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Abstract—Traditional Markov network structure learning
algorithms perform a search for globally useful features.
However, these algorithms are often slow and prone to finding
local optima due to the large space of possible structures.
Ravikumar et al. [1] recently proposed the alternative idea
of applying L1 logistic regression to learn a set of pairwise
features for each variable, which are then combined into
a global model. This paper presents the DTSL algorithm,
which uses probabilistic decision trees as the local model. Our
approach has two significant advantages: it is more efficient,
and it is able to discover features that capture more complex
interactions among the variables. Our approach can also be
seen as a method for converting a dependency network into
a consistent probabilistic model. In an extensive empirical
evaluation on 13 datasets, our algorithm obtains comparable
accuracy to three standard structure learning algorithms while
running 1-4 orders of magnitude faster.

Keywords-Markov networks; structure learning; decision
trees; probabilistic methods

I. INTRODUCTION

Markov networks are an undirected, probabilistic graphi-
cal model for compactly representing a joint probability dis-
tribution over set of variables. Traditional Markov network
structure learning algorithms perform a global search to learn
a set of features that accurately captures high-probability
regions of the instance space. These approaches are often
slow for two reasons. First, the space of possible structures
is exponential in the number of variables. Second, evaluating
candidate structures requires assigning a weight to each
feature in the model. Weight learning requires performing
inference over the model, which is often intractable.

Recently, Ravikumar et al. [1] proposed the alternative
idea of learning a local model for each variable and then
combining these models into a global model. Their method
builds an L1 logistic regression model to predict the value
of each variable in terms of all other variables. Next, it
constructs a pairwise feature between the target variable and
each other variable with non-zero weight in the L1 logistic
regression model. Finally, it adds all constructed features
to the model and learns their associated weights using any
standard weight learning algorithm. While this approach
greatly improves the tractability of structure learning, it

is limited to modeling pairwise interactions, ignoring all
higher-order effects. Furthermore, it still exhibits long run
times for domains that have large numbers of variables.

In this paper, we propose DTSL (Decision Tree Structure
Learner), which builds on the approach of Ravikumar et al.
by substituting a probabilistic decision tree learner for L1
logistic regression. Probabilistic decision trees can represent
much richer structures that model interactions among large
sets of variables. DTSL learns probabilistic decision trees to
predict the value of each variable and then converts the trees
into sets of conjunctive features. We propose and evaluate
several different methods for performing the conversion.
Finally, DTSL merges all learned features into a global
model. Weights for these features can be learned using any
standard Markov network weight learning method.

We conducted an extensive empirical evaluation on 13
real-world datasets. We found that DTSL is 1-4 orders of
magnitude faster than alternative structure learning algo-
rithms while still achieving equivalent accuracy.

The remainder of our paper is organized as follows. Sec-
tion 2 provides background on Markov networks. Section 3
describes our method for learning Markov networks using
decision trees. Section 4 presents the experimental results
and analysis and Section 5 contains conclusions and future
work.

II. MARKOV NETWORKS

A. Representation
A Markov network is a model for the joint distribution of

a set of variables X = (X1, X2, . . . , Xn) [2]. It is composed
of an undirected graph G and a set of potential functions φk.
The graph has a node for each variable, and the model has
a potential function for each clique in the graph. The joint
distribution represented by a Markov network is:

P (X =x) =
1
Z

�

k

φk(x{k}) (1)

where x{k} is the state of the kth clique (i.e., the state of the
variables that appear in that clique), and Z is a normalization
constant called the partition function. Markov networks are
often conveniently represented as log-linear models, with



each clique potential replaced by an exponentiated weighted
sum of features of the state:

P (X =x) =
1
Z
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A feature fj(x) may be any real-valued function of the state.
For discrete data, a feature typically is a conjunction of tests
of the form Xi = xi, where Xi is a variable and xi is a value
of that variable. We say that a feature matches an example
if it is true of that example.

B. Inference
The main inference task in graphical models is to compute

the conditional probability of some variables (the query)
given the values of some others (the evidence), by summing
out the remaining variables. This problem is #P-complete.
Thus, approximate inference techniques are required. One
widely used method is Markov chain Monte Carlo (MCMC)
[3], and in particular Gibbs sampling, which proceeds by
sampling each variable in turn given its Markov blanket, the
variables it appears with in some potential. These samples
can be used to answer probabilistic queries by counting the
number of samples that satisfy each query and dividing by
the total number of samples. Under modest assumptions,
the distribution represented by these samples will eventually
converge to the true distribution. However, convergence
may require a very large number of samples, and detecting
convergence is difficult.

