Finite Models

Properties of Models

Compact: representable and manipulable in a reasonably compact
form
- What is reasonably compact depends largely on how the model will be
used
Predictive: must represent some salient characteristics of the
modeled artifact well enough to distinguish between good and bad
outcomes of analysis
- no single model represents all characteristics well enough to be useful for all
kinds of analysis
Semantically meaningful: it is usually necessary to interpret
analysis results in a way that permits diagnosis of the causes of
failure
Sufficiently general: models intended for analysis of some
important characteristic must be general enough for practical use
:"in the intended domain of application
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Learning objectives

» Understand goals and implications of finite
state abstraction

« Learn how to model program control flow with
graphs

» Learn how to model the software system
structure with call graphs

e Learn how to model finite state behavior with
finite state machines
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Graph Representations: directed graphs

« Directed graph:
- N (set of nodes)
- E (relation on the set of nodes ) edges

Nodes: {a, b, ¢}
Edges: {(a,b), (a, c), (c, a)}
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Graph Representations: labels and code

» We can label nodes with the names or descriptions of
the entities they represent.

- If nodes a and b represent program regions containing
assignment statements, we might draw the two nodes and an
edge (a,b) connecting them in this way:

Goyem )

[a = f(x); ]
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Finite Abstraction of Behavior

an abstraction function suppresses some details of program execution
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=
it lumps together execution states that differ with respect to the
suppressed details but are otherwise identical
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Multidimensional Graph Representations

» Sometimes we draw a single diagram to
represent more than one directed graph,
drawing the shared nodes only once

- class B extends (is a subclass of) class A
- class B has a field that is an object of type C

extends relation
NODES = {A, B, C}
EDGES = {(A,B)}

includes relation T ‘

NODES = {A, B, C} "

EDGES = {(B,C)} |
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(Intraprocedural) Control Flow Graph

e nodes = regions of source code (basic blocks)
- Basic block = maximal program region with a single entry and
single exit point
- Often statements are grouped in single regions to get a
compact model
- Sometime single statements are broken into more than one
node to model control flow within the statement
e directed edges = possibility that program execution
proceeds from the end of one region directly to the
beginning of another
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Example of Control Flow Graph

public static String collapseNewlines(String argStr)
{
char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cldx = 0 ; cldx < argStr.length(); cldx++)

char ch = argStr.charAt(cldx);
if (ch !="\n" || last !="\n")
{
argBuf.append(ch);
last = ch;
}
}

return argBuf.toString();
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Linear Code Sequence and Jump (LCSJ)

Essentially subpaths of the control flow graph from one
branch to another
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Interprocedural control flow graph

 Call graphs

- Nodes represent procedures

* Methods
e C functions

- Edges represent calls relation

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young

Ch 5, slide 11

{ s b1

| %—a ‘ From | Sequence of basic blocs | To
i?fg?:ff%?ﬁ"fﬁ‘f)s‘mngam(;, N Entry | b1 b2 b3 X
gp——m— Entry | b1 b2 b3 b4 T
[ G - Entry | b1 b2 b3 b4 b5 jE
| g | Entry | b1 b2 b3 b4 b5 b6 b7 iL
T X |bs ret
. (ﬁﬁ iL |b3b4 iT
| D [o3babs E
\ ‘;i—ﬁ‘ jiL  [b3b4b5b6b7 iL

[T — ;;8,‘ *

E (c) 2007 Mauro Pezzé & Michal Young Ch 5, slide 10

Overestimating the calls relation

The static call graph includes calls through dynamic
bindings that never occur in execution.

public class C {
public static C cFactory(String kind) {
if (kind == "C") return new CQ;
if (kind == "S") return new SQ;
return null;

