Transition = transition of one or more of the

individual processes, acting individually or in concert



(c) 2007 Mauro Pezzè & Michal Young  Ch 8, slide 9

State space exploration –
Concurrent system example

• Specification: an on-line purchasing system

– In-memory data structure initialized by reading

configuration tables at system start-up

– Initialization of the data structure must appear atomic

– The system must be reinitialized on occasion

– The structure is kept in memory

• Implementation (with bugs):

– No monitor (Java synchronized): too expensive*

– Double-checked locking idiom* for a fast system
*Bad decision, broken idiom ... but extremely hard to find the

bug through testing.
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Concurrent system example –
implementation

class Table1 {

private static Table1 ref = null;
private boolean needsInit = true;

private ElementClass [ ]
theValues;

private Table1() { }

public static Table1 getTable1() {

if (ref == null)

   { synchedInitialize(); }

return ref;

}

private static synchronized void
synchedInitialize() {

 if (ref == null) {

ref = new Table1(); 
ref.initialize();

 }

}

public void reinit()
{ needsInit = true; }

private synchronized void
initialize() {
. . .

needsInit = false;
}

public int lookup(int i) {
   if (needsInit) {
      synchronized(this) {

  if (needsInit) {
      this.initialize();
  }

      }
    }
    return theValues[i].getX()
     + theValues[i].getY();
}
. . .
}
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Analysis

• Start from models of individual threads

• Systematically trace all the possible

interleavings of threads
• Like hand-executing all possible sequences of execution,

but automated

... begin by constructing a finite state machine

model of each individual thread ...
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A finite state machine model for each thread

(a)

lookup()

needsInit==true

(b)

obtain lock

(c)

(f)

reading

needsInit==false

(e)

(d)

modifyingneedsInit==false

needsInit==true

needsInit=false

release lock

E

(x)

reinit()

needsInit=true

(y)

E
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Analysis

• Java threading rules:

– when one thread has obtained a monitor lock

– the other thread cannot obtain the same lock

• Locking

– prevents threads from concurrently calling initialize

– Does not prevent possible race condition between

threads executing the lookup method

• Tracing possible executions by hand is

completely impractical

(c) 2007 Mauro Pezzè & Michal Young  Ch 8, slide 14

proctype Lookup(int id ) {

   if :: (needsInit) -> 

      atomic { ! locked  -> locked = true; };

      if  :: (needsInit) -> 

         assert (! modifying); 

         modifying = true;  

         /*  Initialization happens here */

         modifying = false ; 

         needsInit = false;

       :: (! needsInit) -> 

         skip; 

       fi;

       locked = false ;

    fi;

    assert  (! modifying);}

Express the model in Promela

needsinit==true

acquire lock

...

...
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Run Spin; Inspect Output

Spin

• Depth-first search of possible executions of the model

• Explores 10 states and 51 state transitions in 0.16 seconds

• Finds a sequence of 17 transitions from the initial state of the
model to a state in which one of the assertions in the model
evaluates to false

Depth=10 States=51 Transitions=92 Memory=2.302

pan: assertion violated  !(modifying) (at depth 17)

pan: wrote pan_in.trail

(Spin Version 4.2.5 -- 2 April 2005)

…

0.16 real         0.00 user         0.03 sys
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Interpret the trace

Read /write

Race condition
States (f) and (d)

…

return
theValues [i].getX ()

+ theValues [i].getY ();
}

proc 3 (lookup )

public void reinit ()

{ needsInit = true ; }

(x )

proc 1 (reinit )

public init lookup (int i)

if (needsInit ) {
synchronized (this) {

if (needsInit ) {
this .initialize() ;

}

}
}

(y )

proc 2 (lookup )

(a)

(b)

(c)

(d)

(e)

(f)

public init lookup (int i)

if (needsInit ) {
synchronized (this) {

if (needsInit ) {
this .initialize() ;

...

(a)

(b)

(c)

(d)
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The Promela (Spin) modeling language

• A set of processes described by process types

– Can model threads (Java), processes (Unix), devices,

resources, etc.