C. Weight Learning
The goal of weight learning is to select feature weights

that maximize a given objective function. One of the most
popular objective functions is the log likelihood of the
training data. In a Markov network, log likelihood is a
convex function of the weights, and thus weight learning
can be posed as a convex optimization problem. However,
this optimization typically requires evaluating the log like-
lihood and its gradient in each iteration. This is typically
intractable to compute exactly due to the partition function.
Furthermore, an approximation may work poorly: Kulesza
and Pereira [4] have shown that approximate inference can
mislead weight learning algorithms.

A more efficient alternative, widely used in areas such
as spatial statistics, social network modeling and language
processing, is to optimize the pseudo-likelihood [5] instead.
Pseudo-likelihood is the product of the conditional proba-
bilities of each variable given its Markov blanket:

log P
•
w(X =x) =

�V
j=1

�N
i=1 log Pw(Xi,j =xi,j |MBx(Xi,j)) (3)

where V is the number of variables, N is the number
of examples, xi,j is the value of the jth variable of the
ith example, MBx(Xi,j) is the state of Xi,j’s Markov

blanket in the data. Pseudo-likelihood and its gradient can
be computed efficiently and optimized using any standard
convex optimization algorithm, since the pseudo-likelihood
of a Markov network is also convex.

D. Structure Learning
Della Pietra et al.’s algorithm [2] is the standard approach

to learning the structure of a Markov network. The algorithm
starts with a set of atomic features (i.e., just the variables
in the domain). It creates candidate features by conjoining
each feature to each other feature, including the original
atomic features. It calculates the weight for each candidate
feature by assuming that all other feature weights remain
unchanged, which is done for efficiency reasons. It uses
Gibbs sampling for inference when setting the weight. Then,
it evaluates each candidate feature f by estimating how
much adding f would increase the log-likelihood. It adds the
feature that results in the largest gain to the feature set. This
procedure terminates when no candidate feature improves
the model’s score.

Recently, Davis and Domingos [6] proposed an alternative
bottom-up approach, called BLM, for learning the structure
of a Markov network. BLM starts by treating each complete
example as a long feature in the Markov network. The algo-
rithm repeatedly iterates through the feature set. It considers
generalizing each feature to match its k nearest previously
unmatched examples by dropping variables. If incorporating
the newly generalized feature improves the model’s score,
it is retained in the model. The process terminates when no
generalization improves the score.

A recent L1 regularization based approach to structure
learning is the method of Ravikumar et al. [1]. It learns
the structure by trying to discover the Markov blanket of
each variable (i.e., its neighbors in the network). It considers
each variable Xi in turn and builds an L1 logistic regression
model to predict the value of Xi given the remaining
variables. L1 regularization encourages sparsity, so that most
of the variables end up with a weight of zero. The Markov
blanket of Xi is all variables that have non-zero weight in
the logistic regression model. In the limit of infinite data,
consistency is guaranteed (i.e., Xi is in Xj’s Markov blanket
if and only if Xj is in Xi’s Markov blanket). In practice, this
is often not the case and there are two methods to decide
which edges to include in the network. One includes an
edge if either Xi is in Xj’s Markov blanket or Xj is in
Xi’s Markov blanket. The other includes an edge if both
Xi is in Xj’s Markov blanket and Xj is in Xi’s Markov
blanket. Finally, all features are added to the model and
their weights are learned globally using any standard weight
learning algorithm.

III. ALGORITHM

We now describe our method for learning Markov net-
work structure from data, DTSL (Decision Tree Structure



Table I
THE DTSL ALGORITHM

function DTSL(D, X)
F ← ∅
for Xi ∈ X do

Ti ← LEARNTREE(Xi, D)
Fi ← GENERATEFEATURES(Ti)
F ← F ∪ Fi

end for
M ←LEARNWEIGHTS(F, D)
return M
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Figure 1. Example of a probabilistic decision tree.

