Invited paper presented at the 16th Conference on the Foundations of Software
Technology and Theoretical Computer Science, Hyderabad, India, December 1996.
Springer-Verlag Lecture Notes in Computer Science, volume 1180, pages 43-51.

Mechanized Formal Methods:
Progress and Prospects*

John Rushby

Computer Science Laboratory, SRI International,

Menlo Park, CA 94025, USA

Abstract. In the decade of the 1990s, formal methods have progressed
from an academic curiosity at best, and a target of ridicule at worst, to
a point where the leading manufacturer of microprocessors has indicated
that its next design will be formally verified. In this short paper, | sketch
a plausible history of the developments that led to this transformation,
present a snapshot of the current state of the practice, and indicate some
promising directions for the future. Mindful of the title of this conference,
I suggest how formal methods might have an impact on software similar
to that which they have had on hardware.

1 The Past

In their early days (the 1970s—though continuing to the present in some places),
formal methods were associated with proofs of program correctness. This is not
only a very costly and difficult exercise—it requires formalizing the semantics of
real programming languages, and dealing with the scale and characteristics of
real imperative programs—but it also adds very little value: traditional methods
of code review and testing are highly effective and very few coding bugs of any
significance escape detection. For example, of 197 critical faults detected during
integration and system testing of the Voyager and Galileo spacecraft, just 3 were
coding errors [18]. The large majority of faults arise in requirements, interfaces,
and intrinsically difficult design problems (e.g., fault tolerance, and the coordi-
nation of concurrent activities). In the spacecraft data just cited, approximately
50% of faults were traced to requirements (mainly omissions), and 25% to each
of interfaces and design.

During the 1980s, attention shifted from program correctness to the use of for-
malism in specifications, exemplified by approaches such as Z [32] and VDM [17].
Although these methods initially stressed the role of proof in development, they
came to be used mainly as specification languages, and their advocates com-
mended the utility of mathematical concepts such as sets, functions, and relations
in constructing precise yet abstract descriptions of computational systems. The
problem with this approach is that it is not necessary to be specifically formal to

* This work was supported by the Air Force Office of Scientific Research, Air Force
Materiel Command, USAF, under contract F49620-95-C0044 and by the National
Science Foundation under contract CCR-9509931.

make use of such mathematical modeling techniques; conversely, in the absence
of formal proof, there are few tangible benefits to a strictly formal approach. By
failing to exploit the singular characteristic of truly formal methods—mnamely,
their ability to support deduction—specification-oriented formalisms missed the
opportunity to combine mathematical modeling with calculation in the manner
that has been so productive in other engineering disciplines.

The value of formal deduction is that it enables many questions about prop-
erties of formally specified requirements and designs to be settled by a systematic
process that has the character of calculation. The reasons for favoring calcula-
tion over informal reasoning or trial and error experimentation are the same in
computer science as in other engineering disciplines: calculation allows the prop-
erties of designs to be predicted and evaluated prior to construction, it allows
analyses to be checked by others, enables large problems to be tackled in a sys-
tematic manner, and opens the door to mechanization. And in most engineering
disciplines, it is mechanization that releases the full potential of mathematical
modeling and calculation: the highly efficient wings of a modern airplane could
not be designed without massive mechanization of computational fluid dynamics,
finite element analysis, and several other branches of applied mathematics.

It was the arrival of efficient techniques for model checking in the early
1990s [19] (and related methods such as language inclusion) that first made
large-scale mechanized calculations a practical reality for formal methods and
demonstrated their utility to a wide audience. No less important than the tech-
niques that made model checking practical was the change in approach and
outlook that its use engendered. The limited expressiveness of the temporal log-
ics employed in model checking means that it is seldom possible to use them
to fully characterize the functionality required of a system; instead, attention is
focussed on important properties that it should posses. Similarly, because model
checking methods can only explore a limited, finite state space, the full sys-
tem description must generally be considerably abstracted and simplified before
subjecting it to model checking. Partly because of these limitations (and partly
because it 1s able to provide excellent diagnostic information in the form of coun-
terexamples), model checking has generally focused on incorrectness—on finding
bugs—rather than on trying to establish correctness. And find bugs it did: be-
cause model checking is well-suited to concurrent systems, it was immediately
applied to some of the hardest problems in system design, such as multiprocessor
cache-coherence protocols, where “high-value bugs” were quickly detected [8].

