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Abstract

Markov networks are an effective way to rep-
resent complex probability distributions. How-
ever, learning their structure and parameters or
using them to answer queries is typically in-
tractable. One approach to making learning and
inference tractable is to use approximations, such
as pseudo-likelihood or approximate inference.
An alternate approach is to use a restricted class
of models where exact inference is always effi-
cient. Previous work has explored low treewidth
models, models with tree-structured features, and
latent variable models. In this paper, we in-
troduce ACMN, the first ever method for learn-
ing efficient Markov networks with arbitrary con-
junctive features. The secret to ACMN’s greater
flexibility is its use of arithmetic circuits, a linear-
time inference representation that can handle
many high treewidth models by exploiting local
structure. ACMN uses the size of the correspond-
ing arithmetic circuit as a learning bias, allow-
ing it to trade off accuracy and inference com-
plexity. In experiments on 12 standard datasets,
the tractable models learned by ACMN are more
accurate than both tractable models learned by
other algorithms and approximate inference in
intractable models.

1 INTRODUCTION

Markov networks (MNs) are one of the most effective ways
to compactly represent a complex probability distribution
over a set of random variables. Unfortunately, answering
marginal or conditional queries in an MN is #P-complete
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in general [25]. Learning MN parameters and structure is
also intractable in the general case, since computing the
gradient of the log-likelihood requires running inference in
the model.

As a result, most applications of MNs use approximate
methods for learning and inference. For example, param-
eter and structure learning are often done by optimizing
pseudo-likelihood instead of log-likelihood, or by using ap-
proximate inference to compute gradients. Many approx-
imate inference algorithms have been developed, but, de-
pending on the problem and the algorithm, the approxima-
tion may be inaccurate or unacceptably slow.

The key to making MNs more useful is to make exact infer-
ence efficient. Even though inference is #P-complete in the
worst case, there are many interesting special cases where
exact inference remains tractable. Previous work has in-
vestigated methods for learning MNs with low treewidth [1,
12, 6], which is a sufficient condition for efficient inference,
but not a necessary one. Another approach is to learn a tree
of features [14], which may have high treewidth but still
admits efficient inference. However, this approach leads to
many very long features, with lengths proportional to the
depth of the tree.

Another method for learning tractable graphical models is
to use mixture models with latent variables. The simplest
example is a latent class model [18], in which the variables
are conditionally independent given a single latent variable.
Other examples include mixtures of trees [22] and latent
tree models [28, 8]. Sum-product networks that use a care-
fully structured network of latent variables have been very
successful at certain computer vision applications [23]. La-
tent variable models excel when there are natural clusters
present in the domain, but may do worse when such struc-
ture is not present. Another limitation of latent variable
models is that they cannot efficiently compute the most
likely configuration of the observable variables conditioned
on evidence (the MPE state), since summing out the latent
variables makes the maximization problem hard.

In this paper, we propose ACMN, a new method for learn-
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ing the structure and parameters of tractable MNs over dis-
crete variables. Our method represents the network struc-
ture as a set of conjunctive features, each of which is a log-
ical rule that evaluates to 1 if the specified variables take on
their given values and 0 otherwise. Unlike previous work,
there are neither latent variables nor explicit restrictions on
the treewidth or structure of these features, as long as they
admit a model with efficient inference.

To ensure efficient inference, ACMN simultaneously learns
an arithmetic circuit (AC) that encodes the same distribu-
tion as the MN. An AC is a compact representation with
linear time inference. ACs are similar to junction trees,
but can be exponentially more compact by exploiting lo-
cal structure or determinism. Thus, as long as the AC is
relatively small, inference can be done quickly in the MN.
ACMN exploits this directly by performing a greedy search
in the space of possible structures, using the size of the AC
as a learning bias.