Learning). Table I outlines out basic approach. For each
variable Xi, we learn a probabilistic decision tree to rep-
resent the conditional probability of Xi given all other
variables, P (Xi|X − Xi). Each tree is converted to a set
of conjunctive features capable of representing the same
probability distribution as the tree. Finally, all features are
taken together in a single model and weights are learned
globally using any standard weight learning algorithm.

This is similar in spirit to learning a dependency net-
work [7]: Both dependency networks (with tree distribu-
tions) and DTSL learn a probabilistic decision tree for
each variable and combine the trees to form a probabilistic
model. However, a dependency network may not represent a
consistent probability distribution, and inference can only be
done by Gibbs sampling. In contrast, the Markov networks
learned by DTSL always represent consistent probability
distributions and allow inference to be done by any standard
technique, such as loopy belief propagation [8], mean field,
or MCMC.

We now describe each step of DTSL in more detail.

A. Learning Trees

A probabilistic decision tree represents a probability dis-
tribution over a target variable, Xi, given a set of inputs.
Each interior node tests the value of an input variable
and each of its outgoing edges is labeled with one of the
outcomes of that test (e.g., true or false). Each leaf node
contains the conditional distribution (e.g., multinomial) of
the target variable given the test outcomes specified by its
ancestor nodes and edges in the tree. We focus on discrete
variables and consider tests of the form Xj = xj , where

Table II
DTSL TREE LEARNING SUBROUTINE

function LEARNTREE(Xi, D)
best split ← ∅
best score ← 0
for Xj ∈ X −Xi do

for xj ∈ Val(Xj) do
S ← (Xj = xj)
if SCORE(S, Xi, D) > best split then

best split ← S
best score ←SCORE(S, Xi, D)

end if
end for

end for
if best score > log κ then

(Dt, Df ) ←SPLITDATA(D, best split)
TL ←LEARNTREE(Xi, Dt)
TR ←LEARNTREE(Xi, Df )
return new TreeVertex(best split, TL, TR)

else
Use D to estimate P (Xi)
return new TreeLeaf(P (Xi))

end if

Xj is a variable and xj is value of that variable. Each
conditional distribution is represented by a multinomial.
Figure 1 contains an example of a probabilistic decision tree.

We can learn a probabilistic decision tree from data in a
depth-first manner, one split at a time. We select a split at
the root, partition the training data into the sets matching
each outgoing branch, and recurse. We select each split
to maximize the conditional log-likelihood of the target
variable. This is very similar to using information gain as the
split criterion. We used multinomials as the leaf distributions
with a Dirichlet prior (α = 1) for smoothing. In order to
help avoid overfitting, we used a structure prior P (S) ∝ κp,
where p is the number of parameters, as in Chickering et
al. [9].

Pseudocode for the tree learning subroutine is in Table II.

B. Generating Features

While decision trees are not commonly thought of as a
log-linear model, any decision tree can be converted to a
set of conjunctive features. In addition to a direct transla-
tion (DEFAULT), we explored four modifications (PRUNE,
PRUNE-10, PRUNE-5, and NONZERO) which could yield
structures with easier weight learning or better generaliza-
tion.

The DEFAULT feature generation method is a direct trans-
lation of a probabilistic decision tree to an equivalent set
of features. For each leaf in the decision tree, we generate
a rule for each state of the target variable, containing a
condition for each ancestor in the decision tree. For example,
to convert the decision tree in Figure 1 to a set of rules, we
generate two features for each leaf, one where X4 is true
and one where X4 is false. The complete list of features is
as follows:

1) X1 = T ∧X4 = T



2) X1 = T ∧X4 = F

3) X1 = F ∧X2 = T ∧X4 = T

4) X1 = F ∧X2 = T ∧X4 = F

5) X1 = F ∧X2 = F ∧X4 = T

6) X1 = F ∧X2 = F ∧X4 = F

By using the log probability at the leaf as the rule’s
weight, we obtain a log linear model representing the same
distribution. By applying this transformation to all decision
trees, we obtain a set of conjunctive features that comprise
the structure of our Markov network. However, their weights
may be poorly calibrated (e.g., due to the same feature
appearing in several decision trees), so weight learning is
still necessary.

