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A Framework for Testing and
Analysis
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Learning objectives

• Introduce dimensions and tradeoff between

test and analysis activities

• Distinguish validation from verification

activities

• Understand limitations and possibilities of test

and analysis
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Verification and validation

• Validation:

does the software system meets the user's real

needs?

are we building the right software?

• Verification:

does the software system meets the

requirements specifications?

 are we building the software right?
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Verification or validation depends on
the specification

Unverifiable (but validatable) spec: ... if a user

presses a request button at floor i, an available

elevator must arrive at floor i soon...

1 2 3 4 5 6 7 8

Example: elevator response

Verifiable spec: ... if a user presses a request

button at floor i, an available elevator must

arrive at floor i within 30 seconds...
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Validation and Verification Activities
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You can’t always get what you want

Correctness properties areCorrectness properties are undecidable undecidable

the halting problem can be embedded in almost

every property of interest
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Getting what you need ...
Perfect verification of

arbitrary properties by

logical proof or exhaustive

testing (Infinite effort)

Model checking:

Decidable but possibly

intractable checking of

simple temporal

properties.

Theorem proving:

Unbounded effort to

verify general

properties.

Precise analysis of

simple syntactic

properties.

Typical testing

techniques

Data flow

analysis

Optimistic

inaccuracy

Pessimistic

inaccuracy

Simplified

properties

• optimistic inaccuracy: we may
accept some programs that do
not possess the property (i.e.,
it may not detect all
violations).

– testing

• pessimistic inaccuracy: it is
not guaranteed to accept a
program even if the program
does possess the property
being analyzed

– automated program analysis
techniques

• simplified properties: reduce
the degree of freedom for
simplifying the property to
check
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Example of simplified property:
Unmatched Semaphore Operations

synchronized(S) {

   ...

...

}

Static

checking for

match is

necessarily

inaccurate ...

if ( .... ) {

   ...

   lock(S);

}

...

if ( ... ) {

   ...

   unlock(S);

}

Java prescribes a

more restrictive, but

statically checkable

construct.

original problem simplified property
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Some Terminology

• Safe: A safe analysis has no optimistic
inaccuracy, i.e., it accepts only correct
programs.

• Sound: An analysis of a program P with respect
to a formula F is sound if the analysis returns
true only when the program does satisfy the
formula.

• Complete: An analysis of a program P with
respect to a formula F is complete if the
analysis always returns true when the program
actually does satisfy the formula.
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Summary

• Most interesting properties are undecidable,
thus in general we cannot count on tools that
work without human intevention

• Assessing program qualities comprises two
complementary sets of activities: validation
(daes the software do what it is supposed to
do?) and verification (does the system behave
as specificed?)

• There is no single technique for all purposes:
test designers need to select a suitable
combination of techniques