ACMN is similar to the LearnAC algorithm [19], except
that it learns an MN rather than a Bayesian network.
Bayesian networks are a less flexible representation than
MN, since every probability distribution that can be en-
coded as a compact Bayesian network can also be encoded
as an MN, but the converse is not true. The disadvantage of
MNs is that the likelihood is no longer node decomposable
and parameter estimation can no longer be done in closed
form. ACMN overcomes these challenges with intelligent
heuristics to minimize the cost of scoring candidate moves.
Even so, ACMN is more computationally expensive than
LearnAC, but offers the benefits of a more flexible repre-
sentation and thus more accurate models.

The rest of the paper is organized as follows. In Sections 2
and 3, we present additional background on MNs and ACs.
In Section 4, we present the details of ACMN. We compare
ACMN empirically to a variety of baseline algorithms in
Section 5, and conclude in Section 6.

2 MARKOV NETWORKS

Consider a set of n random variables, X =
{X1, X2, . . . , Xn}. We focus on the case where each Xi

is discrete: V al(Xi) = {x1i , x2i , . . . , xki }. For the special
case of Boolean-valued variables (k = 2), we refer to the
two states as xi (Xi is true) and ¬xi (Xi is false). For
simplicity, we will assume that Xi is Boolean, but our
methods can be generalized to multi-valued variables as
well.

A Markov network (MN) represents a probability distribu-
tion as a normalized product of factors:

P (X ) =
1

Z

∏
c

φc(Dc)

where each φc is a non-negative, real-valued function,

Dc ⊂ X represents the variables in the domain of factor
c, and Z is a normalization constant called the partition
function. If all probabilities are positive, the distribution
can be represented as an equivalent log-linear model:

logP (X ) =
∑
i

wifi(Di)− logZ

where each fi is a real-valued feature function with domain
Di and wi is a real-valued weight. A common special case
is where each fi is a logical conjunction of variable tests
that evaluates to 1 if the expression is satisfied and 0 oth-
erwise. For example: f1(X1, X3, X8) = x1 ∧ ¬x3 ∧ x8.
Compared to a table-based representation, conjunctive fea-
tures can be much more compact when the tables have re-
peated values or other kinds of local structure.

MNs can be used to answer probabilistic queries such as
the marginal or joint probabilities of a set of query vari-
ables given the values of some evidence variables. In some
cases, such as when the MN has low treewidth or other
special structure, this can be done exactly. In general, how-
ever, computing exact probabilities is usually intractable,
so approximate inference techniques are used instead. One
of the simplest and most widely used inference methods
is Gibbs sampling, which repeatedly samples each variable
given the current state of all other variables in the network.
The probability of a query is then estimated as the fraction
of the samples that satisfy the query. For positive distri-
butions, the sample distribution will eventually converge to
the true network distribution, although convergence can be
very slow in practice.

MN parameters are typically learned to maximize the pe-
nalized log-likelihood or pseudo-log-likelihood (PLL) of
the training data. The most common regularization penal-
ties are an L1 or L2 norm of the weights, which is equiv-
alent to placing a Laplacian or Gaussian prior on each pa-
rameter. When the training data is fully observed, both ob-
jective functions are convex. Computing the log-likelihood
or its gradient requires performing exact or approximate in-
ference in the current model, which may be slow or inaccu-
rate in the general case. A compelling alternative is pseudo-
likelihood [2], which is the product of the conditional prob-
ability of each variable given the others. Pseudo-likelihood
is a popular choice because it is a consistent estimator and
can be computed efficiently. Models trained using pseudo-
likelihood tend to do well on queries with large amounts of
evidence, since this closely mirrors the objective function,
but worse on queries with less evidence.

2.1 Learning Markov Network Structure

Markov network structure can be learned to maximize an
objective function such as penalized log-likelihood or PLL.
Combinatorial search approaches perform a direct search
through the space of possible conjunctive features, scoring
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candidate features using approximate inference or pseudo-
likelihood. For top-down search, the initial state is all
single-variable features ({x1,¬x1, x2,¬x2, . . .}) and the
search operations are adding a new feature that is the con-
junction of two existing features [11, 21]. For bottom-up
search, the initial state contains one very specific feature
for each instance, and the search operations are merging
and simplifying features to make them more general [10].
The recent GSSL algorithm improves on bottom-up search
by replacing the expensive searching and scoring procedure
with randomness and heuristics, allowing it to learn better
models in less time [15].