The PRUNE method expands the set of features generated
by DEFAULT in order to make learning and inference easier.
One disadvantage of the DEFAULT procedure is that it
generates very long features with many conditions when the
source trees are deep. Intuitively, we would like to capture
the coarse interactions with short features and the finer
interactions with longer features, rather than representing
everything with long features. In the PRUNE method, we
generate additional features for each path from the root to
an interior node, not just paths from the root to a leaf.
This is equivalent to applying the default feature generation
method to all possible “pruned” versions of a decision tree,
that is, where one or more interior nodes are replaced with
leaves. This yields two additional rules, in addition to those
enumerated above:

1) X1 = F ∧X4 = T

2) X1 = F ∧X4 = F

The PRUNE-10 and PRUNE-5 methods extend PRUNE
by limiting the tree to a maximum depth of 10 and 5,
respectively. This can help avoid overfitting.

Our final feature generation method, NONZERO, is similar
to DEFAULT, but removes all false variable constraints in
a post-processing step. For example, the decision tree in
Figure 1 would be converted to the following set of rules:

1) X1 = T ∧X4 = T

2) X1 = T

3) X2 = T ∧X4 = T

4) X2 = T

5) X4 = T

This simplification is designed for sparse binary domains
such as text, where a value of false or zero contains much
less information than a value of true or one.

C. Asymptotic Complexity

Let n be the number of variables, m be the number of
training examples, and l be the number of values per vari-
able. The complexity of selecting the first split is O(lmn),
since we must compute statistics for each of the l values
of each of the n variables using all of the m examples.
At the next level, we now have two splits to select: one

for the left child and one for the right child of the original
split. However, since the split partitions the training data
into two sets, each of the m examples is only considered
once, either for the left split or the right split, leading to
a total time of O(lmn) at each level. If each split assigns
a fraction of at least 1/k examples to each child, then the
depth is at most O(logk(m)), yielding a total complexity
of O(lmn logk(m)) for one tree, and O(lmn2 logk(m)) for
the entire structure. Depending on the patterns present in the
data, the depth of the learned trees could be much less than
logk(m), leading to faster run times in practice. For large
datasets or streaming data, we can apply the Hoeffding tree
algorithm instead [10], which uses the Hoeffding bound to
select decision tree splits after enough data has been seen
to make a confident choice, rather than using all available
data.

IV. EMPIRICAL EVALUATION

We evaluate our approach on 13 real-world datasets. The
goals of our experiments are two-fold. First, we want to
compare the run time and accuracy of DTSL to several
other state-of-the-art Markov network structure learners: the
algorithm of Della Pietra et al. [2], which we refer to as DP;
BLM [6]; and L1 regularized logistic regression [1]. Second,
we want to evaluate whether DTSL’s pruning heuristics
result in more accurate models.

A. Methods

We used DTSL and each of the baselines to learn struc-
tures for all 13 datasets.

DTSL was implemented in OCaml. For both BLM and
DP, we used the publicly available code of Davis and
Domingos [6]. For Ravikumar et al.’s approach, we used
the OWL-QN software package [11] for performing the L1
logistic regression.

The output of each structure learning algorithm is a set
of conjunctive features. To learn weights, we optimized the
pseudo-likelihood of the data via the limited-memory BFGS
algorithm [12] since optimizing the likelihood of the data is
prohibitively expensive for the domains we consider.

Like Lee et al. [13], we evaluated our algorithm using test
set conditional marginal log-likelihood (CMLL). Calculating
the CMLL required dividing the variables into a query set
Q and an evidence set E. Then, for each test example we
computed CMLL(X = x) =

�
i∈Q log P (Xi = xi|E).

For each domain, we divided the variables into four disjoint
groups. One set served as the query variables while the
remaining three sets served as evidence. We repeated this
procedure such that each set served as the query variables.
We computed the conditional marginal probabilities using
the MC-SAT inference algorithm [14]. For all three domains,
we set the burn-in to 1,000 samples and then computed the
probability using the next 10,000 samples.