The changes in approach introduced by model checking opened up new oppor-
tunities for all formal methods: whereas previously the goal had been to specify
the full functionality required, there was now seen to be a useful spectrum of
desired properties; whereas previously the goal had been to describe the system
in all its details, there was now seen to be value in isolating key problems and
aggressively abstracting away as many details as possible; whereas previously
the goal had been to establish unequivocal correctness, there was now seen to be
a variety of other useful purposes that could be served by formal analysis; and
whereas previously the applications had generally been to routine designs (see,

for example, the survey [9]), there was now an enthusiasm for applying formal
methods to the hardest and most difficult problems of design.

Mechanized formal methods based on theorem proving, which had become
modestly effective by the mid 1980s and were continually improving, benefited
from the change in attitude—and the spur of competition—that came with model
checking. Decision procedures for basic theories such as linear arithmetic and
equality received renewed attention and acceptance, and integrated combinations
of decision procedures, rewriting, and customized tactics achieved significant au-
tomation and efficiency on interesting classes of problems [22]. Most importantly,
the practitioners of these approaches to formal methods followed the lead of the
model checkers in applying them to complex, real-world systems [3, 35].

2 The Present

An idea of the current capabilities and accomplishments of mechanized formal
methods can be obtained by considering two examples from hardware design.

The Pentium FDIV bug, which attracted a great deal of public interest, also
caught the attention of the formal verification community—not least because
it caused Intel to take a $475 million charge against revenues. The bug was
in the lookup table of an SRT divider [25]. Binary Decision Diagrams (BDDs)
have been used successfully to verify many kinds of digital circuits—but not
multipliers and dividers, where they grow exponentially large [4]. Nonetheless,
Bryant was able to verify a single iteration of an SRT circuit using BDDs [5].
Explosive growth of the BDD representation has generally also precluded ap-
plication of symbolic model checking to dividers; however, by using a different
“word level” representation, Clarke, Khaira, and Zhao were able to apply model
checking to this problem [7]. Clarke, German, and Zhao were also able to verify
an SRT divider using a special-purpose theorem prover based on the Mathe-
matica symbolic algebra system [6]. Using the PVS general-purpose verification
system [21], RueB, Shankar, and Srivas gave a formally verified treatment of the
general theory of SRT division, and then verified a particular circuit and lookup
table [27]. While being more general, the theorem proving treatments achieved
a level of automation and efficiency comparable to the BDD and model checking
approaches, and were equally adept at catching errors in the tables. However,
all of these treatments dealt only with the fixed-point core of the divider, and
not with the issues of IEEE-compliant floating point representation. Miner and
Leathrum extended the PVS treatment to include IEEE-compliance, generalized
the whole development to encompass the broader class of subtractive division al-
gorithms that includes SRT, and presented a methodology that enabled specific
algorithms to be debugged and verified quite easily—which they demonstrated
on various SRT tables [20].

Cache coherence protocols for distributed shared memory multiprocessors are
notoriously difficult to design. Some of the early successes with symbolic model
checking were in its application to this type of problem. As interest shifted from
the “snoopy” to the more scalable—and much more complicated—“directory-

