
On the Hardness of Evading
Combinations of Linear Classifiers

David Stevens
Dept. of Computer and Information Science

University of Oregon
Eugene, OR 97403

dstevens@cs.uoregon.edu

Daniel Lowd
Dept. of Computer and Information Science

University of Oregon
Eugene, OR 97403

lowd@cs.uoregon.edu

ABSTRACT
An increasing number of machine learning applications in-
volve detecting the malicious behavior of an attacker who
wishes to avoid detection. In such domains, attackers mod-
ify their behavior to evade the classifier while accomplishing
their goals as efficiently as possible. The attackers typically
do not know the exact classifier parameters, but they may
be able to evade it by observing the classifier’s behavior on
test instances that they construct. For example, spammers
may learn the most effective ways to modify their spams
by sending test emails to accounts they control. This prob-
lem setting has been formally analyzed for linear classifiers
with discrete features and convex-inducing classifiers with
continuous features, but never for non-linear classifiers with
discrete features. In this paper, we extend previous ACRE
learning results to convex polytopes representing unions or
intersections of linear classifiers. We prove that exponen-
tially many queries are required in the worst case, but that
when the features used by the component classifiers are dis-
joint, previous attacks on linear classifiers can be adapted
to efficiently attack them. In experiments, we further ana-
lyze the cost and number of queries required to attack dif-
ferent types of classifiers. These results move us closer to
a comprehensive understanding of the relative vulnerability
of different types of classifiers to malicious adversaries.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Concept Learn-
ing ; F.2 [Analysis of Algorithms and Problem Com-
plexity]: Miscellaneous

Keywords
Adversarial machine learning; spam

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AISec’13, November 4, 2013, Berlin, Germany.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2488-5/13/11 ...$15.00.
http://dx.doi.org/10.1145/2517312.2517318

1. INTRODUCTION
In a growing number of adversarial domains, including

many kinds of spam and fraud, machine learning is being
used to detect malicious behavior [5, 6, 8, 18, 17, 14, 13, 3].
In such domains, criminals have a strong incentive to mod-
ify their behavior to evade detection. As criminals adapt,
system designers respond by updating their classifiers, lead-
ing to a never-ending arms race. In order to get the upper
hand, we need a better understanding of these adversarial
dynamics so that we can understand the vulnerabilities of
current approaches and design more robust methods in the
future.

In this paper, we look at the theoretical and practical dif-
ficulty of evading certain types of non-linear classifiers with
discrete feature spaces. To successfully evade a classifier,
the attacker must find an instance that is classified as neg-
ative (innocent) and accomplishes the attacker’s goal, such
as an effective spam email that gets past a spam filter. In
many cases, the attacker does not know the exact classifier,
but can receive some feedback through interaction. For ex-
ample, spammers may send “test emails” to accounts they
control to see if their candidate spams would be blocked.
Similarly, creators of comment spam can see if their post-
ings are flagged or deleted, criminals on Twitter can see if
their accounts are banned, and web spammers can query
search engines searches to see the rankings of their own web
pages. However, our focus is not on domain-specific heuris-
tics but on general-purpose attacks which can be applied to
a wide variety of domains.

We perform our analysis within the framework of adver-
sarial classifier reverse engineering (ACRE) [10]. We as-
sume that the adversary’s preferences can be described by
a cost function, where lower costs represent instances that
are more desirable, such as more effective spam emails. A
concept class is said to be ACRE learnable for a given cost
function if an attacker can find the lowest-cost negatively-
classified instance using only a polynomial number of mem-
bership queries. If an attacker can find an instance within
a factor k of optimal with a polynomial number of queries,
then the concept class is said to be ACRE k-learnable. Pre-
vious work has shown that convex-inducing classifiers are
ACRE learnable (to arbitrary precision) in continuous fea-
ture spaces when the cost function is an L1 distance [12], and
linear classifiers are ACRE 2-learnable with binary-valued
features when the cost function is Hamming distance rela-
tive to some “ideal” instance [10]. However, there have been
no results on learning non-linear classifiers in discrete feature
spaces, except for very limited Boolean formulae [10].



The discrete case is much harder than the continuous case
because the adversary can only modify each dimension by
discrete steps, and cannot perform arbitrary-precision line
searches. This reduces the set of points that can be queried
from all of Rn to merely the points on an n-dimension hy-
percube, assuming n binary-valued features. The discrete
case is also arguably more realistic, because many classifiers
use discrete attributes such as the presence or absence of a
word or the number of times it appears, and these quanti-
ties cannot take on fractional values. Even truly continuous
features, such as network latency, are often discretized by
rounding to some precision, such as milliseconds.

In this initial work, we focus on non-linear classifiers where
either the positive or negative class is given by a convex poly-
tope. Since a convex polytope can be defined as an intersec-
tion of half-spaces, this is equivalent to an ensemble of linear
classifiers where the aggregation function is AND (for a con-
vex positive class) or OR (for a convex negative class). For
example, consider a spam filter that has a sequence of indi-
vidual linear classifiers that recognize different types of spam
or recognize spam based on different types of features. Here,
the negative class is a convex polytope, since such instances
must be labeled as negative by every one of the component
linear classifiers. In the limit as the number of component
classifiers grows, these polytopes can approximate any con-
vex set, making this a very general and powerful concept
class. This class also has practical, real-world relevance: for
example, Google uses a similar ensemble to label malicious
advertisements [16].

We begin by showing hardness results that demonstrate
that this set cannot be attacked efficiently in the worst case.
We then consider the restriction where the linear classifiers
operate on disjoint sets of features. Here we are able to
demonstrate attacks that are as efficient as attacking a sin-
gle linear classifier when the positive class is convex, and less
efficient but still polynomial time when the negative class is
convex. After proving these theoretical results, we demon-
strate the efficiency of our methods on non-linear classifiers
trained from spam data.