}
void foo() {

System.out.println("You called the parent's method");

public static void main(String args[]) {

}
class S extends C {
void foo() {

}
class A {

myC.foo();

sorruate b
ADBAISES

(new AQ)).checkQ);
¥ A.check()
System.out.println("You called the child's method");
void check(Q) {
C myC = C.cFactory("S"); A
C.foo() S.foo() CcFactory(string)
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Contex Insensitive Call graphs

public class Context {
public static void main(String args]) {
Context ¢ = new Context();
c.foo(3);
c.bar(17);

}
void foo(int n) { A
int]] myArray = new int[n ;

depends( myArray, 2) ;
} C.foo C.bar

void bar(int n) {
int[] myArray =new int[n;
depends( myArray, 16) ;

}

main

C.depends

void depends( int[] a, intn ) {
a[n] = 42;
}

sorie esTig
MO ARISS
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Context Sensitive CFG
exponential growth

1 context A

2 contexts AB AC

4 contexts ABD ABE ACD ACE
8 contexts ...

16 calling contexts ...

SOFTWARE TESTING
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Contex Sensitive Call graphs

public class Context {
public static void main(String argsf]) {
Context ¢ = new Context();
c.foo(3);
c.bar(17);
}

void foo(int n) {
intl] myArray = new int[nJ;
depends( myArray, 2) ;

}

void bar(int n) {
intl] myArray = new int[ n J;
depends( myArray, 16) ;

}

void depends( intf] a, intn ) {
a[n] =42;
}

s st
D ity

main

C.foo(3)

C.bar(17)

C.depends(int(3),a,2)

C.depends (int(3),a,2)
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Finite state machines

finite set of states (nodes)

set of transitions among states (edges)

Graph representation (Mealy machine)
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Tabular representation

ernlt apend
emlt
LF CR EOF other
Emty Within
buffer line - -
Other char e | elemit | e/emit |d/- w/append
append -
\ Other char w | e/emit | e/emit | d/emit | w/append
L‘F CR append
’ _emit I |el- d/- w/append
! J Looking for J D
\ optional DOS LF |~ EOF— one
J \ J
SEOF™
(c) 2007 Mauro Pezze & Michal Young Ch 5, slide 16




Using Models to Reason about System

' ~
lf' Required {-.
Properties
h. e

N 4

-

The model satisfies
The specification

Properties

The model is syntactically
well-fromed, consistent

and complete

Program

public static Tablel
getTablel(} {
if [zef == null) {
synchroniced (Tablel) [
if (zref == null)(
ref = new Tableli);
ref.initialize();
3
¥
¥
Teturn ref;

Doao

The model accurately
represents the program
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Summary
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Models must be much simpler than the artifact

they describe to be understandable and

analyzable

documentintended behavior
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Must also be sufficiently detailed to be useful
CFG are built from software
FSM can be built before software to
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1 /** Convert each line from standard input */
2 void transduce() {

+

#define BUFLEN 1000
char buf[BUFLEN]; /* Accumulate line into this buffer */
int pos=0; /* Index for next character in buffer */

charinChar; /* Next character from input */
int atCR = 0;/* 0="within line", 1="optional DOS LF" "/

while ((inChar = getchar()) = EOF ) {
switch (inChar) {
case LF:
if (atCR) { /* Optional DOSLF*/
atCR=0;
} else { /* Encountered CR within line */
emit(buf, pos);
pos =0;
}
break;
case CR:
emit(buf, pos);
pos = 0;
alCR=1;
break;
default:

if (pos = BUFLEN-2) fail("Buffer overflow");

buf{[pos++] = inChar;

Abstraction Function

Abstract state ‘ Concrete state

e (Empty buffer)
w (Within line)

1 (Looking for LF)
d (Done)

LF CR

Lines | atCR | pos

3-13 |0 0
13 0 =0
13 1 0
36 - -

U

EOQF other

w

e/emit | 1/emit | d/-

w / append

Howieh Y = w | e/emit | I/emit | d/emit | w/append
if (pos > 0) { I |e/l- I/emit | d/- w / append
emit(buf, pos);
i
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