• C-like syntax, with guarded commands

– expression -> statements

• guarded; not the same as if (expression) { statements };

– atomic { statements }

• treat as a single, atomic step (without interleaving)

– do ... od,  if ... fi

• with multiple :: alternatives, chosen non-deterministically
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Safety and liveness properties

• Safety:  bad things should not happen

– e.g., two processes should not modify a variable at

the same time.

– Easy to specify in Promela with assert( ... )

• Liveness:  good things should eventually happen

– e.g., if I push the button, eventually the elevator

should arrive

– Can be specified in temporal logic; more expensive

to check

– Fairness (I should get lucky now and then) is an

important and common class of liveness properties
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The state explosion problem

Dining philosophers - looking for deadlock with SPIN

5 phils+forks 145 states

deadlock found

10 phils+forks 18,313 states

error trace too long to be useful

15 phils+forks 148,897 states

error trace too long to be useful
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The model correspondence problem

• verify correspondence between model and

program:

– extract the model from the source code with

verified procedures
• blindly mirroring all details ! state space explosion

• omitting crucial detail ! “false alarm” reports

– produce the source code automatically from the

model

• most applicable within well-understood domains

– conformance testing

• good tradeoff
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Granularity of modeling

(a)

(d)

i = i+1

E

(a)

(b)

t=i;

E

(c)

t=t+1;

(d)

i=t;

(w)

(x)

u=i;

E

(y)

u=u+1;

(z)

i=u;

(w)

(z)

i = i+1

E
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Analysis of different models
RacerP RacerQ

t = i;
(a)

t = t+1;
(b)

i = t;
(c)

(d)

u = i;
(w)

u = u+1;
(x)

i = u;
(y)

(z)

we can find the

race only with

fine-grain models
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Looking for the appropriate granularity

• Compilers may rearrange the order of instruction

– a simple store of a value into a memory cell may be compiled

into a store into a local register, with the actual store to

memory appearing later (or not at all)

– Two loads or stores to different memory locations may be

reordered for reasons of efficiency

– Parallel computers may place values initially in the cache

memory of a local processor, and only later write into a

memory area

• Even representing each memory access as an individual

action is not always sufficient!
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Example

• Suppose we use the double-check idiom only

for lazy initialization

• It would still be wrong, but…

• it is unlikely we would discover the flaw

through finite state verification:

– Spin assumes that memory accesses occur in the

order given in the Promela program, and ...

– we code them in the same order as the Java

program, but …

– Java does not guarantee that they will be executed

in that order
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Intensional models

• Enumerating all reachable states is a limiting
factor of finite state verification

• We can reduce the space by using intensional
(symbolic) representations:
– describe sets of reachable states without

enumerating each one individually

• Example (set of Integers)
– Enumeration {2, 4, 6, 8, 10, 12, 14, 16, 18}

– Intensional rep. {x"N|x mod 2 =0 and 0<x<20}

Intensional models do not necessarily grow with the
size of the set they represent

characteristic

function
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A useful intensional model: OBDD

• Ordered Binary Decision Diagrams
– A compact representation of Boolean functions

• Characteristic function for transition relations
– Transitions = pairs of states

– Function from pairs of states to Booleans:
• True if the there is a transition between the pair

– Built iteratively by breadth-first expansion of the
state space:

• creating a representation of the whole set of states
reachable in k+1 steps from the set of states reachable in k
steps

• the OBDD stabilizes when all the transitions that can occur
in the next step are already represented in the OBDD
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From OBDDs to Symbolic Checking

• An intensional representation is not enough

• We must have an algorithm for determining whether that

set satisfies the property we are checking

example:

• OBDD to represent

– the transition relation of a set of communicating state machines

– a class of temporal logic specification formulas

• Combine OBDD representations of model and

specification to produce a representation of just the set

of transitions leading to a violation of the specification

– If the set is empty, the property has been verified
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Represent transition relations as
Boolean functions

a ! b and c

not(a) or (b and c)

the BDD is a decision tree

that has been transformed

into an acyclic graph by

merging nodes leading to

identical subtrees

a

F T

F T

b

F T

c

F T
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Representing transition relations as
Boolean functions