2. ACRE LEARNING
We begin by briefly reviewing the definitions of ACRE

learning, defining the concept classes of interest, and pre-
senting previous results on linear classifiers with binary-
valued features. This will serve as the foundation for our
new results on non-linear classifiers with binary-valued fea-
tures. For further details on many of these topics, see Lowd
and Meek [10].

The instance space, X , is the set of all possible inputs to
the classifier. For this paper, we assume that the instance
space consists of n-dimensional binary-valued feature vec-
tors, x = (x1, x2, . . . , xn). For example, in spam filtering,
the ith feature could represent the presence (xi = 1) or ab-
sence (xi = 0) of the ith word used by the filter.

For convenience, we use the symbol ⊕ as a feature-wise
XOR operator with the following notation:

(x⊕ i) = (x1, x2, . . . ,¬xi, . . . , xn)

In other words, the ith feature value in the resulting instance
has been “toggled” from 0 to 1 or 1 to 0, and all other values
remain identical to those in x. This operation can also be
used with a set of feature indices, e.g., (x⊕ {i, j, k}), which
toggles all features in the set.

A classifier, c(x), is a function from the instance space to
the labels ‘−’ and ‘+’, indicating the negative/innocent and
positive/malicious classes, respectively. A concept class is a
set of classifiers C. For this paper, one important concept
class is linear classifiers, in which the label is determined by
a weighted sum of the features:

c(x) =

{
+ if w · x ≥ T

− otherwise

where w is a vector of real-valued weights and T is a real-
valued threshold.

An adversarial cost function, a(x), is a function from the
instance space X to the non-negative reals R+ which defines
the adversary’s relative preferences over the instance space.
While many different cost functions are possible, for this
paper we assume that it is the Hamming distance relative
to the adversary’s “ideal” instance, xa:

a(x) =

n∑
i=1

|xi − xa
i |

For a given instance x, we refer to each feature index i for
which xi 6= xA

i as a “change.” Assuming the cost function is
clear from context, we use Cx to refer to the set of all such
changes:

Cx = {i | xi 6= xa
i }

Thus, we can equivalently define a Hamming distance cost
function as the number of changes: a(x) = |Cx|.

As a concrete example, suppose a spammer wishes to send
the most effective spam email that will get past a particular
filter. The spammer’s ideal spam message is xa, which has a
cost of zero. Other messages have a cost equal to the number
of words added or removed from xa, since emails that are
more corrupted are likely to be less effective.

For a given classifier c(x), the minimal adversarial cost
(MAC) is the smallest cost of any negatively classified in-
stance, and an instance of minimal adversarial cost (IMAC)
is any negative instance with this cost. A k-IMAC is a neg-
ative instance with a cost of at most k times the MAC. In a
membership query, the attacker requests the label c(x) for a
chosen instance x. We assume that x may be any instance
in X without restriction. The attacker may use this infor-
mation to plan future queries and eventually find an IMAC
or k-IMAC.

A concept class C is ACRE learnable for a set of cost func-
tions if, for any c ∈ C, an adversary can always find an IMAC
given one negative instance x− and a number of membership
queries that is polynomial in the size of the problem repre-
sentation. The class is ACRE k-learnable if the adversary
can find a k-IMAC with a polynomial number of queries.

Lowd and Meek [10] show that linear classifiers with dis-
crete features are ACRE 2-learnable with a Hamming dis-
tance cost function. They do this constructively by introduc-
ing an algorithm, FindBooleanIMAC, and proving its cor-
rectness. See Algorithm 1 for pseudocode. FindBoolean-
IMAC works by iteratively reducing the cost of a negative
instance. It begins with the provided negative example, x−,
and uses two operations to reduce its cost: removing one
change in the current instance and replacing two changes in
the current instance with one not in the current instance.
Recall that a “change” is simply a feature whose value is dif-
ferent in xa. Each operation reduces the number of changes,



Algorithm 1 FindBooleanIMAC
(
xa,x−

)
(adapted from [10])

y← x−

repeat
yprev ← y
for all f ∈ Cy do

if c(y ⊕ f) = − then
toggle f in y

end if
end for
for all f1 ∈ Cy; f2 ∈ Cy; f3 6∈ Cy do

if c(y ⊕ {f1, f2, f3}) = − then
toggle f1, f2, and f3 in y

end if
end for

until yprev = y
return y

and thus the cost, by one. When neither operation can
be performed without resulting in a positively-classified in-
stance, the algorithm terminates. Lowd and Meek prove
that this instance must have at most twice the optimal cost:
if an instance with less than half the cost existed, then it
would be possible to replace two changes in the suboptimal
instance with one of the changes from the optimal instance.

3. EVADING CONVEX POLYTOPES
While previous results have demonstrated that linear clas-

sifiers are easy to evade, little is known about attacking non-
linear classifiers in discrete feature spaces. Nelson et al. [12]
prove that convex-inducing classifiers in a continuous fea-
ture space are ACRE learnable with an L1 cost function.
However, their results do not generalize to discrete feature
spaces. Continuous spaces are easier than discrete spaces
because the features can be adjusted by arbitrarily large or
small amounts in order to explore the decision boundary of
the classifier. In discrete feature spaces, it is NP-hard to
even determine the sign of a feature weight [10].

We now define an interesting non-linear concept class and
discuss the worst-case hardness of evading these classifiers
in discrete feature spaces. Like Nelson et al. [12], we focus
on classifiers where the set of positive or negative instances
defines a convex set. However, we further restrict this set to
be a convex polytope, which is equivalent to a conjunction
or disjunction of linear classifiers when the positive label is
interpreted as True. The following definitions specify this
more precisely.

Definition A disjunction (or union) of linear classifiers is
an ensemble of linear classifiers in which instances are la-
beled as positive if any component classifier labels it as pos-
itive:

c(x) =

{
+ if ci(x) = + for any i ∈ {1, . . . , C}
− otherwise

where C is the number of component classifiers.

