
(c) 2007 Mauro Pezzè & Michal Young Ch 2, slide 1

A Framework for Testing and
Analysis

(c) 2007 Mauro Pezzè & Michal Young Ch 2, slide 2

Learning objectives

• Introduce dimensions and tradeoff between

test and analysis activities

• Distinguish validation from verification

activities

• Understand limitations and possibilities of test

and analysis

(c) 2007 Mauro Pezzè & Michal Young Ch 2, slide 3

Verification and validation

• Validation:

does the software system meets the user's real

needs?

are we building the right software?

• Verification:

does the software system meets the

requirements specifications?

 are we building the software right?

(c) 2007 Mauro Pezzè & Michal Young Ch 2, slide 4

Validation and Verification

Actual

Requirements

SW

Specs
System

Validation Verification
Includes usability

testing, user

feedback

Includes testing,

inspections, static

analysis

(c) 2007 Mauro Pezzè & Michal Young Ch 2, slide 5

Verification or validation depends on
the specification

Unverifiable (but validatable) spec: ... if a user

presses a request button at floor i, an available

elevator must arrive at floor i soon...

1 2 3 4 5 6 7 8

Example: elevator response

Verifiable spec: ... if a user presses a request

button at floor i, an available elevator must

arrive at floor i within 30 seconds...

(c) 2007 Mauro Pezzè & Michal Young Ch 2, slide 6

Validation and Verification Activities

Actual Needs and

Constraints

Unit/

Component
Specs

System Test

Integration Test

Module Test

User Acceptance (alpha, beta test)

R
e

v
ie

w

Analysis /

Review

Analysis /

Review

User review of external behavior as it is

determined or becomes visible

Unit/

Components

Subsystem

Design/Specs
Subsystem

System

Specifications

System

Integration

Delivered
Package

validation

verification

(c) 2007 Mauro Pezzè & Michal Young Ch 2, slide 7

You can’t always get what you want

Correctness properties areCorrectness properties are undecidable undecidable

the halting problem can be embedded in almost

every property of interest

Decision

Procedure

Property

Program

Pass/Fail

ever

(c) 2007 Mauro Pezzè & Michal Young Ch 2, slide 8

Getting what you need ...
Perfect verification of

arbitrary properties by

logical proof or exhaustive

testing (Infinite effort)

Model checking:

Decidable but possibly

intractable checking of

simple temporal

properties.

Theorem proving:

Unbounded effort to

verify general

properties.

Precise analysis of

simple syntactic

properties.

Typical testing

techniques

Data flow

analysis

Optimistic

inaccuracy

Pessimistic

inaccuracy

Simplified

properties

• optimistic inaccuracy: we may
accept some programs that do
not possess the property (i.e.,
it may not detect all
violations).

– testing

• pessimistic inaccuracy: it is
not guaranteed to accept a
program even if the program
does possess the property
being analyzed

– automated program analysis
techniques

• simplified properties: reduce
the degree of freedom for
simplifying the property to
check

(c) 2007 Mauro Pezzè & Michal Young Ch 2, slide 9

Example of simplified property:
Unmatched Semaphore Operations

synchronized(S) {

 ...

...

}

Static

checking for

match is

necessarily

inaccurate ...

if (....) {

 ...

 lock(S);

}

...

if (...) {

 ...

 unlock(S);

}

Java prescribes a

more restrictive, but

statically checkable

construct.

original problem simplified property

(c) 2007 Mauro Pezzè & Michal Young Ch 2, slide 10

Some Terminology

• Safe: A safe analysis has no optimistic
inaccuracy, i.e., it accepts only correct
programs.

• Sound: An analysis of a program P with respect
to a formula F is sound if the analysis returns
true only when the program does satisfy the
formula.

• Complete: An analysis of a program P with
respect to a formula F is complete if the
analysis always returns true when the program
actually does satisfy the formula.

(c) 2007 Mauro Pezzè & Michal Young Ch 2, slide 11

Summary

• Most interesting properties are undecidable,
thus in general we cannot count on tools that
work without human intevention

• Assessing program qualities comprises two
complementary sets of activities: validation
(daes the software do what it is supposed to
do?) and verification (does the system behave
as specificed?)

• There is no single technique for all purposes:
test designers need to select a suitable
combination of techniques

