
(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 1

Software Test and Analysis
in a Nutshell

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 2

Learning objectives

• View the “big picture'' of software quality in

the context of a software development project

and organization:

• Introduce the range of software verification

and validation activities

• Provide a rationale for selecting and combining

them within a software development process.

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 3

Engineering processes

• Sophisticated tools

– amplify capabilities

– but do not remove human error

• Engineering disciplines pair

– construction activities with

– activities that check intermediate and final products

• Software engineering is no exception:

construction of high quality software requires

– construction and

– verification activities

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 4

Verification and design activities

• Verification and design activities take various

forms

– suited to highly repetitive construction of non-

critical items for mass markets

– highly customized or highly critical products.

• Appropriate verification activities depend on

– engineering discipline

– construction process

– final product

– quality requirements.

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 5

Peculiarities of software

Software has some characteristics that make
V&V particularly difficult:
– Many different quality requirements

– Evolving (and deteriorating) structure

– Inherent non-linearity

– Uneven distribution of faults

Example

If an elevator can safely carry a load of 1000 kg,
it can also safely carry any smaller load;
If a procedure correctly sorts a set of 256 elements,
it may fail on a set of 255 or 53 or 12 elements,
as well as on 257 or 1023.

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 6

Impact of new technologies

• Advanced development technologies

– can reduce the frequency of some classes of errors

– but do not eliminate errors

• New development approaches can introduce

new kinds of faults

examples

– deadlock or race conditions for distributed software

– new problems due to the use of polymorphism,

dynamic binding and private state in object-oriented

software.

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 7

Variety of approaches

• There are no fixed recipes

• Test designers must

– choose and schedule the right blend of techniques

• to reach the required level of quality

• within cost constraints

– design a specific solution that suits

• the problem

• the requirements

• the development environment

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 8

Five Basic Questions

1. When do verification and validation start?

When are they complete?

2. What particular techniques should be applied

during development?

3. How can we assess the readiness of a product?

4. How can we control the quality of successive

releases?

5. How can the development process itself be

improved?

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 9

1: When do V&V start?
When are they complete?

• Test is not a (late) phase of software

development

– Execution of tests is a small part of the verification

and validation process

• V&V start as soon as we decide to build a

software product, or even before

• V&V last far beyond the product delivery

as long as the software is in use, to cope with

evolution and adaptations to new conditions

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 10

Early start: from feasibility study

• The feasibility study of a new project must take

into account the required qualities and their

impact on the overall cost

• At this stage, quality related activities include

– risk analysis

– measures needed to assess and control quality at

each stage of development.

– assessment of the impact of new features and new

quality requirements

– contribution of quality control activities to

development cost and schedule.

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 11

Long lasting: beyond maintenance

• Maintenance activities include

– analysis of changes and extensions

– generation of new test suites for the added

functionalities

– re-executions of tests to check for non regression of

software functionalities after changes and

extensions

– fault tracking and analysis

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 12

2: What particular techniques should
be applied during development?

No single A&T technique can serve all purposes

The primary reasons for combining techniques are:

– Effectiveness for different classes of faults

example: analysis instead of testing for race conditions

– Applicability at different points in a project

example: inspection for early requirements validation

– Differences in purpose

example: statistical testing to measure reliability

– Tradeoffs in cost and assurance

example: expensive technique for key properties

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 13

Requirements

Elicitation

Requirements

Specification

Architectural

Design

Detailed

Design
Unit Coding

Integration &

Delivery
Maintenance

Pla
nn

in
g &

 m
on

ito
r in

g
Ve

rif
ica

t io
n

of
 sp

e c
s

t e
s t

ca
se

 e
xe

cu
ti o

n
an

d
sw

 va
lid

at
io

n

Identify qualites

Plan acceptance test

Validate specifications

Plan system test

Plan unit & integration test

Ge
ne

ra
tio

n o
f t

es
ts

Inspect architectural design

Analyze architectural design

Inspect detailed design

Monitor the A&T process

Generate system test

Generate integration test

Generate unit test

Generate regression test

Update regression test

Code inspection

Design scaffolding

Design oracles

Execute unit test

Execute integration test

Analyze coverage

Generate structural test

Execute system test

Execute acceptance test

Execute regression test

Collect data on faults

analyze faults and improve the process

Pr
oc

es
s

im
pr

ov
em

en
t

Staging A&T techniques

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 14

3: How can we assess the readiness of
a product?

• A&T during development aim at revealing faults

• We cannot reveal are remove all faults

• A&T cannot last indefinitely: we want to know

if products meet the quality requirements

• We must specify the required level of

dependability

• and determine when that level has been

attained.

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 15

Different measures of dependability

• Availability measures the quality of service in

terms of running versus down time

• Mean time between failures (MTBF) measures

the quality of the service in terms of time

between failures

• Reliability indicates the fraction of all

attempted operations that complete

successfully

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 16

Example of different dependability measures

Web application:

• 50 interactions terminating with a credit card charge.

• The software always operates flawlessly up to the point
that a credit card is to be charged, but on half the
attempts it charges the wrong amount.

What is the reliability of the system?

• If we count the fraction of individual interactions that
are correctly carried out, only one operation in 100
fail: The system is 99% reliable.

• If we count entire sessions, only 50% reliable, since half
the sessions result in an improper credit card charge

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 17

Assessing dependability

• Randomly generated tests following an

operational profile

• Alpha test: tests performed by users in a

controlled environment, observed by the

development organization

• Beta test: tests performed by real users in their

own environment, performing actual tasks

without interference or close monitoring

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 18

4: How can we control the quality of
successive releases?

• Software test and analysis does not stop at the
first release.

• Software products operate for many years, and
undergo many changes:
– They adapt to environment changes

– They evolve to serve new and changing user
requirements.

• Quality tasks after delivery
– test and analysis of new and modified code

– re-execution of system tests

– extensive record-keeping

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 19

5: How can the development process
itself be improved?

• The same defects are encountered in project

after project

• A third goal of the improving the quality

process is to improve the process by

– identifying and removing weaknesses in the

development process

– identifying and removing weaknesses in test and

analysis that allow them to remain undetected

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 20

A four step process to improve fault
analysis and process

1. Define the data to be collected and

implementing procedures for collecting them

2. Analyze collected data to identify important

fault classes

3. Analyze selected fault classes to identify

weaknesses in development and quality

measures

4. Adjust the quality and development process

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 21

An example of process improvement

1. Faults that affect security were given highest

priority

2. During A&T we identified several buffer

overflow problems that may affect security

3. Faults were due to bad programming practice

and were revealed late due to lack of analysis

4. Action plan: Modify programming discipline

and environment and add specific entries to

inspection checklists

(c) 2007 Mauro Pezzè & Michal Young Ch 1, slide 22

Summary

• The quality process has three different goals:

– Improving a software product

– assessing the quality of the software product

– improving the quality process

• We need to combine several A&T techniques through

the software process

• A&T depend on organization and application domain.

• Cost-effectiveness depends on the extent to which

techniques can be re-applied as the product evolves.

• Planning and monitoring are essential to evaluate and

refine the quality process.