Another approach to structure learning is to learn a local
model to predict each variable given all others and then
combine them into a single joint model. Ravikumar et
al. [24] use L1-regularized logistic regression to learn the
local models, and then construct a global model with a fea-
ture for each pair of variables that had a non-zero inter-
action weight in the logistic regression. The DTSL algo-
rithm [17] uses probability trees as the local models and
constructs the global model by creating a conjunctive fea-
ture for each leaf in each probability tree. The weights in
the global model can be learned by optimizing PLL or by
directly translating the conditional distributions with the
DN2MN method [20]. Instead of learning local models
first, optimizing PLL with L1 regularization can also be
used to select features directly, as long as the features are
enumerated in advance [16] or restricted to a certain hier-
archical structure [26].

A different class of MN structure learning algorithms
attempts to directly identify the independencies in the
model [27, 3]. These methods tend to place more empha-
sis on discovering the true structure of the domain, and less
emphasis on simply learning an accurate distribution.

3 ARITHMETIC CIRCUITS

The network polynomial for a Bayesian or Markov net-
work is a polynomial with an exponential number of terms,
one for each possible state of the random variables [9].
Each term is a product of indicator variables (λxi ) for the
states of the random variables and the parameters (θj) of
all features satisfied by that state. For example, consider a
Markov network over Boolean variables X1 and X2 with
features f1 = x1 ∧ x2 and f2 = x2 and their weights w1

and w2. Since the weights are in log-space, we must de-
fine an alternate parameterization, θ1 = ew1 and θ2 = ew2 .
Now we can construct the network polynomial, which is
multilinear in the λ and θ variables:

λx1λx2θ1θ2 + λx1λ¬x2 + λ¬x1λx2θ2 + λ¬x1λ¬x2

When all indicator variables λ are set to 1, the network
polynomial computes the partition function of the MN. The
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Figure 1: Simple arithmetic circuit that encodes the net-
work polynomial of a Markov network with two variables
and two features.

network can be conditioned on evidence by setting the ap-
propriate indicator variables to zero. For example, condi-
tioning the network on X1 = ¬x1 can be done by set-
ting λx1

to zero, so that all terms involving λx1
evaluate

to zero. Marginals of variables and features can also be
computed by differentiating the network polynomial. See
Darwiche [9] for more details.

Since the network polynomial has exponential size, work-
ing with it directly is intractable. However, in some cases,
it can be represented compactly as an arithmetic circuit [9].
An arithmetic circuit (AC) is a rooted, directed acyclic
graph in leaves contain numerical values, such as param-
eters or indicator variables, and interior nodes are addi-
tion and multiplication operations. ACs exploit structure
by representing repeated computations just once in the
graph and referencing them multiple times. See Figure 1
for an example AC that encodes the example two-variable
Markov network from above. Evaluating or differentiat-
ing the AC with or without evidence can be done in linear
time in the size of the circuit. Therefore, we can perform
efficient inference in any MN if we have a compact repre-
sentation of it as an AC.

ACs are very closely related to sum-product networks
(SPNs) [23]. In fact, every AC can be compactly repre-
sented as an SPN and vice versa. The key difference is that
SPNs attach weights to the outgoing edges of sum nodes,
while ACs represent the same operation using additional
product and parameter nodes. The specific structures used
by Poon and Domingos involved a complex arrangement of
implicit latent variables, while we focus on learning MNs
with no latent variables.

3.1 Learning Arithmetic Circuits

Most previous work with ACs has focused on compiling
Bayesian networks (BNs) to compact circuits [4, 5]. How-
ever, for many networks, no compact circuit exists. An al-
ternate approach is to learn a Bayesian network and circuit
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simultaneously, as done by the LearnAC algorithm [19].
The LearnAC algorithm greedily learns a Bayesian net-
work with context-specific independence, similar to the
method of Chickering et al. [7], but using the size of the
corresponding AC as a learning bias. Rather than compil-
ing the AC from scratch each time, it evaluates candidate
structure modifications by performing equivalent modifi-
cations to the AC. Since LearnAC is still learning a BN
from fully observed data, all parameters can be estimated
in closed form, and the likelihood component of the score
function is easy to compute.

