Finite Models

Properties of Models

Compact: representable and manipulable in a reasonably compact
form
- What is reasonably compact depends largely on how the model will be
used
Predictive: must represent some salient characteristics of the
modeled artifact well enough to distinguish between good and bad
outcomes of analysis
- no single model represents all characteristics well enough to be useful for all
kinds of analysis
Semantically meaningful: it is usually necessary to interpret
analysis results in a way that permits diagnosis of the causes of
failure
Sufficiently general: models intended for analysis of some
important characteristic must be general enough for practical use
:"in the intended domain of application

(c) 2007 Mauro Pezze & Michal Young Ch 5, slide 1

(c) 2007 Mauro Pezze & Michal Young Ch 5, slide 3

Learning objectives

» Understand goals and implications of finite
state abstraction

« Learn how to model program control flow with
graphs

» Learn how to model the software system
structure with call graphs

e Learn how to model finite state behavior with
finite state machines

SOFTWARE TESTING
AND A

NALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 5, slide 2

Graph Representations: directed graphs

« Directed graph:
- N (set of nodes)
- E (relation on the set of nodes) edges

Nodes: {a, b, ¢}
Edges: {(a,b), (a, c), (c, a)}

;’); pene

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 5, slide 4

Graph Representations: labels and code

» We can label nodes with the names or descriptions of
the entities they represent.

- If nodes a and b represent program regions containing
assignment statements, we might draw the two nodes and an
edge (a,b) connecting them in this way:

Goyem)

[a = f(x);]

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 5, slide 5

Finite Abstraction of Behavior

an abstraction function suppresses some details of program execution
(COOHHOOeHHoeo—{Ceel
QO 0@

=
it lumps together execution states that differ with respect to the
suppressed details but are otherwise identical

(elelolm=(e] 1O 0@
ooCe—eee e

SOFTWARE
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 5, slide 7

Multidimensional Graph Representations

» Sometimes we draw a single diagram to
represent more than one directed graph,
drawing the shared nodes only once

- class B extends (is a subclass of) class A
- class B has a field that is an object of type C

extends relation
NODES = {A, B, C}
EDGES = {(A,B)}

includes relation T ‘

NODES = {A, B, C} "

EDGES = {(B,C)} |

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 5, slide 6

(Intraprocedural) Control Flow Graph

e nodes = regions of source code (basic blocks)
- Basic block = maximal program region with a single entry and
single exit point
- Often statements are grouped in single regions to get a
compact model
- Sometime single statements are broken into more than one
node to model control flow within the statement
e directed edges = possibility that program execution
proceeds from the end of one region directly to the
beginning of another

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 5, slide 8

Example of Control Flow Graph

public static String collapseNewlines(String argStr)
{
char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cldx = 0 ; cldx < argStr.length(); cldx++)

char ch = argStr.charAt(cldx);
if (ch !="\n" || last !="\n")
{
argBuf.append(ch);
last = ch;
}
}

return argBuf.toString();

SOFTWARE TESTING
AND ANALYSIS

public static String argstry |

(1 (b2)
charlast = argStr.charA0); ~—
StringBuffer argBuf = new StringBuffer();

| for (intcldx=0;

(cldx < argStr.length); f:hs/‘q—\

—False—"—True—

(¢ (ba)
‘ charch = argStr.charAt(cldx);
if (ch 1=\
—False— " —True—_
(1=) (bs))
(Il tast =) (bs)

True———|

" (b6
argBuf .append(ch);)
last =ch;

\)
: False—
I 7
} (b7
‘ cldx++) \r:jj

*' return argBuftoString(); J”,i
}

Linear Code Sequence and Jump (LCSJ)

Essentially subpaths of the control flow graph from one
branch to another

(c) 2007 Mauro Pezze & Michal Young

Ch 5, slide 9

Interprocedural control flow graph

 Call graphs

- Nodes represent procedures

* Methods
e C functions

- Edges represent calls relation

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young

Ch 5, slide 11

{ s b1

| %—a ‘ From | Sequence of basic blocs | To
i?fg?:ff%?ﬁ"fﬁ‘f)s‘mngam(;, N Entry | b1 b2 b3 X
gp——m— Entry | b1 b2 b3 b4 T
[G - Entry | b1 b2 b3 b4 b5 jE
| g | Entry | b1 b2 b3 b4 b5 b6 b7 iL
T X |bs ret
. (ﬁﬁ iL |b3b4 iT
| D [o3babs E
\ ‘;i—ﬁ‘ jiL [b3b4b5b6b7 iL

[T — ;;8,‘ *

E (c) 2007 Mauro Pezzé & Michal Young Ch 5, slide 10

Overestimating the calls relation

The static call graph includes calls through dynamic
bindings that never occur in execution.