Definition A conjunction (or intersection) of linear clas-
sifier is an ensemble of linear classifiers in which instances
are labeled as positive if all component classifiers label it as

positive:

c(x) =

{
+ if ci(x) = + for all i ∈ {1, . . . , C}
− otherwise

where C is the number of component classifiers.

To demonstrate the connection between these ensembles
and convex polytopes, note that each component linear clas-
sifier defines two half-spaces, one for each class. In a disjunc-
tion of linear classifiers, the positive class is the union of the
positive half-spaces from each component, and the negative
class is the intersection of the negative half-spaces from each
component. Thus, in a disjunction of linear classifiers, the
negative instances are defined by a convex polytope, and in
a conjunction of linear classifiers, the positive instances are
defined by a convex polytope. Since these definitions are
equivalent, we use them interchangeably.

Convex polytopes, or unions and intersections of half-
spaces, are interesting for several reasons. In the limit, con-
vex polytopes can approximate any convex set arbitrarily
well. Thus, methods that work on convex polytopes may
work on other convex-inducing classifiers, such as convex
quadratic classifiers. Unions and intersections of half-spaces
are also a practical way to build real-world classification sys-
tems, as demonstrated by Google’s use of a combination
of linear classifiers to detect malicious advertisements [16].
These types of classifiers are also easier to analyze than ar-
bitrary convex-inducing classifiers.

Biggio et al. [2] have also analyzed the difficulty of evad-
ing combinations of linear classifiers, although they use a
different measure of evasion difficulty. Their results suggest
that combinations of classifiers are harder to attack, which is
consistent with some of our theoretical results below. They
also find that classifier combinations often have lower accu-
racy than a single linear classifier, which is consistent with
our later experimental results.

3.1 Hardness Results for Convex Polytopes
Lowd and Meek [10] prove that even recovering the signs

of features in a linear classifier is NP-Complete when the
features are binary-valued. Since a linear classifier is a spe-
cial case of a convex polytope, this results applies to these
more complicated classifiers as well. However, while they
show that a 2-approximation can be efficiently found in a
linear classifier, we will prove that finding a constant factor
approximation for convex polytopes requires an exponential
number of queries in the worst case. We consider the cases
of a convex negative class (disjunction of linear classifiers)
and convex positive class (conjunction) separately.

Theorem 1. With binary-valued features and Hamming
distance costs, disjunctions of linear classifiers are not ACRE
k-learnable for any constant k.

Proof. We prove this constructively by defining a set of
classifiers for which finding a k-IMAC requires exponentially
many queries.

Partition the set of n features into three sets: F of size
n
2

+ 1, G of size n
2k

, and H of size n
2
− n

2k
− 1. We construct

a set of n
2k

classifiers. In the ith classifier, the weight for

all features in F is − 1
n
2
+1

, the weight for the ith feature

in G is −n
k

, the weight for all other features in G or H is(
n
k
− 1
)
/
(

n
2k
− 1
)
, and the threshold is −1 + 1

n
.



Define xa as xa
i = 0 for all i, x− as x−i = 1 for i ∈ F ,

and x′ as x′i = 1 for i ∈ G. Thus, c(x−) = −, as − 1
n
2
+1
·(

n
2

+ 1
)

= −1, which is less than the threshold of −1 + 1
n

for each of the component classifiers. To show that x′ is
also negative, consider the ith component classifier. The ith
element of G contributes a weight of −n

k
and the other n

2k
−1

elements of G each contribute a weight of
(
n
k
− 1
)
/
(

n
2k
− 1
)
,

for a total weight of −n
k

+ n
k
− 1 = −1, which is less than

the threshold. Since a(x−) = n
2

+ 1 and a(x′) = n
2k

, x− is
not a k-IMAC.

We can describe the negative instances more generally as
follows: Any instance that has at least one feature from
G ∪ H is positive, unless it includes every feature from G
and none from H. This is because every feature in G or H
has a large positive weight in every or almost every com-
ponent classifier. This positive weight more than outweighs
the total contribution of all features in F . Thus, once such
a feature has been added, the only way to satisfy each of
the classifiers is to include its “special” feature from G. If
any such feature is omitted, then at least one of the classi-
fiers will remain positive, leading to a positive class label. If
any extra features from H are added, then there is no way
to counteract this positive weight in all classifiers, so the
instance will always be positive.

To find a negative instance with low cost, the attacker
must determine which features are in G. However, each
membership query provides very little information about G
since only one non-empty subset of G ∪ H can ever result
in a negative instance. Thus, G can only be determined by
brute-force, which requires

(
n/2−1
n/2k

)
queries. Basic proper-

ties and lower bounds of combinations allow us to conclude:(
n/2−1
n/2k

)
>
(

n/3
n/2k

)
≥
(
2k
3

)n/2k
, which is exponential in n.

Our proof relies on creating a classifier with n/2k compo-
nents where a feature that has a positive sign in one compo-
nent may have a negative sign in another. Thus, an inter-
esting question is: What hardness results can be achieved
with only a small number of classifiers and where features
have consistent signs? While this question remains open for
convex negative instances, we can show such a result when
the positive class is convex.

Theorem 2. With binary-valued features and Hamming
distance costs, conjunctions of linear classifiers are not ACRE
k-learnable for any constant k.

Proof. When the positive set is a conjunction, then the
adversary needs to find an instance that is classified as neg-
ative side by just one of the component linear classifiers.
Suppose that there are two components, c1 and c2. In c1,
the weight of the first n

2
features is −2, the weight of the

next n
4k

features is −4k, the weight of the last n
2
− n

4k
features

is +2n, and the threshold is −n + 1.1 Thus, c1 will classify
an instance as negative if it has all of the n

2
low-weight fea-

tures, all of the n
4k

higher-weight features, or an appropriate
combination of the two sets. In c2, the weight of the first
n
2

features is −4, the weight of all other features is 0, and
the threshold is −n−1. Thus, c2 will classify an instance as
negative if it has at least n

4
+1 of the n

2
low-weight features.