based” protocols, the state-explosion problem became quite severe. One response
was to “downscale” (aggressively simplify) the problem, so that, for example,
only two or three processors, one address, and a 1-bit data word are consid-
ered. Another was to use the various symmetries that exist in the problem to
allow different, but equivalent, states to be merged. Using these and other tech-
niques, model checkers based on both explicit state-enumeration and symbolic
representations are able to tackle cache-coherence problems sufficiently well to
be used in the design process for these systems [2,11]. But although they are
effective for detecting bugs, the severely downscaled models used in model check-
ing cannot serve to verify the general case. Theorem proving techniques should
be able to do this, but the difficulty of creating appropriate abstractions and
sufficiently strong invariants, combined with the labor involved in guiding the
theorem prover, had discouraged their application to realistic cache-coherence
protocols. Recently, however, by using a method called “aggregation” to guide
construction of the abstraction function, Park and Dill have been able, using
PVS in a quite straightforward manner, to verify the behavior of the protocol
used in the Stanford FLASH processor [24]. Furthermore, using the Mur¢ ex-
plicit state-enumeration system they were able to construct an executable model
for the non-sequentially-consistent memory behavior of the processor. In similar
work for the Sparc V9 memory model, they were able to verify the behavior of
synchronization code using Mur¢, and were able to verify the executable Murg
model against its axiomatic specification using PVS [23].

The interesting feature of these examples is the diversity of approaches
employed—and the diversity would be even greater if I had considered other
examples such as pipelines, microcode, communications and switching proto-
cols, or hybrid systems. There simply is no single best method: we are dealing
with problems that are at the limit of what is computationally feasible, and
different applications yield to different approaches. Thus, symbolic model check-
ing using BDDs works well for some problems, but explicit state enumeration is
better for others; some state spaces can be reduced significantly by symmetry
reductions, others require partial-order reductions; some problems are best dealt
with by model checking, others are better suited to theorem proving.

Just as different approaches work better for different problems, so different
approaches work better for the same problem at different stages of its “verifica-
tion lifecycle.” When first encountered, a design (or its formalization) will often
be full of bugs. These should be identified as quickly and as cheaply as possible.
Methods that require relatively little preparation, such as typechecking, anima-
tion, or explicit state enumeration are effective here. Once the simple bugs have
been eliminated, 1t becomes necessary to explore more and more of the state
space to discover those that remain, and explicit state exploration methods that
use hashing, and symbolic model checking methods, start to become more effec-
tive. Once the complete state space of downscaled instances of the problem can
be explored without finding a bug, then the aggressiveness of the simplifications
can be reduced, and the size of the problem instances can be increased. The
“state explosion” problem is likely to hit at this point, and reduction methods

based on symmetry, partial orders, or abstraction may need to be invoked. When
the largest problem instances that can be examined by finite state methods no
longer reveal bugs, then it is time to consider theorem proving. For concurrent
systems, it is generally necessary to develop abstractions and to strengthen the
desired invariant to obtain one that is inductive. Special-purpose tools can help
with these activities, and finite-state methods can be invoked during the proof
process to check that proposed invariants really are so, and that subgoals are
true (on finite instances) [12].

Different methods come into play on a single problem as easy bugs are elim-
inated and those that remain become harder to find; in a related progression,
different methods come into play in the treatment of classes of problems as our
understanding and techniques improve. For example, as enumerated above, treat-
ments of SRT division evolved from BDD-based analysis of individual iterations,
to treatment of the core of a specific algorithm by special-purpose theorem prov-
ing, to general treatment of the entire class of algorithms with a general-purpose
theorem prover.

3 The Future

I offer some suggestions on likely, or promising, directions for future develop-
ments in mechanized formal methods under two headings: applications to soft-
ware, and tools.

3.1 Applications to Software

Compared to hardware, software is more of a challenge for successful applica-
tion of mechanized formal methods. Hardware has a relatively small number of
stereotypical problems (pipeline control, floating point ALUs, microcode, cache
coherence), so that the cost of developing really effective solutions can be re-
couped over many applications, whereas software has a vastly larger supply of
problems and a correspondingly smaller community of interest for any one of
them. Nonetheless, we can adopt some of the strategies that seem to have been
successful for hardware.