public class C {
public static C cFactory(String kind) {
if (kind == "C") return new CQ;
if (kind == "S") return new SQ;
return null;

}
void foo() {

System.out.println("You called the parent's method");

public static void main(String args[]) {

}
class S extends C {
void foo() {

}
class A {

myC.foo();

sorruate b
ADBAISES

(new AQ)).checkQ);
¥ A.check()
System.out.println("You called the child's method");
void check(Q) {
C myC = C.cFactory("S"); A
C.foo() S.foo() CcFactory(string)
Ch 5, slide 12

(c) 2007 Mauro Pezze & Michal Young

Contex Insensitive Call graphs

public class Context {
public static void main(String args]) {
Context ¢ = new Context();
c.foo(3);
c.bar(17);

}
void foo(int n) { A
int]] myArray = new int[n ;

depends(myArray, 2) ;
} C.foo C.bar

void bar(int n) {
int[] myArray =new int[n;
depends(myArray, 16) ;

}

main

C.depends

void depends(int[] a, intn) {
a[n] = 42;
}

sorie esTig
MO ARISS

(c) 2007 Mauro Pezze & Michal Young Ch 5, slide 13

Context Sensitive CFG
exponential growth

1 context A

2 contexts AB AC

4 contexts ABD ABE ACD ACE
8 contexts ...

16 calling contexts ...

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 5, slide 15

Contex Sensitive Call graphs

public class Context {
public static void main(String argsf]) {
Context ¢ = new Context();
c.foo(3);
c.bar(17);
}

void foo(int n) {
intl] myArray = new int[nJ;
depends(myArray, 2) ;

}

void bar(int n) {
intl] myArray = new int[n J;
depends(myArray, 16) ;

}

void depends(intf] a, intn) {
a[n] =42;
}

s st
D ity

main

C.foo(3)

C.bar(17)

C.depends(int(3),a,2)

C.depends (int(3),a,2)

(c) 2007 Mauro Pezze & Michal Young

Finite state machines

finite set of states (nodes)

set of transitions among states (edges)

Graph representation (Mealy machine)

Ch 5, slide 14

Tabular representation

ernlt apend
emlt
LF CR EOF other
Emty Within
buffer line - -
Other char e | elemit | e/emit |d/- w/append
append -
\ Other char w | e/emit | e/emit | d/emit | w/append
L‘F CR append
’ _emit I |el- d/- w/append
! J Looking for J D
\ optional DOS LF |~ EOF— one
J \ J
SEOF™
(c) 2007 Mauro Pezze & Michal Young Ch 5, slide 16

Using Models to Reason about System

' ~
lf' Required {-.
Properties
h. e

N 4

-

The model satisfies
The specification

Properties

The model is syntactically
well-fromed, consistent

and complete

Program

public static Tablel
getTablel(} {
if [zef == null) {
synchroniced (Tablel) [
if (zref == null)(
ref = new Tableli);
ref.initialize();
3
¥
¥
Teturn ref;

Doao

The model accurately
represents the program

(c) 2007 Mauro Pezze & Michal Young

Summary

Ch 5, slide 17

Models must be much simpler than the artifact

they describe to be understandable and

analyzable

documentintended behavior

SOFTWARE TESTING
AND A

NALYSIS

Must also be sufficiently detailed to be useful
CFG are built from software
FSM can be built before software to

(c) 2007 Mauro Pezze & Michal Young

Ch 5, slide 19

1 /** Convert each line from standard input */
2 void transduce() {

+

#define BUFLEN 1000
char buf[BUFLEN]; /* Accumulate line into this buffer */
int pos=0; /* Index for next character in buffer */

charinChar; /* Next character from input */
int atCR = 0;/* 0="within line", 1="optional DOS LF" "/

while ((inChar = getchar()) = EOF) {
switch (inChar) {
case LF:
if (atCR) { /* Optional DOSLF*/
atCR=0;
} else { /* Encountered CR within line */
emit(buf, pos);
pos =0;
}
break;
case CR:
emit(buf, pos);
pos = 0;
alCR=1;
break;
default:

if (pos = BUFLEN-2) fail("Buffer overflow");

buf{[pos++] = inChar;

Abstraction Function

Abstract state ‘ Concrete state

e (Empty buffer)
w (Within line)

1 (Looking for LF)
d (Done)

LF CR

Lines | atCR | pos

3-13 |0 0
13 0 =0
13 1 0
36 - -

U

EOQF other

w

e/emit | 1/emit | d/-

w / append

Howieh Y = w | e/emit | I/emit | d/emit | w/append
if (pos > 0) { I |e/l- I/emit | d/- w / append
emit(buf, pos);
i
W (c) 2007 Mauro Pezze & Michal Young Ch 5, slide 18