Table III
DATA SET CHARACTERISTICS

Data Set Train Tune Test Num. Density
Set Set Set Vars.
Size Size Size

NLTCS 16,181 2,157 3,236 16 0.332
MSNBC 291,326 38,843 58,265 17 0.166
KDDCup 2000 180,092 19,907 34,955 64 0.008
Plants 17,412 2,321 3,482 69 0.180
Audio 15,000 2,000 3,000 100 0.198
Jester 9,000 1,000 4,116 100 0.610
Netflix 15,000 2,000 3,000 100 0.541
MSWeb 29,441 3,270 5,000 294 0.010
Book 8,700 1,159 1,739 500 0.016
EachMovie 4,524 1,002 591 500 0.058
WebKB 2,803 558 838 843 0.063
20 Newsgroups 11,293 3,764 3,764 930 0.049
Reuters-52 6,532 1,028 1,540 941 0.037

We tuned all algorithms using separate validation sets,
the same validation sets used by Davis and Domingos. For
DTSL, we selected the structure prior κ for each domain
that minimized the total log loss of all probabilistic decision
trees on the validation set. The values of κ we used were
powers of 10, ranging from 0.0001 to 1.0. For each feature
generation method, we then tuned the Gaussian weight prior
to maximize CMLL on the validation set, with values of
100, 10, 1, and 0.1. For comparisons to other algorithms,
we selected the DTSL model with the best overall CMLL
score on the validation set.

For L1, on each dataset we tried the following values of
the prior λ: 1, 2, 5, 10, 25, 50, 100, 200, 500, and 1000.
We also tried both methods of making the Markov blankets
consistent, and tuned the weight prior as we did with DTSL.
(Tuning the Gaussian weight prior allowed us to get better
results than reported by Davis and Domingos [6].)

For BLM and DP, we kept the tuning settings used by
Davis and Domingos. Additional tuning of the weight prior
might lead to slightly better results.

All of our code is available at http://ix.cs.uoregon.edu/
∼lowd/dtsl under a modified BSD license.

B. Data Sets
For our experiments, we selected a subset of the domains

used by Davis and Domingos [6].1 We excluded the do-
mains that had multivalued variables encoded as multiple
binary variables, since this leads to artificial deterministic
dependencies. Table III describes the characteristics of each
dataset. Datasets are listed in increasing order by number of
variables.

From the UCI machine learning repository [15] we used:
KDDCup 2000 data, MSNBC anonymous web data, MSWeb
anonymous web data and Plants domains. The KDD Cup
2000 clickstream prediction data set [16] consists of web
session data taken from an online retailer. Using the subset of

1Publicly available at http://alchemy.cs.washington.edu/papers/davis10a

Hulten and Domingos [17], each example initially consisted
of 65 Boolean variables, corresponding to whether or not
a particular session visited a web page matching a certain
category. We dropped one variable that was always set to
zero in the training data. The MSNBC anonymous web data
contains information about whether a user visited a top-level
MSNBC page during a particular session. We created one
variable for each page, which is true if the user visited that
particular page during a session. The MSWeb anonymous
web data contains visit data for 294 areas (Vroots) of the
Microsoft web site, collected during one week in February
1998. Again, we created one variable for each page, which is
true if the user visited that particular page during a session.
The Plants dataset consists of different plant types and
locations where they are found. We constructed one binary
feature for each location, which is true if the plant is found
there.

The National Long Term Care Survey (NLTCS) data
consist of binary variables that measure an individual’s
ability to perform different daily living activities.2

We used three text domains: 20 Newsgroups, Reuters-
52 and WebKB.3 For 20 Newsgroups, we only considered
words that appeared in at least 200 documents. For Reuters
and WebKB, we only considered words that appeared in at
least 50 documents. For all three datasets, we created one
binary feature for each word. The text domains contained
roughly a 50-50 train-test split, whereas all other domains
used around 75% of the data for the training, 10% for tuning,
and 15% for testing. Thus we split the test set of these
domains to make the proportion of data devoted to each task
more closely match the other domains used in the empirical
evaluation.

Finally, we considered several collaborative filtering prob-
lems: Audio, Book, EachMovie, Jester and Netflix. The
Audio dataset consists of information about how often a
user listened-to a particular artist.4 The data was provided
by the company Audioscrobbler before it was acquired by
Last.fm. We focused on the 100 most listened-to artists. We
used a random subset of the data and reduced the problem
to “listened-to” or “did not listen-to.” The Book Crossing
(Book) dataset [18] consists of a users rating of how much
they liked a book. We considered the 500 most frequently
rated book. We reduced the problem to “rated” or “not
rated” and considered all people who rated more than of
these books. EachMovie5 is a collaborative filtering dataset
in which users rate movies they have seen. We focused
on the 500 most-rated movies, and reduced each variable
to “rated” or “not rated”. The Jester dataset [19] consists
of users’ real-valued ratings for 100 jokes. For Jester we

2http://lib.stat.cmu.edu/datasets/
3http://web.ist.utl.pt/∼acardoso/datasets/
4http://www-etud.iro.umontreal.ca/∼bergstrj/audioscrobbler data.html
5Provided by Compaq at http://research.compaq.com/SRC/eachmovie/;

no longer available for download, as of October 2004.



selected all users who had rated all 100 jokes, and reduced
their preferences to “like” and “dislike” by thresholding the
real-valued preference ratings at zero. Finally, we considered
a random subset of the Netflix challenge data and focused
on the 100 most frequently rated movies and reduced the
problem to “rated” or “not-rated.”