A. Assign a label to

each state

B. Encode transitions

C. The transition

tuples correspond

to paths leading

to true; all other

paths lead to false

s0 (00)

s1 (01)

b (x0=1)

a (x0=0)

0 0 0 0 0 

0 0 0 1 1 

x1 x2 x3 x4 x0 

x0
0 1

x1
0 1

F T

x1
0 1

x2
0 1

x3
0 1

x4
0 1

x2
0 1

x3
0 1

x4
0 1

sym from state to state

(A)

(B)

(C)

s2 (10)

b (x0=1)

0 1 1 0 1 

x3
0 1
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Intensional vs explicit representations

• Worst case:

given a large set S of states

a representation capable of distinguishing each

subset of S

cannot be more compact on average

than the representation that simply lists elements of

the chosen subset.

• Intensional representations work well when

they exploit structure and regularity of the

state space
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Model refinement

• Construction of  finite state models

– balancing precision and efficiency

• Often the first model is unsatisfactory

– report potential failures that are obviously

impossible

– exhaust resources before producing any result

• Minor differences in the model can have large

effects on tractability of the verification

procedure

• finite state verification as iterative process

(c) 2007 Mauro Pezzè & Michal Young  Ch 8, slide 32

Iterative process

construct an

initial model

attempt verification

abstract the model 

further

exhausts 

computational 

resources

make the model

more precise

spurious

results
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Refinement: Adding details to the model

M1 |= P initial (coarse grain) model
(the counter example that violates P is possible in M1,

but does not correspond to an execution of the real program)

M2 |= P refined (more detailed) model
(the counter example is not possible in M2 but a new counter

examples violates M2 but does not correspond to an execution of

the real program)

....

Mk |= P
(the counter example that violates P in Mk corresponds to an

execution in the real program)
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Example: Boolean programs

• Initial Boolean program

– omits all variables

– branches if, while,.. refer to a dummy Boolean variable whose

value is unknown

• Refined Boolean program

– add ONLY Boolean variables, with assignments and tests

• Example: pump controller

– a counter-example shows that the waterLevel variable cannot

be ignored

– a refined Boolean program adds a Boolean variable

corresponding to a predicate in which waterLevel is tested

(waterLevel < highLimit) rather than adding the variable

waterLevel itself
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Another refinement approach:
add premises to the property

initial (coarse grain) model

M |= P

add a constraint C1 that eliminates the bogus

behavior

M |= C1 ! P

M |= (C1 and C2) ! P

.... until the verification succeeds or produces a

valid counter example
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Other Domains for Finite-State
Verification

• Concurrent systems are the most common

application domain

• But the same general principle (systematic

analysis of models, where thorough testing is

impractical) has other applications

• Example:  Complex data models

– Difficult to consider all the possible combinations of

choices in a complex data model
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Data model verification and relational algebra

• Many information systems are characterized by

– simple logic and algorithms

– complex data structures

• Key element of these systems is the data model
(UML class and object diagrams + OCL assertions)

= sets of data and relations among them

• The challenge is to prove that

– individual constraint are consistent and

– together they ensure the desired properties of the

system as a whole
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Example: a simple web site
Signature = Sets + Relations

• A set of pages divided among restricted, unrestricted, maintenance
pages

– unrestricted pages: freely accessible

– restricted pages: accessible only to registered users

– maintenance pages: inaccessible to both sets of users

• A set of users:  administrator, registered, and unregistered

• A set of links relations among pages

– private links lead to restricted pages

– public links lead to unrestricted pages

– Maintenance links lead to maintenance pages

• A set of access rights relations between users and pages

– unregistered users can access only unrestricted pages

– registered users can access both restricted and unrestricted pages

– administrator can access all pages including maintenance pages
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Complete a specification with constraints

Example constraints for the web site:

• Exclude self loops from links relations

• Allow at most one type of link between two

pages

– NOTE: relations need not be symmetric:
<A, B> # <B, A>

• Web site must be connected

• ...
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The data model for the simple web site

r
A

B

A B

users

administrator
registered

unregistered

page

unrestricted

restricted
maintenance

maintenance

maintenance

private

private

public

public

LEGEND

Set B 

specializes 

set A
There is a relation r 

between sets A and B
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Relational algebra to reason about sets
and relations

