
(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 1

Symbolic Execution and Proof of
Properties

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 3

Symbolic Execution

• Builds predicates that characterize

– Conditions for executing paths

– Effects of the execution on program state

• Bridges program behavior to logic

• Finds important applications in

– program analysis

– test data generation

– formal verification (proofs) of program correctness

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 4

Formal proof of properties

• Relevant application domains:

– Rigorous proofs of properties of critical subsystems

• Example: safety kernel of a medical device

– Formal verification of critical properties particularly

resistant to dynamic testing

• Example: security properties

– Formal verification of algorithm descriptions and logical

designs

• less complex than implementations

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 5

Symbolic state

Execution with concrete values

before
low 12

high 15

mid -

mid = (high+low)/2

 after

low 12

high 15

mid 13

Execution with symbolic values

 before

low L

high H

mid -

mid = (high+low)/2

 after

Low L

high H

mid (L+H)/2

Values are expressions over symbols

Executing statements computes new expressions

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 6

Dealing with branching statements
a sample program

char *binarySearch(char *key, char *dictKeys[],
 char *dictValues[], int dictSize) {

 int low = 0;

 int high = dictSize - 1;

 int mid;

 int comparison;

 while (high >= low) {

 mid = (high + low) / 2;

 comparison = strcmp(dictKeys[mid], key);

 if (comparison < 0) {

 low = mid + 1;

 } else if (comparison > 0) {

 high = mid - 1;

 } else {

 return dictValues[mid];

 }

 }

 return 0;

 Branching stmt

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 7

Executing while (high >= low) {

before
low = 0

and high = (H-1)/2 -1

and mid = (H-1)/2

while (high >= low)!!

after

low = 0

and high = (H-1)/2 -1

and mid = (H-1)/2

and (H-1)/2 - 1 >= 0

Add an expression that records the condition for the execution of

the branch (PATH CONDITION)

 if the TRUE branch was taken

... and not((H-1)/2 - 1 >= 0) if the FALSE branch was taken

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 8

Summary information

• Symbolic representation of paths may become

extremely complex

• We can simplify the representation by replacing

a complex condition P with a weaker condition

W such that

P => W

• W describes the path with less precision

• W is a summary of P

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 9

Example of summary information

(Referring to Binary search: Line 17, mid = (high+low)/2)

• If we are reasoning about the correctness of the binary search algorithm,

the complete condition:

low = L

and high = H

and mid = M

and M = (L+H)/2

• Contains more information than needed and can be replaced with the

weaker condition:

low = L

and high = H

and mid = M

and L <= M <= H

• The weaker condition contains less information, but still enough to reason

about correctness.

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 10

Weaker preconditions

• The weaker predicate L <= mid <= H is chosen based on
what must be true for the program to execute correctly

• It cannot be derived automatically from source code

• it depends on our understanding of the code and our
rationale for believing it to be correct

• A predicate stating what should be true at a given point
can be expressed in the form of an assertion

• Weakening the predicate has a cost for testing:
– satisfying the predicate is no longer sufficient to find data that

forces program execution along that path.

• test data that satisfies a weaker predicate W is necessary to
execute the path, but it may not be sufficient

• showing that W cannot be satisfied shows path infeasibility

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 11

Loops and assertions

• The number of execution paths through a program with
loops is potentially infinite

• To reason about program behavior in a loop, we can
place within the loop an invariant:
– assertion that states a predicate that is expected to be true

each time execution reaches that point.

• Each time program execution reaches the invariant
assertion, we can weaken the description of program
state:
– If predicate P represents the program state

– and the assertion is W

– we must first ascertain P => W

– and then we can substitute W for P

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 12

Pre- and post-conditions

• Suppose:
– every loop contains an assertion

– there is an assertion at the beginning of the program

– a final assertion at the end

• Then:
– every possible execution path would be a sequence

of segments from one assertion to the next.

• Terminology:
– Precondition: The assertion at the beginning of a

segment,

– Postcondition: The assertion at the end of the
segment

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 13

Verifying program correctness

• If for each program segment we can verify that

– Starting from the precondition

– Executing the program segment

– The postcondition holds at the end of the segment

• Then

– We verify the correctness of an infinite number of

program paths

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 14

Example

Forall{i,j} 0 <= i < j < size :

dictKeys[i] <= dictKeys[j]

Precondition: is sorted:

Forall{i} 0 <= i < size :

dictKeys[i] = key =>

low <= i <= high

Invariant: in range

char *binarySearch(char *key, char *dictKeys[],
 char *dictValues[], int dictSize) {

 int low = 0;

 int high = dictSize - 1;

 int mid;

 int comparison;

 while (high >= low) {

 mid = (high + low) / 2;

 comparison = strcmp(dictKeys[mid], key);

 if (comparison < 0) {

 low = mid + 1;