C. Results
First, we compared the accuracy of the different DTSL

feature generation methods: DEFAULT, PRUNE, PRUNE-5,
PRUNE-10, and NONZERO. Results are in Table IV. On 11
out of 13 datasets, PRUNE is more accurate than DEFAULT,
sometimes substantially so. PRUNE-10 and PRUNE-5 some-
times improve on the accuracy of PRUNE when PRUNE
seems to be overfitting, such as on MSWeb and the text
datasets (WebKB, 20 Newsgroups, Reuters-52). NONZERO
worked surprisingly well, yielding the most accurate models
on eight out of 13 datasets. Its use of fewer and shorter
features may be key to avoiding overfitting. Overall, PRUNE
or NONZERO is almost always the best choice, yielding
the best CMLL on 11 datasets and a close second on the
remaining two.

Additional characteristics of the features generated by
each method are in Table V. “Average Feature Length” is
the average number of conditions per feature. The PRUNE
method leads to roughly twice as many features as DE-
FAULT, which is what one would expect, since half of the
nodes in a balanced binary tree are leaves and the other half
are interior nodes. NONZERO typically yields the shortest
and the fewest rules, as expected.

We then compared DTSL to three standard Markov
network structure learners: L1 regularized logistic regres-
sion [1], BLM [6], and DP [2]. We also include Atomic,
a model that assumes all variables are independent, as a
simple baseline. Accuracy and timing results are in Table VI.
For the comparison, we selected the DTSL method that
performed best on the validation set. In some cases, such as
KDDCup 2000, this was not the method that performed best
on the test data. Figure 2 contains scatterplots comparing
DTSL to each baseline method.

DTSL achieves the best overall performance on five of
the 13 datasets. We compare the performance of DTSL to
the other algorithms using the Wilcoxon signed-ranks tests,
where the test set CMLL of each dataset appears as one
sample in the significance test. DTSL outperforms L1 on six
of the 13 domains which results in no significant difference
according to a Wilcoxon signed-ranks test. Even for the
datasets where DTSL performs worse than L1, it offers
comparable accuracy, as shown by the scatterplots. DTSL’s
accuracy is substantially better than L1’s on the Plants and
MSNBC domains. The average feature length for DTSL is
7.61 and 10.42 for Plants and MSNBC, respectively, which
supports the hypothesis that inducing longer features can
improve the performance of a model.

DTSL achieves a better CMLL score than BLM on 10
of the 13 domains. DTSL significantly outperforms BLM at
the 0.006 significance level according to a Wilcoxon signed-
ranks test. DTSL beats Della Pietra et al.’s algorithm on 12
of the 13 domains. DTSL significantly outperforms Della
Pietra et al. at the 0.0008 significance level according to a
Wilcoxon signed-ranks test.

On average, DTSL is 16 times faster than L1 and 870
times faster than BLM. DTSL has a faster run time than L1,
BLM and Della Pietra et al.’s algorithm on all 13 domains.
DTSL is significantly faster than each of the other algorithms
at less than 0.001 significance level according to a Wilcoxon
signed-ranks test.

For all algorithms, timing results are for structure se-
lection only, excluding tuning and weight learning, which
were not heavily optimized. For BLM and Della Pietra
et al., structure learning is the bottleneck, always taking
significantly longer than weight learning. Due to L1’s greater
speed, weight learning was slower than L1 structure learning
on three datasets. Since DTSL is even faster, weight learning
was slower than DTSL structure learning on every dataset.
Furthermore, because DTSL often selected structures with
longer or more features than L1, weight learning was often
slower on DTSL’s models than L1’s, in spite of the fact
that the same weight learning methods were employed for
all models. Since DTSL effectively solves the problem of
slow structure learning, efficient weight learning becomes
increasingly important. A stochastic optimization algorithm,
such as SGD-QN [20], might yield significantly better
performance.