Let xa
i = 0 for all i. Thus, the optimal evasion cost for c1

1If necessary, we can reorder all of the feature indices ran-
domly to ensure that the adversary does not exploit any
ordering properties of these feature indices.

is n
4k

but the optimal evasion cost for the c2 is n
4

+ 1. By

choosing x− so that x−i = 1 for i = 1 . . . n
2

, x− is marked as
negative by both components.

To find an instance with a cost lower than n
4

+ 1, the at-
tacker must find the n

4k
features that have the higher magni-

tude weights in c1. To determine that one of these features
has a large weight in the c1, the attacker must find at least
one instance y such that c1(y) = − and c2(y) = +. If all
the instances queried are classified as negative by c2, then
the label from c1 has no effect on the overall conjunction.
If all instances queried are classified as positive by c1, then
there is no information to differentiate any of the features
used by the c1.

To be positive in c2, such a y must have at most n
4

of the
low-weight features. In c1, the total weight of these is −n

2
or more. Therefore, to be classified as negative y must also
have at least n

8k
of the higher-weight features and none of

the positively-weighted features. Since the adversary does
not know which are which, it must guess a set of at least n

8k
“good” features that includes none of the bad ones. There
is no advantage to choosing a set of more than n

8k
features,

since a larger fraction of these will contain at least one bad
feature, leading to a positive instance. There are

(
n/2
n/8k

)
ways

to choose a candidate set of n
8k

features, and
(
n/4k
n/8k

)
of those

possible sets contain entirely “good” features. Using upper
and lower bounds on numbers of combinations, the number
of possible sets for every “good” set is at least ( 2k

e
)n/8k,

which is exponential in n. Thus, the adversary must issue
an exponential number of queries before it can be sure to
find the features needed to construct a low-cost negative
instance.

4. DISJOINT FEATURES
Since convex polytope classifiers are hard to evade in the

worst-case, we now consider a restricted subclass of con-
vex polytopes and prove that this concept class is ACRE
2-learnable under Hamming distance cost functions.

Definition A disjoint conjunction (or disjunction) of linear
classifiers is a conjunction (or disjunction) of linear classi-
fiers in which the weight for the ith feature is non-zero in at
most one of the component linear classifiers.

We use Fi to denote the set of all features that have non-
zero weight in the ith component linear classifier.

This is a significant restriction, but not an implausible
one. An email system may have one component classi-
fier trained on plain-text subject and body content, one on
HTML content, and perhaps another that looks at images.
An email may have to pass one or all of these filters to
avoid be labeled as spam. Another example is multi-factor
biometric authentication, in which separate classifiers could
analyze a person’s fingerprint, face, and voice. In general,
when combining information from classifiers trained to look
at very different aspects of an object, these classifiers may
often use entirely separate sets of features.

We now prove that these classes are vulnerable by extend-
ing FindBooleanIMAC (Algorithm 1) to work both for a
convex negative class and a convex positive class.

4.1 Evading Disjoint Disjunctions
In this case, the class label is a disjunction of the results

of each linear classifier. Thus, to be labeled as negative, the



adversary must create an instance that is labeled as negative
by each linear classifier. We prove that this concept class
is ACRE 2-learnable by showing that FindBooleanIMAC
always finds a 2-IMAC without requiring any modifications.

Theorem 3. With binary-valued features and Hamming
distance costs, disjoint disjunctions of linear classifiers are
ACRE 2-learnable.

Proof. For a disjunction, the negative instances lie in
the intersection of all negative half-spaces. Thus, the at-
tacker must evade every component linear classifier simul-
taneously. Since their features are disjoint, no change used
to evade one component has any affect on the other compo-
nents. Therefore, the evasion subproblems are independent,
and the minimum cost to evade the disjunction is the sum
of the minimum cost to evade each component.

Let y be an instance returned from running FindBoolean-
IMAC on a disjoint disjunction of linear classifiers. It fol-
lows from the termination conditions of FindBooleanI-
MAC that no individual change can be removed from Cy

and no pair of changes can be replaced with one not in Cy

without resulting in a positive instance. Since Fi is a sub-
set of the feature space, it also follows that no individual
change in Cy ∩ Fi can be removed and no pair of changes
in Cy ∩ Fi can be replaced by one in Fi − Cy without re-
sulting in a positive instance according to the ith classifier
ci (which is the only classifier affected by these changes).
Thus, the restriction of y to the features in Fi satisfies the
termination conditions of running FindBooleanIMAC on
ci. Since FindBooleanIMAC is guaranteed to find a 2-
IMAC for linear classifiers, |Cy ∩Fi| must be at most twice
the minimal evasion cost for ci. Since each feature subset of
y evades the corresponding component with at most twice
the minimum cost, the sum of these costs must be at most
twice the total minimum cost.

4.2 Evading Disjoint Conjunctions
In this case, the class label is a conjunction of the re-

sults of each linear classifier. In contrast to the previous
case, this means the adversary need only create an instance
that is labeled as negative by one component linear classi-
fier. Therefore, the minimum cost to evade a conjunction is
the minimum cost to evade any one of its component clas-
sifiers. However, in this case it is not enough to just find a
negative instance and run FindBooleanIMAC. The reason
for this is twofold. Firstly, a negative instance is only guar-
anteed to be negative in one of the linear classifiers. Thus,
FindBooleanIMAC may not find the boundary of any of
the classifiers that do not initially classify the instance as
negative. Second, while FindBooleanIMAC will provide
a 2-IMAC for some component, this component may have
a much higher evasion cost than the lowest one. Therefore
a more careful exploration is required and it is necessary to
have enough negative instances so that each linear classifier
classifies at least one instance as negative. The following
algorithm takes an adversarial instance xa and this mini-
mal set of innocent examples X− and, using a variant of
FindBooleanIMAC as a subroutine, finds a collection of
instances that evade every component classifier with at most
twice the optimal cost.

