
(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 1

Dependence and Data Flow Models

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 2

Why Data Flow Models?

• Models from Chapter 5 emphasized control
• Control flow graph, call graph, finite state machines

• We also need to reason about dependence
• Where does this value of x come from?

• What would be affected by changing this?

• ...

• Many program analyses and test design
techniques use data flow information

– Often in combination with control flow
• Example: “Taint” analysis to prevent SQL injection attacks

• Example: Dataflow test criteria (Ch.13)

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 3

Learning objectives

• Understand basics of data-flow models and the
related concepts (def-use pairs, dominators…)

• Understand some analyses that can be
performed with the data-flow model of a
program
– The data flow analyses to build models

– Analyses that use the data flow models

• Understand basic trade-offs in modeling data
flow
– variations and limitations of data-flow models and

analyses, differing in precision and cost

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 4

Def-Use Pairs (1)

• A def-use (du) pair associates a point in a program
where a value is produced with a point where it is used

• Definition: where a variable gets a value
– Variable declaration (often the special value “uninitialized”)

– Variable initialization

– Assignment

– Values received by a parameter

• Use: extraction of a value from a variable
– Expressions

– Conditional statements

– Parameter passing

– Returns

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 5

Def-Use Pairs

...

if (...) {

 x = ... ;

...

}

y = ... + x + ... ;

x = ...

if (...) {

...

y = ... + x + ...

...

...

Definition:

x gets a

value

Use: the value

of x is

extracted
Def-Use

path

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 6

Def-Use Pairs (3)

/** Euclid's algorithm */
public class GCD
{
public int gcd(int x, int y) {

int tmp; // A: def x, y, tmp
while (y != 0) { // B: use y
 tmp = x % y; // C: def tmp; use x, y
 x = y; // D: def x; use y
 y = tmp; // E: def y; use tmp
}
return x; // F: use x

 }

Figure 6.2, page 79

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 7

Def-Use Pairs (3)

• A definition-clear path is a path along the CFG
from a definition to a use of the same variable
without* another definition of the variable
between

– If, instead, another definition is present on the path,
then the latter definition kills the former

• A def-use pair is formed if and only if there is a
definition-clear path between the definition
and the use

*There is an over-simplification

here, which we will repair later.

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 8

Definition-Clear or Killing

 x = ... // A: def x
 q = ...
 x = y; // B: kill x, def x
 z = ...
 y = f(x); // C: use x

x = ...

...

...

Definition: x

gets a value

Use: the value

of x is

extracted

A

x = y

Definition: x gets

a new value, old

value is killed

...

y = f(x)

B

C

Path B..C is

definition-clear

Path A..C is

not definition-clear

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 9

(Direct) Data Dependence Graph

• A direct data dependence graph is:
– Nodes: as in the control flow graph (CFG)

– Edges: def-use (du) pairs, labelled with the variable name

(Figure 6.3, page 80)

Dependence
edges show this
x value could be
the unchanged
parameter or

could be set at
line D

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 10

Control dependence (1)
• Data dependence: Where did these values come from?

• Control dependence: Which statement controls whether
this statement executes?
– Nodes: as in the CFG

– Edges: unlabelled, from entry/branching points to controlled
blocks

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 11

Dominators
• Pre-dominators in a rooted, directed graph can be

used to make this intuitive notion of “controlling
decision” precise.

• Node M dominates node N if every path from the root
to N passes through M.
– A node will typically have many dominators, but except for the

root, there is a unique immediate dominator of node N which
is closest to N on any path from the root, and which is in turn
dominated by all the other dominators of N.

– Because each node (except the root) has a unique immediate
dominator, the immediate dominator relation forms a tree.

• Post-dominators: Calculated in the reverse of the
control flow graph, using a special “exit” node as the
root.

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 12

Dominators (example)

A

B

C

D

E

F

G

• A pre-dominates all
nodes; G post-dominates
all nodes

• F and G post-dominate E

• G is the immediate post-
dominator of B
– C does not post-dominate B

• B is the immediate pre-
dominator of G
– F does not pre-dominate G

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 13

Control dependence (2)

• We can use post-dominators to give a more precise
definition of control dependence:
– Consider again a node N that is reached on some but not all

execution paths.