Since DTSL is always faster than the baseline algorithms
and often more accurate, it is a good choice to consider when
performing Markov network structure learning. Whether or
not DTSL is most accurate depends on the dataset. Some
domains are best captured by a large number of pairwise
interactions; in such cases, L1 performs best. Others depend
on higher order interactions that are easily discovered by
DTSL.

DTSL has two weaknesses. The first is a higher risk of
overfitting, since it often generates many very specialized
features. For the most part, this can be remedied with careful
tuning on a validation set. The second is a limited ability
to capture many independent interactions. For instance, to
capture pairwise interactions between a variable and k other
variables would require a decision tree with 2k leaves, even
though such interactions could be represented exactly by
O(k) features. For future work, we would like to learn
sets of decision trees or other structures that can capture
more independent interactions without making the overly
restrictive pairwise assumption of L1.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented DTSL, a new approach to
learning Markov networks using decision trees. DTSL is
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Figure 2. Normalized CMLL of DTSL vs. the normalized CMLL of each baseline method. CMLLs were normalized by dividing by the number of
variables. Points above the line are where DTSL outperforms the baseline.



Table IV
TEST SET CMLL FOR DIFFERENT FEATURE GENERATION METHODS.

Data Set Default Prune Prune-10 Prune-5 Nonzero
NLTCS -5.313 -5.210 -5.213 -5.205 -5.224
MSNBC -5.724 -5.745 -5.888 -6.111 -5.870
KDDCup 2000 -2.696 -2.155 -2.104 -2.107 -2.085
Plants -10.814 -9.988 -10.074 -10.636 -11.054
Audio -38.093 -37.893 -37.900 -38.405 -37.484
Jester -51.021 -50.818 -50.818 -51.155 -50.212
Netflix -54.389 -54.177 -54.179 -54.561 -53.234
MSWeb -29.757 -28.648 -21.891 -16.589 -9.278
Book -35.484 -34.451 -34.451 -34.718 -35.238
EachMovie -54.400 -51.043 -51.088 -52.464 -52.197
WebKB -158.790 -151.195 -151.104 -151.577 -150.529
20 Newsgroups -195.607 -199.516 -201.060 -169.877 -154.825
Reuters-52 -128.009 -107.613 -106.547 -100.283 -82.929

Table V
FEATURE CHARACTERISTICS FOR DIFFERENT FEATURE GENERATION METHODS.

Average Feature Length Number of Features in the Learned Model
Data Set DEFAULT PRUNE PRUNE-10 PRUNE-5 NONZERO DEFAULT PRUNE PRUNE-10 PRUNE-5 NONZERO
NLTCS 7.20 6.32 6.24 4.17 3.96 1,529 2,958 2,910 899 980
MSNBC 11.39 10.42 8.17 4.17 4.50 12,356 24,530 12,530 1,015 4,159
KDDCup 2000 8.44 7.61 6.11 3.94 2.87 4,403 8,585 6,941 2,831 2,274
Plants 7.58 6.69 6.17 4.15 3.61 6,264 12,289 11,439 3,865 4,303
Audio 6.80 5.93 5.78 4.17 3.09 7,097 13,866 13,510 5,851 4,946
Jester 6.20 5.35 5.34 4.18 3.70 5,834 11,308 11,292 5,832 4,796
Netflix 6.67 5.79 5.79 4.18 3.75 7,897 15,437 15,433 5,897 6,659
MSWeb 20.12 20.03 5.04 3.41 2.49 7,744 14,788 9,392 5,665 3,879
Book 4.22 3.59 3.59 3.22 2.06 6,466 11,720 11,720 10,408 3,454
EachMovie 5.15 4.42 4.40 3.60 2.48 10,343 19,568 19,504 14,704 6,999
WebKB 4.09 3.48 3.47 3.14 2.15 10,004 17,971 17,939 16,247 5,858
20 Newsgroups 5.78 4.99 4.89 3.79 2.69 28,622 55,005 54,241 35,533 21,008
Reuters-52 5.09 4.40 4.29 3.44 2.44 16,390 30,684 30,232 23,042 10,485

Table VI
TEST SET CMLL AND RUNNING TIME FOR DTSL AND BASELINES. DTSL FEATURE GENERATION METHOD SELECTED USING THE VALIDATION SET.