Our method for efficiently evading disjoint conjunctions of
linear classifiers is shown in Algorithm 2. FindBoolean-
ConjunctionIMAC repeatedly calls a modified version of

Algorithm 2 FindBooleanConjunctionIMAC
(
xa, X−

)
R← ∅; S ← ∅
for all x− ∈ X− do

for all f ∈ Cx− ∩R do
toggle f in x−

end for
while c(x−) = − do

y← FindBooleanIMAC-R
(
xa,x−, R

)
add y to the solution set S
add Cy to the removed features set R
for all f ∈ Cx− ∩ Cy do

toggle f in x−

end for
end while

end for
return the lowest-cost instance in S

FindBooleanIMAC to find negative instances that evade
some component classifier with at most twice the optimal
cost. The modified subroutine, FindBooleanIMAC-R, ac-
cepts a set of features R that must not be modified. As each
negative instance is found, its features are added to R and
removed from any initial negative instances in order to force
the algorithm to find at least one instance that evades each
component classifier. By taking the minimum cost of these,
we obtain a cost that is at most twice optimal. We formalize
these arguments in the proof of the following theorem.

Theorem 4. With binary-valued features and Hamming
distance costs, disjoint conjunctions of linear classifiers are
ACRE 2-learnable when given a negative instance for each
component.

Proof. The minimum cost of evading the conjunction is
the minimum cost of evading any one of its component clas-
sifiers. Thus, it suffices for the attacker to find a negative
instance for each component with at most twice the mini-
mum cost. The instance with smallest cost in this set must
have at most twice the minimum overall cost.

We now prove that the set S constructed by FindBoolean-
ConjunctionIMAC contains a 2-IMAC for each of the com-
ponent classifiers. Consider the instance y returned from
FindBooleanIMAC-R in one iteration of the while loop.
Since the subroutine only returns negative instances, y must
be negative in at least one classifier, ci. Any changes in Cy

that do not pertain to the ith classifier can be removed with-
out affecting the label of y. Since the subroutine removes
all such changes before terminating, Cy ⊂ Fi.

The only way to add features to R is for them to first
be in some Cy. Since the features are disjoint, R will only
contain features from Fi after finding some instance y that
is negative in ci and adding it to S.

If ci(y) = − and R ∩ Fi = ∅, then FindBooleanIMAC-
R considered all possible modifications relevant to ci so y
is a 2-IMAC for the linear classifier ci. If R ∩ Fi is non-
empty, then at least one instance that is negative in ci must
already be in S. The first of these instances is a 2-IMAC,
since R ∩ Fi was empty when it was originally found.

It remains to be shown that we will find a 2-IMAC for ev-
ery component. Since x− has no changes in R and the sub-
routine is not allowed to add any change in R, Cy must have
no change in R. Cy is non-empty and disjoint from R, so R



grows in each iteration. As long as some other classifier cj re-
mains for which there is no 2-IMAC in S, there must be some
remaining x− ∈ X− such that cj(x

−) = − and R ∩ Fj re-
mains empty. As R grows, the number of remaining features
for other classifiers decreases until FindBooleanIMAC-R
can no longer find negative instances for any other classifier
and must therefore eventually find a 2-IMAC for cj .

Therefore, FindBooleanConjunctionIMAC finds a 2-
IMAC for every component, and thus returns a 2-IMAC for
the overall conjunction.

5. EXPERIMENTAL RESULTS
While we have shown that optimally evading disjoint con-

junctions and disjunctions of classifiers can be approximated
with a polynomial number of queries, we are also interested
in how expensive this is in practice. Continuing the theme
of email spam, we created classifiers trained on email data
and had an adversary attempt to deceive these classifiers
with minimal changes to their spam instances. The adver-
sary may only interact with a classifier by querying it with
an email instance to determine if it is classified as spam or
non-spam. This could be done by creating two email ac-
counts, sending messages from one to the other, and seeing
how the message is classified when it is received. Rather
than assuming that the adversary knows the entire feature
space, we restrict the classifier to a plausibly guessable sub-
set. We examine attacking both disjunction and conjunction
classifiers, as well as baseline linear classifiers.

5.1 Classifier Configurations
All of our experiments were written in Python, using the

Scikit-learn learning framework [15] to create and train clas-
sifiers. We trained Logistic Regression, Linear Support Vec-
tor Machine (SVM) and Näıve Bayes classifiers on the 2005
TREC public spam corpus [4], which is comprised of 92,189
labeled email messages. For simplicity, we restrict features
considered to words that appear in at least ten documents
and ignore common English stop words. To create disjoint
linear classifiers to compose into our disjunction and con-
junction classifiers, we split the feature space first three ways
and then five ways to have classifiers composed of three or
five linear classifiers. We achieve this split first by random
partition and again by training a linear SVM classifier on
all of the features and then using the value of the weights in
the classifier’s decision function to partition the features into
sets ranging from the most “spammy” to most “hammy” fea-
tures. This was partially inspired by Jorgensen et al. [9], who
suggest using separate classifiers on the spammy, hammy,
and neutral features in order to avoid “good word” attacks.
These many combinations gave us a wide variety of classi-
fiers for our experiments. For comparison purposes, we also
train a linear classifier of each type using the entire feature
set. Our methodology for training classifiers is intentionally
simple, since our goal is to analyze the attack algorithms,
not to develop the best spam filters.

To make the classifiers roughly comparable, we increase
or decrease the bias of each component linear classifier by
a constant value so that the false negative rate (fraction of
spam classified as innocent) is 10%. This makes all of the
classifiers equally effective at blocking spam, although their
false positive rates (fraction of innocent email classified as
spam) are different. Other previous work has used a fixed
false positive rate [11, 10, 1]. We chose to fix the false neg-

Best FP rate (%) Mean FP rate (%)
LR NB SVM LR NB SVM

Linear 0.04 0.18 0.07 0.04 0.18 0.07
Conj. 1.20 3.93 2.19 5.21 6.87 9.97
Disj. 2.90 5.41 2.84 4.85 12.90 6.75

Table 1: Best and geometric mean false positive rate for
each base classifier type with each ensemble method.

ative rate rather than the false positive rate because we are
interested in how attack difficulty depends on classifier type,
not how it depends on the base effectiveness of each classi-
fier.