— Go where the bugs are. Formal methods have been effective for hardware
because their use has been targeted at areas where they can offer a real
payoff: areas that experience has shown to be error-prone and where other
methods are ineffective. The targeted areas concern some of the hardest
challenges in design (e.g., the stereotypical problems mentioned above). For
software, correspondingly difficult and worthwhile challenges include those
where local design decisions have complex global consequences; such as the
fault-tolerance and real-time properties of concurrent distributed systems,
and those where independently designed systems interact, such as the prob-
lems of feature interactions, protocol stacks, and component interfaces. It
is generally most productive to examine these i1ssues at the level of the al-
gorithms concerned, rather than at the detailed design or coding level. It

also helps to target applications where the costs of bugs are unacceptably
high. These include applications that share with hardware the characteristic
that design errors cannot be repaired in the field (e.g., embedded systems in
consumer products), and those where failure is intolerable (e.g., safety and
other kinds of critical systems).

— Target the early lifecycle. The requirements for hardware (especially proces-
sors) are quite simple (i.e., “implement a given instruction set architecture”),
whereas those for software are generally complex (e.g., “control air traffic”)
and subject to change. The most damaging and costly errors discovered late
in the software development lifecycle can usually be traced back to faulty
requirements. Consequently, requirements validation consumes considerable
resources (in avionics, for example, more than half the development costs can
go into requirements; programming, in contrast, consumes less than 10%).
Formal methods are singularly well-adapted to the specification and analy-
sis of requirements, because they allow precision without premature detail
(unlike pseudocode and prototyping), and they allow useful analyses to be
performed on very abstract or incomplete descriptions [29].

— Use powerful tools, and a spectrum of methods. Without tools, formal meth-
ods are just documentation; it is tools that make formal methods useful, and
powerful tools that make them productive. Many of the tools that have been
effective in applications of formal methods to hardware can also be used for
software (see, for example, [33], where the SMV model checker is applied to
a software requirements specification); alternatively, ideas from those tools
can be incorporated into new tools that are specifically tailored to the char-
acteristics of software [16]. Even less than for hardware, no single tool or
method provides universally effective support for all the diverse applications
of formal methods to software, so a spectrum of tools and methods should
be employed.

3.2 Tool Building

As noted several times already, most applications of mechanized formal meth-
ods require a range of capabilities and make use of a number of tools. Rather
than loose integration of a number of different tools, however, what is really
required is tight integration of a number of different capabilities [28,31]. For
example, loose integration of a theorem prover and a model checker might allow
one to use a single specification of a problem and to examine specific instances
with the model checker and to prove the general case with the theorem prover,
whereas tight integration might allow the theorem prover actively to use the
model checker—so that the theorem prover could set up the induction to prove
the general case, with the base case and inductive step then being discharged by
model checking [30]. Such an integration of theorem proving and model check-
ing has been achieved [26], but it required extending the implementation of a
complex verification system. Future systems should be designed in a much more
“open” manner, so that components can be added, modified, interconnected, and
accessed in a modular fashion. For example, an attractive application of formal

reasoning to software requirements is to check consistency and completeness of
the conditions that label the rows and columns of tabular specifications [15].
Depending on the logic and theories used in specifying these conditions, the
deductive capabilities needed to perform the checks range from propositional
tautology checking, though decision procedures for ground linear arithmetic, to
full interactive theorem proving. When tautology checking proved inadequate
for an example derived from the TCAS 1T specification [13], Czerny and Heim-
dahl turned to the PVS verification system in order to make use of its decision
procedures. However, because those decision procedures could not be accessed
separately, they had to invoke the entire PVS system, which entailed more bag-
gage and less performance than they desired [14]. What is really needed is an
open environment that provides access to components such as decision proce-
dures and the other building blocks of theorem provers and model checkers, and
in which customized combinations can be quickly constructed. The hub of such
an environment must be a theorem prover, since that is what has the capability
to check that problems are decomposed appropriately, that constraints on the
application of certain procedures are satisfied, and that all the pieces come to-
gether to solve the whole problem in a sound manner [10]. In collaboration with
David Dill of Stanford University, we are about to begin construction of such an
environment.