4 THE ACMN ALGORITHM

We now describe ACMN, our proposed method for learn-
ing an MN with conjunctive features and its corresponding
compact AC.

ACMN performs a greedy search through structure space,
similar to the methods of Della Pietra et al. [11] and Mc-
Callum [21]. The initial structure is the set of all single-
variable features. The search operations are to take an ex-
isting feature in the model, f , and combine it with another
variable, V , creating two new features: f ∧ v and f ∧ ¬v.1

We refer to this operation as a “split,” since it takes an ex-
isting feature and splits it into three: the original feature
and two new ones that condition on the value of V .

Splits are scored according to their effect on the log-
likelihood of the MN and the size of the corresponding AC:

score(s) = ∆ll(s)− γ∆e(s)

Here, ∆ll is a measure of how much the split will increase
the log-likelihood. Measuring the exact effect would re-
quire jointly optimizing all model parameters along with
the parameters for the two new features. To make split scor-
ing more efficient, we measure this as the log-likelihood
gain from modifying only the weights of the two new fea-
tures, keeping all others fixed. This gives a lower bound on
the actual log-likelihood gain. This gain can be computed
by solving a simple two-dimensional convex optimization
problem, which depends only on the empirical counts of the
new features in the data and their expected counts in the
model, requiring performing inference just once to com-
pute these expectations. A similar technique was used by
Della Pietra et al. [11] and McCallum [21] for efficiently
computing feature gains.

∆e(s) denotes the number of edges that would be added
to the AC if this split were included. Computing this has
similar time complexity to actually performing the split. γ
determines the relative weightings of the two terms. The

1For convenience and clarity of exposition, we assume binary-
valued variables, but our method also applies to multi-valued vari-
ables with only minor modifications.

combined score function is equivalent to maximizing like-
lihood with an exponential prior on the number of edges in
the AC.

ACMN is similar to the LearnAC [19], which also starts
with a product of marginals and repeatedly select the high-
est scoring structure operation until convergence. The dif-
ference is that instead of the probability distribution being a
BN where each conditional probability distribution (CPD)
is a tree, the distribution is a log-linear model where each
feature is a conjunction of feature tests. Every BN with
tree CPDs can easily be expressed as a set of conjunctive
features, but the converse is not true. Therefore, ACMN
should be more expressive than LearnAC and able to learn
better models.

4.1 The Overall Algorithm

ACMN makes one additional approximation that leads to
a much faster implementation. ACMN assumes that, as
learning progresses, the score of any given split decreases
monotonically. The score of a split can decrease for two
reasons. First, a split’s likelihood gain ∆ll(s) may decrease
as other similar splits are performed, making s increasingly
redundant. Second, as the circuit grows in size, the edge
costs typically increase, since there are more edges that
may need to be duplicated when performing a split. While
this assumption does not always hold, it allows us to eval-
uate only a small fraction of the available splits in each
iteration, rather than rescoring every single one.

A high-level view of our algorithm is shown in Algo-
rithm 1. This simple description assumes that every split
is rescored in every iteration. To achieve reasonable run-
ning times, our actual implementation of ACMN uses a
priority queue which ranks splits based on their most re-
cently computed score. The split at the front of the queue
is therefore the most promising candidate. We repeatedly
remove the split from the front of the queue and recompute
its likelihood gain or edge gain if either is out of date. Since
computing likelihood gain is usually cheaper, we compute
it first and reinsert the split into the priority queue with the
updated score, since a bad likelihood may be enough to rule
it out. If both gains are up-to-date, then the split is better
than any other split in the priority queue, as long as we as-
sume that the scores for other splits in the queue have not
increased since they were inserted.