See Table 1 for a basic comparison of the false positive
rates of the different types of classifiers. Both of the ensem-
ble methods performed worse than the simple linear classi-
fier with all three classifier types, which suggests that these
classifiers are not especially accurate on this domain. This
is consistent with the results of Biggio et al. [2], who found
that multiple classifier systems were usually less accurate
than single classifiers. In our experiments, combinations of
3 classifiers were more accurate than 5, and partitioning fea-
tures by their relative spamminess or hamminess was usually
more accurate than the random partition.

5.2 Attack Configuration
Once our classifiers have been trained, we then run our ad-

versarial algorithms as described above, as well as the Find-
BooleanIMAC algorithm. We perform the same optimiza-
tions used in [10] when performing the FindBooleanIMAC
subroutine, except that we considered swapping all pairs of
changes rather than only adjacent pairs. This is necessary
with multiple classifiers because two consecutive changes in a
list might pertain to different components. As an additional
optimization for the conjunction attack, when we find an
instance y that evades one of the component classifiers, we
search for other features from the same component to add
to R, which accelerates convergence.

Our adversarial and negative instance(s) are chosen ran-
domly from the corpus. Because it is not realistic for an
adversary to have complete knowledge of the classifier’s fea-
ture space, we instead restrict the set of changeable features
to one of three sets. The first is the set of all words in any
of the ispell dictionaries (21,515 words). The other two are
much smaller: the 1,000 most common words in the training
data (excluding stop words) and 1,000 words selected ran-
domly from the training data. While these technically re-
quire additional knowledge of the classifier, we believe these
sets would be very easy to approximate using public email
data or other text corpora. In addition to the features in the
given set, the attacker is also allowed to include any feature
present in the adversarial or negative instance(s).

In preliminary experiments, we found that the adversary’s
task was often much too easy: many spams could be dis-
guised with a single change, and many others could be dis-
guised with only two or three changes. When the opti-
mal number of changes is some small constant k, then an
optimal attack can be found by brute-force search in just
O(nk) queries. It is only as the required number of changes
grows larger that our polynomial-time algorithms are neces-
sary. Therefore, to better analyze our algorithms, we artifi-
cially increase the “spamminess” of each email. We do this



by changing 100 randomly-selected features, each of which
makes the email look more like spam in one of the compo-
nent classifiers.

We run the attack 100 times for each configuration of clas-
sifiers and features, resulting in around 9,200 runs overall.

5.3 Results
In this evaluation, we are primarily interested in three

things: the vulnerability of each classifier, the cost of each
attack attack relative to the optimal attack, and the overall
complexity of the attacks.2

Vulnerability
Before discussing the performance of our attacks, we first ex-
amine how vulnerable these classification systems actually
are. Figure 1 shows the optimal costs for defeating each clas-
sifier type. For example, Figure 1a shows the distribution
of the optimal costs for defeating the classifiers composed of
logistic regression classifiers, as well as the costs for defeat-
ing a single logistic regression classifier. As we may expect
due to the similarity in the attack algorithm, the disjunction
and linear attack tend to be similar in the size of the optimal
disguise, with a very similar distribution in the Näıve Bayes
case, and the linear classifier being easier to avoid in the
other two cases. The actual distribution varies based on the
type of linear classifier used, with Logistic Regression often
not needing more than ten changes and Näıve Bayes needing
40 or more (and sometimes as many as 100). The SVM clas-
sifiers see the largest variance, and lie somewhere between
the other two. These values are not surprising, as Logistic
Regression and SVM tend to assign large weights to a few
features, which the adversary can modify to more efficiently
evade the classifiers. In sharp contrast to the Disjunction
and Linear classifiers, the Conjunction classifier was defeat-
able with less than ten changes at least 90% of the time in
every case. These results show while the disjunctive clas-
sifiers may sometimes be harder to defeat than the linear
classifiers, the conjunctive ones tend to be much easier. In-
tuitively, this makes sense, as in the former case, the adver-
sary must trick every linear classifier, while in the latter, a
single defeat is sufficient. One of the variables under consid-
eration was the way in which the features were partitioned
between classifiers. However, both partitions we considered
resulted in nearly identical distributions.

Approximation Quality
Our algorithms for attacking each classifier type is guaran-
teed to be within a factor of two of optimal. However, it is
important to note that this is only if the exact feature space
is known. If working with an approximated feature space, as
we do in our experiments, the concept of “optimal” must be
restricted to only consider the features available to the at-
tacker. Figure 2 illustrates the relative costs of our attacks,
both compared to the restricted vocabulary and the true op-
timal cost. As expected, we never go over a factor of two
in the restricted case. More interestingly, over 90% of the
time, the algorithms are able to get within a factor of two
of the true optimal, despite only having an approximation
of the feature space. It is sometimes as bad as four times
optimal, but the frequency of costs decrease exponentially
as they get higher.
2All figures in this section were created with the Matplotlib
Python package [7].

To evaluate the dependence of the algorithm on the vocab-
ulary used, we now split Figure 2b by vocabulary, as shown
in in Figure 2c. As expected, the much larger dictionary
set performs the best – almost always within a factor of 1.5.
However, it is interesting to note that the random set is not
much worse than the set of the top features, with all of the
sets rarely going over a ratio of 2. This shows that a much
smaller feature set can be selected with very little assumed
information of the classifier without too much of a hit in
approximation quality.