4 Conclusion

These are exciting times for mechanized formal methods, with opportunities for
rapid and significant progress in the capabilities of tools and the quality and
scale of their applications. Theoretical research can assist these developments
by, for example, providing better characterizations for the complexities of the
various problems and algorithms encountered (almost every problem in model
checking and theorem proving is NP-hard or worse), and by identifying useful
special cases that admit fast solutions.

References

Papers by SRI authors are generally available from http://www.csl.sri.com/fm.html.

[1] Rajeev Alur and Thomas A. Henzinger, editors. Computer-Aided Verification,
CAV 796, volume 1102 of Lecture Notes in Computer Science, New Brunswick,
NJ, July/August 1996. Springer-Verlag.

[2] Asgeir Th. Eirfksson and Ken L. McMillan. Using formal verification/analysis
methods on the critical path in system design: A case study. In Pierre Wolper,
editor, Computer-Aided Verification, CAV 95, volume 939 of Lecture Notes in
Computer Science, pages 367-380, Liege, Belgium, June 1995. Springer-Verlag.

[3] Bishop Brock, Matt Kaufmann, and J Strother Moore. ACL2 theorems about
commercial microprocessors. In Srivas and Camilleri [34], pages 275-293.

[4] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293-318, September 1992.

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Randal E. Bryant. Bit-level analysis of an SRT divider circuit. In Proceedings
of the 33rd Design Automation Conference, pages 661-665, Las Vegas, NV, June
1996.

E. M. Clarke, S. M. German, and X. Zhao. Verifying the SRT division algorithm
using theorem proving techniques. In Alur and Henzinger [1], pages 111-122.

E. M. Clarke, Manpreet Khaira, and Xudong Zhao. Word level symbolic model
checking—avoiding the Pentium FDIV error. In Proceedings of the 33rd Design
Automation Conference, pages 645—648, Las Veqas, NV, June 1996.

Edmund M. Clarke, Orna Grumberg, Hiromi Haraishi, Somesh Jha, David E.
Long, Kenneth L. McMillan, and Linda A. Ness. Verification of the Futurebus+
cache coherence protocol. Formal Methods in System Design, 6(2):217-232, March
1995.

Dan Craigen, Susan Gerhart, and Ted Ralston. Formal methods reality check: In-
dustrial usage. IEEE Transactions on Software Engineering, 21(2):90-98, Febru-
ary 1995.

David A. Cyrluk and Mandayam K. Srivas. Theorem proving: Not an esoteric
diversion, but the unifying framework for industrial verification. In International
Conference on Computer Design: VLSI in Computers and Processors (ICCD 95),
pages 538-544, Austin, TX, October 1995. IEEE Computer Society.

David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Protocol verifi-
cation as a hardware design aid. In International Conference on Computer Design:
VLST in Computers and Processors, pages 522-525. IEEE Computer Society, Oc-
tober 1992. Cambridge, MA.

Klaus Havelund and N. Shankar. Experiments in theorem proving and model
checking for protocol verification. In Formal Methods Furope FMFE °96, volume
1051 of Lecture Notes in Computer Science, pages 662—-681, Oxford, UK, March
1996. Springer-Verlag.

Mats P. E. Heimdahl. Experiences and lessons from the analysis of TCAS II. In
Steven J. Zeil, editor, International Symposium on Software Testing and Analysis
(ISSTA), pages 79-83, San Diego, CA, January 1996. Association for Computing
Machinery.

Mats P. E. Heimdahl and Barbara J. Czerny. Using PVS to analyze hierarchi-
cal state-based requirements for completeness and consistency. In IEEE High-
Assurance Systems Engineering Workshop (HASE ’96), Niagara on the Lake,
Canada, October 1996.

Mats P. E. Heimdahl and Nancy G. Leveson. Completeness and consistency in hi-
erarchical state-based requirements. ITEFE Transactions on Software Fngineering,
22(6):363-377, June 1996.

Daniel Jackson and Craig A. Damon. Elements of style: Analyzing a software
design feature with a counterexample detector. ITEFFE Transactions on Software
Engineering, 22(7):484-495, July 1996.