One final optimization is that we can compute many of the
expectations we need in parallel using the AC. Specifically,
by conditioning on feature f and differentiating the circuit
with respect to the indicator variables, we can compute the
expectations E[f ∧ xi] and E[f ∧ ¬xi] for all variables
Xi in a single pass, which takes linear time in the size of
the circuit. In other words, the time to estimate the like-
lihood gain for all splits of a single feature can be done in
O(e) time rather thanO(ne) time, where e is the number of
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Algorithm 1 Greedy algorithm for learning MN ACs.
function ACMN(T )
initialize modelM and circuit C as product of marginals
initialize priority queue Q with initial candidate splits
loop

Update edge and likelihood gain for each split in Q.
s← Q.pop() // Select best split
(M,C, f, θ, f ′, θ′)← ACMN-Split(s,M,C)
(M,C)← OptimizeWeights(M,C, T )
for V ∈ X do

Add new splits (f, θ, V ) and (f ′, θ′, V ) to Q.
end for

end loop
return (M,C)

Algorithm 2 Subroutine that updates an arithmetic circuit
C by adding two new features, g = f ∧ v and g′ = f ∧¬v.

function ACMN-Split(s,M,C)
Let θ = s.paramNode, V = s.varNodes
Let A be the mutual ancestors of the parameter node (θ)
and the variable nodes (λv , λ¬v).
Let Gθ be the subcircuit between θ and A.
Let Gv,¬v be the subcircuit between {λv, λ¬v} and A.
(Gv, hv)← Clone(Gv,¬v)[0/λ¬v]
(G¬v, h¬v )← Clone(Gv,¬v)[0/λv]
(Gθ1 , hθ1)← Clone(Gθ)[Prod(θ1, θ)/θ]
(Gθ2 , hθ2)← Clone(Gθ)[Prod(θ2, θ)/θ]
for a ∈ A do
a′v ← Prod(λv, hv(a), hθ1(a))
a′¬v ← Prod(λ¬v, h¬v(a), hθ2(a))
a′ ← Sum(a′v, a

′
¬v)

C ← C[a′/a]
end for
Let g = f ∧ v, g′ = f ∧ ¬v
return (M ∪ {g, g′}, C, g, θ1, g′, θ2)

edges in the circuit. We can use this same technique when
recomputing likelihood gains, by caching the expectations
for all of a feature’s splits when we compute the first one.

As described, ACMN uses a scoring function with a fixed,
user-specified parameter of γ. In order to meet particular
efficiency goals, we may wish to place a limit on the total
number of edges in the circuit instead. To do this, we run
the ACMN algorithm with a very large initial value of γ.
If no splits remain with positive score and the edge budget
has not been exhausted, then we divide γ by 2 and continue
learning. This can be repeated with smaller and smaller
values of γ until the edge budget has been used up. This is
a conservative approach that tends to select low-cost splits
early on, in order to avoid exhausting the edge budget too
quickly.

4.2 Updating the Circuit

One of the key subroutines in ACMN is ACMN-Split,
which updates an AC without recompiling it from scratch.
(A very similar procedure is also used for ComputeEdge-
Gain, which computes exactly how many edges ACMN-
Split would add.) Given a circuit C that is equivalent to an
MN M and a valid split s, SplitAC returns a modified cir-
cuit C ′ that is equivalent to M after applying split s, along
with the new features and parameters.

Pseudocode is present in Algorithm 2, followed by an il-
lustration of the basic operation in Figure 2. To clearly
explain how it works, we must first define some additional
terminology. In an AC, the mutual ancestors of two sets
of nodes N and M are the nodes that are ancestors of at
least one node in each set, and that have no children that
are mutual ancestors of N and M . The subcircuit between
N and M consists of all nodes in the circuit that are an-
cestors of a node in N and descendants of a node in M .
The Clone function creates a copy of a subcircuit. If two
nodes in the original subcircuit are connected by an arc,
then their clones in the new subcircuit are connected by an
arc as well. For external links, if a node in the original sub-
circuit has a child outside of the subcircuit, then its clone
will have an arc to the exact same child node. To establish
a correspondence between the original and cloned circuits,
Clone additionally returns a hashtable that maps nodes in
the original circuit to nodes in the cloned circuit. We also
define (sub)circuit substitution syntax as follows: C[n′/n]
represents a new circuit where all nodes that had node n as
a child now have n′ as a child instead. Finally, the func-
tions Sum and Prod construct new addition and multiplica-
tion nodes, respectively.