Complexity
The last major issue to evaluate is that of complexity. The
bottleneck operation in most adversarial scenarios will be
query time (e.g., the time it takes to send and email and
have the mail server label it). As we just showed, a better
approximation can be achieved by increasing the size of the
feature set the adversary may consider. However, increasing
this size will also lead to a larger number of queries. There-
fore, we wish to evaluate the complexity of the attack by
looking at the average number of queries as a function of
the size of the considered feature set.

Figure 3 shows the number of queries as a function of the
optimal number of changes (restricted to the given vocab-
ulary). Again, we see that the conjunction classifier is eas-
ier to defeat than the others, while the disjunction behaves
much like the linear classifier. Since these log-log plots dis-
play a nearly constant slope, this suggests that the number
of queries is a polynomial function of the number of required
changes. The dependence appears to be approximately lin-
ear for the conjunction and quadratic for the disjunction.
Additionally, the full dictionary results only differ from that
of the much smaller vocabularies by a constant factor of
approximately 20. This suggests that the complexity only
increases linearly with the size of the vocabulary used. Most
of the time, using an entire dictionary will not be possible.
However, in the previous section we showed that it is easy to
guess a much smaller set that leads to very effective results.
This linear relationship means that the attacker can easily
find an attack that achieves the approximation quality they
desire within an acceptable number of queries.

These relationships make sense based on the structure
of the algorithm. Before converging, FindBooleanIMAC
must verify that no possible change could replace any two
existing changes in the current instance. The number of pos-
sible changes is approximately the number of features, and
the number of existing changes is approximately the opti-
mal cost, leading to a complexity of O(nm2) where m is the
optimal cost.

The number of queries used might render these specific
tasks impractical for a real-world adversary. However, our
experimental procedure of adding extra spammy features to
every email makes the problem artificially harder. On un-
modified spam, the optimal cost is lower and so the number
of queries is much smaller. Furthermore, these algorithms
were designed to guarantee a nearly optimal attack against
any classifier, which is a much more general problem than
most adversaries face. In practice, an attacker is free to stop
these algorithms early and use the best attack found so far.
Many queries are spent in these algorithms proving that an
attack is nearly optimal. Additionally, many queries might
be spent with only slight improvement. Because of this, the
number of queries can be significantly reduced if the algo-



0 10 20 30 40 50

# Optimal Changes
0.0

0.2

0.4

0.6

0.8

F
re

q
u

e
n

cy

Conjunction
Disjunction
Linear

(a) Logistic Regression

0 20 40 60 80 100

# Optimal Changes
0.0

0.2

0.4

0.6

0.8

F
re

q
u

e
n

cy

Conjunction
Disjunction
Linear

(b) Näıve Bayes

0 5 10 15 20 25 30 35

# Optimal Changes
0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
re

q
u

e
n

cy

Conjunction
Disjunction
Linear

(c) SVM

Figure 1: Optimal cost of defeating each classifier type

1.0 1.2 1.4 1.6 1.8 2.0

# Changes Found / Restricted Optimal # of Changes
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

F
re

q
u

e
n

cy

(a) Optimal on Restricted Vocabulary

1.0 1.5 2.0 2.5 3.0 3.5 4.0

# Changes Found / Optimal # of Changes
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

F
re

q
u

e
n

cy

(b) True Optimal

1.0 1.5 2.0 2.5 3.0 3.5

# Changes found / # Optimal changes
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
re

q
u

e
n

cy

Random 1000
Top 1000
Dictionary

(c) True Optimal, by Attack Vocabulary

Figure 2: Ratio of number changes found to optimal disguise.

rithm terminates as soon as an attack with an acceptable
cost is found.

In Figure 4, we show the number of queries needed if the
algorithm terminates as soon as an attack is found that is
within a factor of two of the optimal achievable attack. In-
terestingly, the number of queries no longer exhibits a strong
dependence on the number of optimal changes. Further-
more, the average number of queries is lowered by at least
a factor of 100 in each case. This shows that the number of
queries required to find a nearly optimal instance is just a
small fraction of the queries required to guarantee a nearly
optimal instance. Therefore, our algorithms are nearly as
effective and vastly more efficient if stopped early, making
these attacks much more practical.

Finally, if the attacker has background knowledge about
which features are likely to be spammy or innocent, then
the order of the queries can be changed in order to find
a good attack much faster. This background knowledge
could come from educated guesses or from learning a simi-
lar model on publicly available data, as done by Biggio et
al. [1]. Knowledge can also be gained by running our algo-
rithms and observing which features are helpful or harmful;
this could then be reused on future attacks against the same
or similar classifiers. Lowd and Meek discuss even more effi-
cient heuristics against linear classifiers [11], many of which
could be adapted to combinations of linear classifiers. Any
of these techniques could be used in conjunction with the
early stopping method described above to construct very
practical evasion attacks.

6. CONCLUSION
Understanding the theoretical hardness of attacking differ-

ent types of classifiers is important for designing more robust
systems in adversarial domains. In addition to measuring ac-
curacy and efficiency, the hardness of evading a classifier can
constitute another important dimension to consider. Previ-
ous results had shown that an attacker could find a negative
instance to evade any linear classifier with at most twice
the minimum Hamming distance using only a polynomial
number of membership queries.

In this paper, we presented the first results for evading
non-linear classifiers in discrete feature spaces. We found
that arbitrary conjunctions and disjunctions of linear classi-
fiers require exponentially many queries to even approximate
minimum Hamming distance. This suggests that they may
be more robust than individual linear classifiers. However,
when the component classifiers operate on disjoint sets of
features, we proved that these ensembles of linear classifiers
can still be attacked relatively efficiently.

We also showed the relative practicality of these attacks
using combinations of classifiers trained on email spam. The
number of queries required depends linearly on the number
of features considered and quadratically on the optimal cost.
We found smaller vocabularies to be nearly as effective as
larger vocabularies while requiring fewer queries. Addition-
ally, simply stopping the algorithms early can find nearly
optimal attacks while reducing the number of queries by
two orders of magnitude.