Cliff B. Jones. Systematic Software Development Using VDM. Prentice Hall In-
ternational Series in Computer Science, Hemel Hempstead, UK, 1990.

Robyn R. Lutz. Analyzing software requirements errors in safety-critical embed-
ded systems. In IFEFE International Symposium on Requirements Fngineering,
pages 126-133, San Diego, CA, January 1993.

Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
Boston, MA, 1993.

Paul S. Miner and James F. Leathrum, Jr. Verification of IEEE compliant sub-
tractive division algorithms. In Srivas and Camilleri [34], pages 64-78.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

33]

[34]

[35]

S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining
specification, proof checking, and model checking. In Alur and Henzinger [1], pages
411-414.

Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107-125, February 1995.
Seungjoon Park and David L. Dill. An executable specification, analyzer and
verifier for RMO (Relaxed Memory Order). In 7th ACM Symposium on Parallel
Algorithms and Architectures, pages 34-51, July 1995.

Seungjoon Park and David L. Dill. Verification of the FLASH cache coherence
protocol by aggregation of distributed transactions. In 8th ACM Symposium on
Parallel Algorithms and Architectures, pages 288-296, Padua, Italy, June 1996.
Vaughan Pratt. Anatomy of the Pentium bug. In TAPSOFT °95: Theory and
Practice of Software Development, volume 915 of Lecture Notes in Computer Sci-
ence, pages 97-107, Aarhus, Denmark, May 1995. Springer-Verlag.

S. Rajan, N. Shankar, and M.K. Srivas. An integration of model-checking with
automated proof checking. In Pierre Wolper, editor, Computer- Aided Verification,
CAV °95, volume 939 of Lecture Notes in Computer Science, pages 84-97, Liege,
Belgium, June 1995. Springer-Verlag.

H. RueB3; N. Shankar, and M. K. Srivas. Modular verification of SRT division. In
Alur and Henzinger [1], pages 123-134.

John Rushby. Automated deduction and formal methods. In Alur and Henzinger
[1], pages 169-183.

John Rushby. Calculating with requirements. In 3rd IEFE International Sym-
posium on Requirements Fngineering, Annapolis, MD, January 1997. IEEE Com-
puter Society. To appear.

N. Shankar. Computer-aided computing. In Bernhard Mdller, editor, Mathematics
of Program Construction '95, volume 947 of Lecture Notes in Computer Science,
pages 50-66. Springer-Verlag, 1995.

Natarajan Shankar. Unifying verification paradigms. In Bengt Jonsson and
Joachim Parrow, editors, Formal Techniques in Real- Time and Fault-Tolerant Sys-
tems, volume 1135 of Lecture Notes in Computer Science, pages 22—39, Uppsala,
Sweden, September 1996. Springer-Verlag.

J. M. Spivey, editor. The Z Notation: A Reference Manual. Prentice Hall Inter-
national Series in Computer Science, Hemel Hempstead, UK, 1993.

Tirumale Sreemani and Joanne M. Atlee. Feasibility of model checking software
requirements. In COMPASS 96 (Proceedings of the Eleventh Annual Confer-
ence on Computer Assurance), pages 77-88, Gaithersburg, MD, June 1996. IEEE
Washington Section.

Mandayam Srivas and Albert Camilleri, editors. Formal Methods in Computer-
Aided Design (FMCAD ’96), volume 1166 of Lecture Notes in Computer Science,
Palo Alto, CA, November 1996. Springer-Verlag.

Mandayam K. Srivas and Steven P. Miller. Formal verification of the AAMP5
microprocessor. In Michael GG. Hinchey and Jonathan P. Bowen, editors, Applica-
tions of Formal Methods, Prentice Hall International Series in Computer Science,
chapter 7, pages 125-180. Prentice Hall, Hemel Hempstead, UK, 1995.

The views and conclusions contained herein are those of the author and should not be in-
terpreted as necessarily representing the official policies or endorsements, either expressed or
implied, of the Air Force Office of Scientific Research or the U.S. Government.

This article was processed using the IATEX macro package with LLNCS style