– There must be some node C with the following property:

• C has at least two successors in the control flow graph (i.e., it
represents a control flow decision);

• C is not post-dominated by N

• there is a successor of C in the control flow graph that is post-
dominated by N.

– When these conditions are true, we say node N is control-
dependent on node C.

• Intuitively: C was the last decision that controlled whether N
executed

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 14

Control Dependence

A

B

C

D

E

F

G
F is control-dependent on B,

the last point at which its

execution was not inevitable

Execution of F is

not inevitable at B

Execution of F is

inevitable at E

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 15

Data Flow Analysis

Computing data flow information

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 16

Calculating def-use pairs

• Definition-use pairs can be defined in terms of paths in the
program control flow graph:

– There is an association (d,u) between a definition of variable v at d
and a use of variable v at u iff

• there is at least one control flow path from d to u

• with no intervening definition of v.

– vd reaches u (vd is a reaching definition at u).

– If a control flow path passes through another definition e of the same
variable v, ve kills vd at that point.

• Even if we consider only loop-free paths, the number of paths in a
graph can be exponentially larger than the number of nodes and
edges.

• Practical algorithms therefore do not search every individual path.
Instead, they summarize the reaching definitions at a node over all
the paths reaching that node.

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 17

Exponential paths
(even without loops)

A B C D E F G V

2 paths from A to B

4 from A to C

8 from A to D

16 from A to E

...

128 paths from A to V

Tracing each path is

not efficient, and we

can do much better.

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 18

DF Algorithm

• An efficient algorithm for computing reaching
definitions (and several other properties) is based on
the way reaching definitions at one node are related to
the reaching definitions at an adjacent node.

• Suppose we are calculating the reaching definitions of
node n, and there is an edge (p,n) from an immediate
predecessor node p.
– If the predecessor node p can assign a value to variable v, then

the definition vp reaches n. We say the definition vp is
generated at p.

– If a definition vp of variable v reaches a predecessor node p,
and if v is not redefined at that node (in which case we say the
vp is killed at that point), then the definition is propagated on
from p to n.

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 19

Equations of node E (y = tmp)

Reach(E) = ReachOut(D)

ReachOut(E) = (Reach(E) \ {yA}) ! {yE}

public class GCD {
public int gcd(int x, int y) {

int tmp; // A: def x, y, tmp
while (y != 0) { // B: use y
 tmp = x % y; // C: def tmp; use x, y
 x = y; // D: def x; use y
 y = tmp; // E: def y; use tmp
}
return x; // F: use x

 }

Calculate reaching

definitions at E in

terms of its

immediate

predecessor D

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 20

Equations of node B (while (y != 0))

• Reach(B) = ReachOut(A) ! ReachOut(E)

• ReachOut(A) = gen(A) = {xA, yA, tmpA}

• ReachOut(E) = (Reach(E) \ {yA}) ! {yE}

public class GCD {
public int gcd(int x, int y) {

int tmp; // A: def x, y, tmp
while (y != 0) { // B: use y
 tmp = x % y; // C: def tmp; use x, y
 x = y; // D: def x; use y
 y = tmp; // E: def y; use tmp
}
return x; // F: use x

 }

This line has two

predecessors:

Before the loop,

end of the loop

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 21

General equations for Reach analysis

Reach(n) = ! ReachOut(m)

 m"pred(n)

ReachOut(n) = (Reach(n) \ kill (n)) ! gen(n)

gen(n) = { vn | v is defined or modified at n }

kill(n) = { vx | v is defined or modified at x, x!n }

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 22

Avail equations

Avail (n) = # AvailOut(m)

 m"pred(n)

AvailOut(n) = (Avail (n) \ kill (n)) ! gen(n)

gen(n) = { exp | exp is computed at n }

kill(n) = { exp | exp has variables assigned at n }

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 23

Live variable equations

Live(n) = ! LiveOut(m)

 m"succ(n)

LiveOut(n) = (Live(n) \ kill (n)) ! gen(n)

gen(n) = { v | v is used at n }

kill(n) = { v | v is modified at n }

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 24

Classification of analyses

• Forward/backward: a node’s set depends on that of its
predecessors/successors

• Any-path/all-path: a node’s set contains a value iff it is
coming from any/all of its inputs

“inevitable”LiveBackward (succ)

AvailReachForward (pred)

All-paths (#)Any-path (!)