To split a feature f on a variable V , we must introduce two
new parameters for the new features, so that all terms in
the network polynomial that satisfy one of the new features
will include the appropriate parameter. In other words,
whenever f is satisfied and V = v, we must multiply by
both θ, the parameter for f , and θ1, the parameter for the
new feature f ∧ v. For the AC to be consistent, we must
“sum out” V only once. The logical place to do this is at the
mutual ancestors of the parameter node θ and the variable
nodes {λv, λ¬v}. This allows us to condition θ on V , with-
out invalidating the existing portions of the AC that already
depend on V .

5 EXPERIMENTS

5.1 Datasets

We used 12 binary variable datasets, listed in Table 1 in
increasing order by number of variables. These datasets
have been used by several previous papers on MN struc-
ture learning [10, 17, 15]. Each dataset consists of three
parts: a training set, which we used as input to each learn-
ing algorithm; a validation set, which we used to select the
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Figure 2: Illustration of the operation of the ACMN-Split
subroutine, splitting a feature with parameter node θ on
variable V . Dashed lines indicate sections of the circuit
where details have been omitted.

best tuning parameters; and a test set, which we used for
evaluation.

Table 1: Datasets characteristics
Dataset Train Valid. Test Num. Density

set set set vars.
NLTCS 16,181 2,157 3,236 16 0.332
MSNBC 291,326 38,843 58,265 17 0.166
KDDCup 2000 180,092 19,907 34,955 64 0.008
Plants 17,412 2,321 3,482 69 0.180
Audio 15,000 2,000 3,000 100 0.198
Jester 9,000 1,000 4,116 100 0.610
Netflix 15,000 2,000 3,000 100 0.541
MSWeb 29,441 3,270 5,000 294 0.010
Book 8,700 1,159 1,739 500 0.016
WebKB 2,803 558 838 839 0.063
Reuters-52 6,532 1,028 1,540 889 0.037
20 Newsgroups 11,293 3,764 3.764 910 0.049

5.2 Methods

To evaluate the accuracy of ACMN, we compared it to
four state-of-the-art algorithms, two for learning Markov
networks and two for learning other forms of tractable
graphical models. Our MN baselines are GSSL [15] and
L1-regularized logistic regression (L1) [24], which have
shown good performance on these datasets in previous
work. Our two tractable baselines are a recent method for
learning latent tree models (LTM) [8] and the LearnAC
algorithm [19]. We refer to LearnAC as ACBN since,
like ACMN, it learns an AC and graphical model through
greedy combinatorial search, but it searches through BN
structures rather than MNs. The objective function of
GSSL and L1 is pseudo log-likelihood while ACMN,
ACBN, and LTM optimize log-likelihood.2

For all baseline methods, we used publicly available code
and replicated recommended tuning procedures as closely

2Other natural baselines would be LEM [14] and SPNs [23].
However, the LEM code is unavailable, due to a broken library
dependency, and previous SPN learning methods assume a two-
dimensional structure not present in these datasets.

as possible. For the tractable models (ACMN, ACBN,
LTM) all options and parameters were tuned to maximize
log-likelihood on the validation set; for GSSL and L1, the
pseudo-likelihood of the validation set was used instead.