• set union and set intersection obey many of the same

algebraic laws as addition and subtraction of integers:

– commutative law

A $ B = B $ A

A % B = B % A

– associative law

(A $ B) $ C = A $ (B $ C)

(A % B) % C = A % (B % C)

– distributive law

A % (B $ C) = (A % B) % (A % C)

– ...
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A relational algebra specification (Alloy): Page

module WebSite

// Pages include three disjoint sets of links

sig Page {disj linksPriv, linksPub, linksMain: set Page }

// Each type of link points to a particular class of page

fact connPub {all p:Page, s: Site | p.linksPub in s.unres }

fact connPriv {all p:Page, s: Site | p.linksPriv in s.res }

fact connMain {all p:Page, s: Site | p.linksMain in s.main }

// Self loops are not allowed

fact noSelfLoop {no p:Page| p in p.linksPriv+p.linksPub+p.linksMain }

signature: 

Set Page

constraints

Introduce

relations
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A relational algebra specification: User

// Users are characterized by the set of pages that they can access

sig User {pages: set Page }

// Users are partitioned into three sets

part sig Administrator, Registered, Unregistered extends User {}

// Unregistered users can access only the home page, and unrestricted pages

fact accUnregistered {

all u: Unregistered, s: Site|u.pages = (s.home+s.unres)

}

// Registered users can access the home page,restricted and unrestricted pages

fact accRegistered {

all u: Registered, s: Site|u.pages = (s.home+s.res+s.unres)

}

// Administrators can access all pages

fact accAdministrator {

all u: Administrator, s: Site|

u.pages = (s.home+s.res+s.unres+s.main)

}
Constraints map

users to pages
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Analyze relational algebra specifications

• Overconstrained specifications are not satisfiable by
any implementation,

• Underconstrained specifications allow undesirable
implementations

• Specifications identify infinite sets of solutions

... so ...

Properties of a relational specification are undecidable

• A (counter) example that invalidates a property can be
found within a finite set of small models

... so ...

We can verify a specification over a finite set of
solutions by limiting the cardinality of the sets
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Checking a finite set of solutions

• If an example is found:

– There are no logical contradictions in the model

– The solution is not overconstrained

• If no counterexample of a property is found:

– no reasonably small solution (property violation)

exists

– BUT NOT that NO solution exists

• We depend on a “small scope hypothesis”:  Most bugs that

can cause failure with large collections of objects can also

cause failure with very small collections (so it’s worth

looking for bugs in small collections even if we can’t afford

to look in big ones)
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Analysis of the web site specification

run init for 5

// can unregistered users

//     visit all unrestricted pages?

assert browsePub {

all p: Page, s: Site|

       p in s.unres implies s.home in p.* linksPub

}

check browsePub for 3

Cardinality limit: 

Consider up to 

5 objects of each type

Property to be

checked

*

Transitive closure

(including home)

(c) 2007 Mauro Pezzè & Michal Young  Ch 8, slide 47

Analysis result

Counterexample:

• Unregistered User_2

cannot visit the

unrestricted page page_2

• The only path from the

home page to page_2

goes through the

restricted page page_0

• The property is violated

because unrestricted

browsing paths can be

interrupted by restricted

pages or pages under

maintenance
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Correcting the specification

• We can eliminate the problem by eliminating public

links from maintenance or reserved pages:

fact descendant {

   all p:Pages, s:Site|p in s.main+s.res
      implies no p. links.linkPub

}

• Analysis would find no counterexample of cardinality 3

• We cannot conclude that no larger counter-example

exists, but we may be satisfied that there is no reason

to expect this property to be violated only in larger

models
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Summary

• Finite state verification is complementary to

testing

– Can find bugs that are extremely hard to test for

• example: race conditions that happen very rarely, under

conditions that are hard to control

– But is limited in scope

• cannot be used to find all kinds of errors

• Checking models can be (and is) automated

• But designing good models is challenging
• Requires careful consideration of abstraction, granularity,

and the properties to be checked.  Often requires a cycle of

model / check / refine until a useful result is obtained.