100 101 102

Restricted Optimal # of Changes

100

101

102

103

104

105

106

107
#

 o
f 

Q
u

e
ri

e
s

1000 Words
Dictionary (23K)

(a) Conjunction

100 101 102 103

Restricted Optimal # of Changes

103

104

105

106

107

108

109

#
 o

f 
Q

u
e
ri

e
s

1000 Words
Dictionary (23K)

(b) Disjunction

100 101 102 103

Restricted Optimal # of Changes

103

104

105

106

107

108

109

#
 o

f 
Q

u
e
ri

e
s

1000 Words
Dictionary (23K)

(c) Linear

Figure 3: Number of queries as a function of the restricted optimal number of changes (log-log plot)

100 101 102 103

Restricted Optimal # of Changes

101

102

103

104

105

106

107

#
 o

f 
Q

u
e
ri

e
s

1000 Words
Dictionary (23K)

(a) Conjunction

100 101 102 103

Restricted Optimal # of Changes

102

103

104

105

106

107

108
#

 o
f 

Q
u

e
ri

e
s

1000 Words
Dictionary (23K)

(b) Disjunction

100 101 102 103

Restricted Optimal # of Changes

103

104

105

106

107

108

#
 o

f 
Q

u
e
ri

e
s

1000 Words
Dictionary (23K)

(c) Linear

Figure 4: Number of queries needed to be within a factor of 2 of the restricted optimal number of changes

It is important to remember that our results are only
upper bounds on the difficulty of real-world classifiers. In
practice, any given classifier may have properties that make
it much easier to attack than the hardest classifier in the
concept class. Furthermore, if the adversary has additional
background knowledge or does not need to guarantee ap-
proximate optimality, much more efficient attacks may be
possible. Thus, these results provide insight and guidance
but do not constitute a complete evaluation of a classifier’s
security.

In ongoing work, we are investigating other criteria that
may make conjunctions and disjunctions of linear classifiers
easy to attack. For example, bounds on the number of com-
ponents or the relative weights of the features may make
efficient attacks possible even when the features overlap.

7. ACKNOWLEDGMENTS
This research was partly funded by ARO grant W911NF-

08-1-0242. The views and conclusions contained in this doc-
ument are those of the author and should not be interpreted
as necessarily representing the official policies, either ex-
pressed or implied, of ARO, NSF, or the U.S. Government.

8. REFERENCES
[1] B. Biggio, I. Corona, D. Maiorca, B. Nelson,

N. Srndic, P. Laskov, G. Giacinto, and F. Roli.
Evasion attacks against machine learning at test time.
In European Conference on Machine Learning and

Principles and Practice of Knowledge Discovery in
Databases (ECML PKDD). Springer, 2013.

[2] B. Biggio, G. Fumera, and F. Roli. Multiple classifier
systems for adversarial classification tasks. In
Proceedings of the 8th International Workshop on
Multiple Classifier Systems, pages 132–141. Springer,
2009.

[3] D. Chau, S. Pandit, and C. Faloutsos. Detecting
fraudulent personalities in networks of online
auctioneers. Knowledge Discovery in Databases:
PKDD 2006, pages 103–114, 2006.

[4] G. Cormack and T. Lynam. Spam corpus creation for
trec. In Stanford University, 2005.

[5] L. F. Cranor and B. A. LaMacchia. Spam!
Communications of the ACM, 41(8):74–83, August
1998.

[6] I. Drost and T. Scheffer. Thwarting the nigritude
ultramarine: Learning to identify link spam. In
Proceedings of the Sixteenth European Conference on
Machine Learning, pages 96–107. Springer, 2005.

[7] J. D. Hunter. Matplotlib: A 2d graphics environment.
Computing In Science & Engineering, 9(3):90–95,
2007.

[8] N. Jindal and B. Liu. Opinion spam and analysis. In
Proceedings of the International Conference on Web
Search and Web Data Mining, pages 219–230. ACM,
2008.

[9] Z. Jorgensen, Y. Zhou, and M. Inge. A multiple
instance learning strategy for combating good word



attacks on spam filters. J. Mach. Learn. Res.,
9:1115–1146, June 2008.

[10] D. Lowd and C. Meek. Adversarial learning. In
Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in
data mining, KDD ’05, pages 641–647, New York, NY,
USA, 2005. ACM.

[11] D. Lowd and C. Meek. Good word attacks on
statistical spam filters. In Proceedings of the Second
Conference on Email and Anti-Spam (CEAS), pages
125–132, 2005.

[12] B. Nelson, B. I. P. Rubinstein, L. Huang, A. D.
Joseph, S. J. Lee, S. Rao, and J. D. Tygar. Query
strategies for evading convex-inducing classifiers.
CoRR, abs/1007.0484, 2010.

[13] J. Neville, O. Şimşek, D. Jensen, J. Komoroske,
K. Palmer, and H. Goldberg. Using relational
knowledge discovery to prevent securities fraud. In
Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery in
Data Mining, pages 449–458. ACM, 2005.

[14] D. O’Callaghan, M. Harrigan, J. Carthy, and
P. Cunningham. Network analysis of recurring
YouTube spam campaigns. In Proceedings of the Sixth
International AAAI Conference on Weblogs and Social
Media. AAAI Press, 2012.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[16] D. Sculley, M. E. Otey, M. Pohl, B. Spitznagel,
J. Hainsworth, and Y. Zhou. Detecting adversarial
advertisements in the wild. In Proceedings of the 17th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
274–282. ACM, 2011.

[17] G. Stringhini, C. Kruegel, and G. Vigna. Detecting
spammers on social networks. In Proceedings of the
26th Annual Computer Security Applications
Conference, pages 1–9. ACM, 2010.

[18] S. Yardi, D. Romero, G. Grant, and d. boyd. Detecting
spam in a Twitter network. First Monday, 15(1), 2010.