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 25

Iterative Solution of Dataflow Equations

• Initialize values (first estimate of answer)
– For “any path” problems, first guess is “nothing”

(empty set) at each node

– For “all paths” problems, first guess is “everything”
(set of all possible values = union of all “gen” sets)

• Repeat until nothing changes
– Pick some node and recalculate (new estimate)

This will converge on a “fixed point” solution
where every new calculation produces the
same value as the previous guess.

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 26

Worklist Algorithm for Data Flow

See figures 6.6, 6.7 on pages 84, 86 of Pezzè & Young

One way to iterate to a fixed point solution.

General idea:

• Initially all nodes are on the work list, and have default values

– Default for “any-path” problem is the empty set, default for “all-
path” problem is the set of all possibilities (union of all gen sets)

• While the work list is not empty

– Pick any node n on work list; remove it from the list

– Apply the data flow equations for that node to get new values

– If the new value is changed (from the old value at that node), then

• Add successors (for forward analysis) or predecessors (for backward
analysis) on the work list

• Eventually the work list will be empty (because new computed
values = old values for each node) and the algorithm stops.

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 27

Cooking your own: From Execution to
Conservative Flow Analysis

• We can use the same data flow algorithms to
approximate other dynamic properties

– Gen set will be “facts that become true here”

– Kill set will be “facts that are no longer true here”

– Flow equations will describe propagation

• Example: Taintedness (in web form processing)

– “Taint”: a user-supplied value (e.g., from web
form) that has not been validated

– Gen: we get this value from an untrusted source
here

– Kill: we validated to make sure the value is proper

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 28

Cooking your own analysis (2)

• Flow equations must be
monotonic
– Initialize to the bottom

element of a lattice of
approximations

– Each new value that
changes must move up the
lattice

• Typically: Powerset
lattice
– Bottom is empty set, top is

universe

– Or empty at top for all-
paths analysis

Monotonic: y > x implies f(y) ! f(x)

(where f is application of the flow

equations on values from successor

or predecessor nodes, and “>” is

movement up the lattice)

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 29

Data flow analysis with arrays and pointers

• Arrays and pointers introduce uncertainty:
Do different expressions access the same
storage?

– a[i] same as a[k] when i = k

– a[i] same as b[i] when a = b (aliasing)

• The uncertainty is accomodated depending to
the kind of analysis

– Any-path: gen sets should include all potential
aliases and kill set should include only what is
definitely modified

– All-path: vice versa

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 30

Scope of Data Flow Analysis

• Intraprocedural

– Within a single method or procedure
• as described so far

• Interprocedural

– Across several methods (and classes) or procedures

• Cost/Precision trade-offs for interprocedural
analysis are critical, and difficult

– context sensitivity

– flow-sensitivity

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 31

Context Sensitivity

sub() sub()

bar() {

}

sub() {

foo() {

}

}

(call)

(return)

(call)

(return)

A context-sensitive (interprocedural) analysis

distinguishes sub() called from foo()

from sub() called from bar();

A context-insensitive (interprocedural) analysis

does not separate them, as if foo() could call sub()

and sub() could then return to bar()

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 32

Flow Sensitivity

• Reach, Avail, etc. were flow-sensitive,
intraprocedural analyses
– They considered ordering and control flow decisions

– Within a single procedure or method, this is (fairly)
cheap — O(n3) for n CFG nodes

• Many interprocedural flow analyses are flow-
insensitive
– O(n3) would not be acceptable for all the statements

in a program!
• Though O(n3) on each individual procedure might be ok

– Often flow-insensitive analysis is good enough ...
consider type checking as an example

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 33

Summary

• Data flow models detect patterns on CFGs:
– Nodes initiating the pattern

– Nodes terminating it

– Nodes that may interrupt it

• Often, but not always, about flow of information
(dependence)

• Pros:
– Can be implemented by efficient iterative algorithms

– Widely applicable (not just for classic “data flow” properties)

• Limitations:
– Unable to distinguish feasible from infeasible paths

– Analyses spanning whole programs (e.g., alias analysis) must
trade off precision against computational cost