CMLL Run Time (Minutes)
Data Set DTSL L1 BLM DP Atomic DTSL L1 BLM DP
NLTCS -5.213 -5.231 -5.253 -5.220 -9.241 < 0.1 0.1 24.5 15.8
MSNBC -5.745 -6.286 -5.892 -5.957 -6.780 0.4 1.1 203.5 1440.0
KDDCup 2000 -2.107 -2.124 -2.099 -2.112 -2.456 2.0 9.8 62.9 1440.0
Plants -9.988 -10.962 -10.960 -11.143 -31.321 0.2 3.2 514.6 1440.0
Audio -37.484 -36.972 -37.385 -39.224 -49.362 0.3 2.7 434.3 1398.5
Jester -50.212 -49.508 -53.025 -53.999 -63.891 0.2 4.4 350.2 1440.0
Netflix -53.234 -52.329 -56.598 -57.429 -64.578 0.3 6.1 1367.8 1440.0
MSWeb -9.278 -9.075 -8.936 -9.187 -11.720 2.2 43.9 64.8 1440.0
Book -34.451 -36.814 -34.768 -39.254 -41.308 1.9 24.2 47.3 1440.0
EachMovie -51.043 -51.861 -58.852 -67.175 -84.102 1.1 39.5 41.3 1440.0
WebKB -150.529 -150.249 -165.736 -176.208 -180.640 1.6 45.0 49.9 1440.0
20 Newsgroups -154.825 -154.540 -161.269 -171.380 -172.908 11.0 347.7 468.9 1440.0
Reuters-52 -82.929 -81.285 -91.196 -105.664 -108.262 4.5 105.5 170.9 1440.0

similar to the approach of Ravikumar et al. [1], except that
we use decision trees in place of L1 logistic regression.
This allows us to learn longer features capturing interactions
among more variables, which yields substantially better per-
formance in several domains. DTSL is also similar to meth-
ods for learning dependency networks with tree conditional
probability distributions [7]. However, dependency networks
may not represent consistent probability distributions and
require that inference be done with Gibbs sampling, while

the Markov networks learned by DTSL have neither of those
limitations.

In terms of speed, we found DTSL to be an order
of magnitude faster than L1 logistic regression, and 3-4
orders of magnitude faster than the global structure learning
approaches of BLM [6] and Della Pietra et al. [2]. In
terms of accuracy, DTSL is comparable in accuracy to other
approaches, placing first on 5 out of 13 datasets.

Future work includes exploring other methods of learning



Table VII
FEATURE CHARACTERISTICS FOR DTSL AND BASELINES. DTSL FEATURE GENERATION METHOD SELECTED USING THE VALIDATION SET.

Average Feature Number of Features
Data Set Length in the Learned Model

DTSL L1 BLM DP DTSL L1 BLM DP
NLTCS 6.24 2.00 4.63 3.12 2,910 155 458 137
MSNBC 10.42 2.00 4.47 4.20 24,530 167 3,168 845
KDDCup 2000 3.94 2.00 2.46 4.12 2,831 2,144 2,421 584
Plants 7.61 2.00 3.18 2.76 12,289 2,255 1,148 325
Audio 3.09 2.00 2.71 2.03 4,946 5,101 2,755 272
Jester 3.70 2.00 6.27 3.13 4,796 5,121 479 191
Netflix 3.75 2.00 6.29 2.55 6,659 5,148 1,040 186
MSWeb 2.49 2.00 2.81 2.26 3,879 13,663 4,504 397
Book 3.59 2.00 2.07 2.14 11,720 12,036 5,577 120
EachMovie 4.42 2.00 3.61 2.05 19,568 11,155 1,615 158
WebKB 2.15 2.00 11.86 2.11 5,858 7,671 2,152 37
20 Newsgroups 2.69 2.00 10.95 2.10 21,008 29,349 3,376 20
Reuters-52 2.44 2.00 10.52 2.11 10,485 37,413 3,481 27

local structure, such as rule sets, boosted decision trees, and
neural networks; determining sufficient conditions for the
asymptotic consistency of local learning; further improving
speed, perhaps by using frequent itemsets; and incorporating
faster methods for weight learning, since structure learning
is no longer the bottleneck.
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