For GSSL, we tried generated feature sizes of 0.5, 1, 2,
and 5 million; pruning thresholds of 1, 5, and 10; Gaussian
standard deviations of 0.1, 0.5, and 1; and L1 priors of 1,
5, and 10, for a total of 108 configurations. We used the
original authors’ implementation of GSSL 3 to select the
features and the Libra toolkit4 to learn weights, as done in
the original paper [15]. To learn MNs using L1, we used
the Libra toolkit to learn the logistic regression distribu-
tions and convert them to an MN with DN2MN [20]. We
used L1 prior values of 0.1, 0.5, 1, 2, 5, 10, 15, and 20. For
ACBN, we used aclearnstruct from the Libra toolkit with
split penalties of 1, 5, and 10 and 0.1, 0.5, 1, and 2 million
maximum edges, resulting in 12 different configurations.
We used the same set of configurations for ACMN as well.
For LTM, we ran the authors’ code5 with its default EM
configuration to create latent tree models using four differ-
ent methods that they provided: CLRG, CLNJ, regCLRG
and regCLNJ.

Table 2: Log-likelihood comparison
Dataset ACMN ACBN LTM
NLTCS -6.01 -6.02 -6.49
MSNBC -6.04 -6.04 -6.52
KDDCup 2000 -2.15 -2.16 -2.18
Plants -12.89 -12.85 -16.39
Audio -40.32 -41.13 -41.90
Jester -53.35 -54.43 -55.17
Netflix -57.26 -57.75 -58.53
MSWeb -9.77 -9.81 -10.21
Book -35.62 -36.02 -34.22
WebKB -161.30 -159.85 -156.84
Reuters-52 -89.54 -89.27 -91.23
20 Newsgroup -159.56 -159.65 -156.77

To evaluate the effectiveness of each method at answer-
ing queries, we used the test set to generate proba-
bilistic queries with varying amounts of evidence, rang-
ing from 90% to 10% of the variables in the domain.
The evidence variables were randomly selected separately
for each test query. All non-evidence variables were
query variables. For LTM, ACBN, and ACMN, we com-
puted the exact conditional log-likelihood (CLL) of the
query variables given the evidence (logP (X = x|E =
e)). For L1 and GSSL, we computed the conditional
marginal log-likelihood (CMLL) instead, a popular al-
ternative when rare joint probabilities are hard to esti-
mate [16, 10, 17, 15]. CMLL is similar to CLL, but the
log-likelihood of the query variables is computed using

3http://dtai.cs.kuleuven.be/ml/systems/gssl
4The open-source Libra toolkit is available online at

http://libra.cs.uoregon.edu.
5http://people.csail.mit.edu/myungjin/latentTree.html
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Figure 3: Normalized CLL and CMLL vs. fraction of query variables. CLL is reported for all tractable models (ACMN,
LTM, ACBN) while CMLL is reported for the rest.

their conditional marginals rather than their joint probabil-
ity:

∑
i logP (Xi = xi|E = e). Marginals were computed

by running Gibbs sampling with 100 burn-in and 1000 sam-
pling iterations; results using belief propagation were sim-
ilar. To make the results with different amounts of evi-
dence more comparable, we divided the CLL and CMLL
by the number of query variables to obtain normalized CLL
(NCLL) and normalized CMLL (NCMLL), respectively.

We ran all processes, including learning, tuning, and test-
ing, on an Intel(R) Xeon(R) CPU X5650@2.67GHz.

5.3 Results

Table 2 shows the log-likelihoods of LTM, ACBN, and
ACMN on each of the 12 datasets. (Computing log-
likelihoods for GSSL or L1 is intractable.) ACMN is the
most accurate algorithm on 6 of the 12 datasets, beating
ACBN on 8 (plus 1 tie) and LTM on 9.

Since ACMN and ACBN often have very similar log-
likelihoods, we wanted to determine whether or not their
actual distributions were similar as well. We did this by
generating samples from the ACBN models to estimate the
KL divergence between the ACBN and ACMN models.