 } else if (comparison > 0) {

 high = mid - 1;

 } else {

 return dictValues[mid];

 }

 }

 return 0;

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 15

Executing the loop once…

low = L

and high = H

Forall{i,j} 0 <= i < j < size :

dictKeys[i] <= dictKeys[j]

and Forall{k} 0 <= k < size :

dictKeys[k] = key => L <= k <= H

Initial values:

Instantiated invariant:

low = L

and high = H

and mid = M

and Forall{i,j} 0 <= i < j < size :

dictKeys[i] <= dictKeys[j]

and Forall{k} 0 <= k < size :

dictKeys[k] = key => L <= k <= H

and H >= M >= L

After executing: mid = (high + low)/2

….

Invariant

Forall{i} 0 <= i < size :

dictKeys[i] = key =>

low <= i <= high

Precondition

Forall{i,j} 0 <= i < j < size

dictKeys[i] <= dictKeys[j]

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 16

…executing the loop once
low = M+1

and high = H

and mid = M

and Forall{i,j} 0 <= i < j < size :

dictKeys[i] <= dictKeys[j]

and Forall{k} 0 <= k < size :

dictKeys[k] = key => L <= k <= H

and H >= M >= L

and dictkeys[M]<key

After executing the loop

The new instance of the invariant:

Forall{i,j} 0 <= i < j < size :

dictKeys[i] <= dictKeys[j]

and Forall{k} 0 <= k < size :

dictKeys[k] = key => M+1 <= k <= H

If the invariant is satisfied, the loop is correct wrt the preconditions and the invariant

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 17

From the loop to the end

If the invariant is satisfied, but the condition is false:

low = L

and high = H

and Forall{i,j} 0 <= i < j < size :

dictKeys[i] <= dictKeys[j]

and Forall{k} 0 <= k < size :

dictKeys[k] = key => L <= k <= H

and L > H

If the the condition satisfies the post-condition, the program

is correct wrt the pre- and post-condition:

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 18

Compositional reasoning

• Follow the hierarchical structure of a program
– at a small scale (within a single procedure)

– at larger scales (across multiple procedures…)

• Hoare triple: [pre] block [post]

• if the program is in a state satisfying the
precondition pre at entry to the block, then
after execution of the block it will be in a state
satisfying the postcondition post

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 19

Reasoning about Hoare triples:
inference

[I and C] S [I]

[I] while(C){S} [I and notC]

Inference rule says:
if we can verify the premise (top),
then we can infer the conclusion (bottom)

premise

conclusion

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 20

Some other rules: if statement

[P and C] thenpart [Q] [P and notC] elsepart [Q]

[P] if (C){thenpart} else {elsepart} [Q]

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 21

Reasoning style

• Summarize the effect of a block of program code (a
whole procedure) by a contract == precondition +
postcondition

• Then use the contract wherever the procedure is called

example

summarizing binarySearch:

(forall i,j, 0 <= i < j < size : keys[i] <= keys[j])

s = binarySearch(k, keys, vals, size)

(s=v and exists i , 0 <= i , size : keys[i] = k and vals[i] = v)

or

(s=v and not exists i , 0 <= i , size : keys[i] = k)

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 22

Reasoning about data structures and
classes

• Data structure module = collection of
procedures (methods) whose specifications are
strongly interrelated

• Contracts: specified by relating procedures to
an abstract model of their (encapsulated) inner
state

example:

Dictionary can be abstracted as {<key, value>}

independent of the implementation as a list,
tree, hash table, etc.

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 23

Structural invariants

• Structural characteristics that must be

maintained as specified as structural invariants

(~loop invariants)

• Reasoning about data structures

– if the structural invariant holds before execution

– and each method execution preserve the invariant

– …then the invariant holds for all executions

Example: Each method in a search tree class

maintains the ordering of keys in the tree

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 24

Abstraction function

• maps concrete objects to abstract model states

Dictionary example

[<k,v> in !(dict)]

o = dict.get(k)

[o = v]

abstraction function

(c) 2007 Mauro Pezzè & Michal Young Ch 7, slide 25

Summary

• Symbolic execution = bridge from an operational view
of program execution to logical and mathematical
statements.

• Basic symbolic execution technique: execute using
symbols

• Symbolic execution for loops, procedure calls, and data
structures: proceed hierarchically
– compose facts about small parts into facts about larger parts

• Fundamental technique for
– Generating test data

– Verifying systems

– Performing or checking program transformations

• Tools are essential to scale up