Table 3: Comparison of BN and MN ACs.
Dataset ∆LL KLD
NLTCS 0.01 0.08
MSNBC 0.00 0.02
KDDCup 2000 0.01 0.08
Plants 0.04 1.43
Audio 0.81 2.46
Jester 1.08 3.14
Netflix 0.49 2.57
MSWeb 1.45 0.56
Book 0.09 3.73
WebKB 1.45 14.57
Reuters-52 0.27 6.98
20 Newsgroups 0.09 10.13

Our results are in Table 3. The results demonstrate that
the KL divergence between the two (KLD) is often much
larger than their difference in log-likelihood on the test data
(∆LL), suggesting that their distributions are indeed dif-
ferent. The ACs learned by ACMN and ACBN also have
different topological properties. For example, on MSNBC,
the AC learned by ACBN has 167k nodes, 349k edges, and
5.4k features, while ACMN’s has 952k nodes, 2.0 million
edges, and 7.6k features.
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Figure 4: Query time for different percentages of query variables

Figure 3 shows NCMLL and NCLL values for each dataset
with different fractions of query variables. GSSL and L1
more or less follow the same trend in all datasets. They
perform well when there are few query variables (and a
lot of evidence), but their performance quickly degrades
with more query variables and less evidence. This trend
is consistent with the properties of optimizing the pseudo-
likelihood objective, which is suitable for queries with a
small number of variable conditioned on a large amount of
evidence. In high dimensional datasets such as Reuters-52,
WebKB, Book, and 20-Newsgroups, the very large number
of query variables exacerbate the condition by preventing
the Gibbs sampler from converging in the given number of
iterations. Increasing the number of iterations might lead
to improved performance, but Gibbs sampling is already
quite slow on these domains, taking over 9 days for GSSL
to compute the queries for 20 Newsgroups conditioned on
20 percent of the variables. When the queries are condi-
tioned on only 10 percent of variables, the query time for
the whole dataset goes up to 15 days.

ACMN, ACBN, and LTM, on the other hand, are less sen-
sitive to the number of query variables, since they opti-
mize log-likelihood and can perform exact inference. LTM
shows better performance on 20-Newsgroups, WebKB,
and Book, the same datasets where it has the largest log-
likelihood. For the most part, ACMN dominates ACBN; in
the few cases where ACBN has higher NCLL, the differ-
ence is very small.

Finally, we measured the query time of each method on
each dataset, and show the result for three representative
datasets in Figure 4. Note that the Y-axis is on a log-scale.
Among these algorithms, LTM is considerably faster than
the others because the LTM models can be represented as
ACs with relatively few edges. For example, the LTM
model for Book can be expressed as an AC with 1428 edges
while the ACs learned with ACMN and ACBN each had
over 1 million edges. The ACMN and ACBN inference
times could be reduced somewhat by lowering the maxi-
mum number of allowed edges, although this would also
reduce accuracy by a very small amount. Even so, the rela-

tively large circuits selected by ACMN and ACBN are still
more efficient than running Gibbs sampling in L1 or GSSL
models, especially when there is less evidence. If Gibbs
sampling were run for longer to obtain higher accuracy,
then L1 and GSSL would be even further behind.

6 CONCLUSION

Overall, ACMN is less accurate than pseudo-likelihood
based methods when there is a large amount of evi-
dence available, but easily dominates them in both in-
ference speed and accuracy when there is less evidence
available. Compared to other tractable graphical models,
ACMN is more accurate a majority of the time on these
datasets. Therefore, ACMN is a excellent choice for appli-
cations that require reliable speed and accuracy with lesser
amounts of evidence.

The biggest downside to ACMN is its high computational
complexity. Even with our optimizations, ACMN remains
significantly slower than the other learning algorithms. An
important area for future work is to explore how to make it
more efficient. One possibility is to restrict ACMN to a set
of candidate features found by a separate, faster algorithm
such as GSSL. By ruling out many features before they are
scored, ACMN might be sped up significantly. Another op-
tion is to apply L1 regularization and prune features whose
weights drop to zero. If learning could be made sufficiently
efficient, then ACs could be used to learn conditional ran-
dom fields (CRFs) as well. The challenge of CRFs is that
inference must be done once for each evidence configura-
tion in the training data, which could make learning orders
of magnitude slower.

A final direction is learning ACs with latent variables.
Ideally, this could give ACMN the advantages of LTM
on datasets where clustering structure was present, while
maintaining the flexibility of the unrestricted conjunctive
feature representation.
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