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Abstract. Many parallel performance tools provide the ability to sum-
marize and report statistical data about an application’s performance
on a given platform, and/or report the performance differences between
two executions of a particular application. However, few tools provide an
explanation of performance results in a way that includes performance
data results and the integration of the experiment context. The tools that
do provide some explanation of performance results do so in a confined
way which only identify known problems with particular symptoms, and
do not provide the ability to perform general purpose performance engi-
neering. In this paper, we describe our design for an analysis framework
to integrate context metadata and performance assumptions, considered
expert knowledge about an experiment into the analysis process, present
early results, and describe our plans for further exploration of this anal-
ysis space.

1 Introduction

Parallel applications running on high-end computer systems manifest a complex-
ity of performance phenomena. Tools to observe parallel performance attempt to
capture these phenomena in measurement datasets rich with information relat-
ing multiple performance metrics to execution dynamics and parameters specific
to the application-system experiment. However, the potential size of datasets
and the need to assimilate results from multiple experiments makes it a daunt-
ing challenge to not only process the information, but discover and understand
performance insights. In order to perform analysis on these large collections of
performance experiment data, we developed PerfExplorer[1], a framework for
parallel performance data mining and knowledge discovery. The framework ar-
chitecture enables the development and integration of data mining operations
that can be applied to large-scale parallel performance profiles. PerfExplorer is
built on a performance data management framework called PerfDMF[2], which
provides a library to access the parallel profiles and save analysis results in a
relational database. The application is integrated with existing analysis toolkits
(R[3], Weka[4]), and provides for extensions using those toolkits.
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Like many performance tools, PerfExplorer is capable of generating and dis-
playing summary statistics for parallel performance data. However, performance
tools of the future need to go beyond the display and/or visualization of summary
statistics and provide in-depth analysis and explanation of performance results
to the user. There is context metadata relating to the application, platform, al-
gorithm, and related parallel performance problems that would be helpful in the
analysis process. Encoding this knowledge in some form that a performance tool
can use would be instrumental in developing new analysis techniques that cap-
ture more information about the experiment than simply the raw performance
data.

In many parallel scientific applications, intimate knowledge of the computa-
tional semantics and systems environment is necessary to correctly reason and
make conclusions about the performance data. In order to develop intelligent
analysis heuristics, this expert knowledge has to be encoded in a form that an
analysis expert or engine can apply to the problem in order to identify cor-
relations, locate causality, and otherwise make conclusions about application
performance. Certainly, there are known relationships between events in the ap-
plication and the events themselves carry logical semantics. Unfortunately, these
relationships and semantics are not currently conveyed in any form to the per-
formance tools. This makes it difficult to develop performance characterization
support.

In addition to the integration of context metadata and expert knowledge, a
successful performance analysis framework requires an extensible control mech-
anism beyond interactive commands through a user interface. Successful meta
analysis of performance results requires programmable process control, persis-
tence of analysis results as well as the provenance of the results, and finally,
requires some mechanism for reasoning about the large amount of input data
and the potential conclusions which lead to the performance characterization.

We are currently developing an integrated framework for performing meta-
analysis using parallel performance data, performance context metadata, expert
knowledge, and intermediate analysis results. New methods are needed for cor-
relating context metadata with the performance data and the analysis results, in
order to provide the capability to generate desired empirical performance results
from more accurate suggestions on how to improve performance.

Constructing this framework also requires methods for encoding expert knowl-
edge to be included in the analysis of performance data from parametric exper-
iments. Knowledge about subjects such as hardware configurations, libraries,
components, input data, algorithmic choices, runtime configurations, compiler
choices, and code changes will augment direct performance measurements to
make additional analyses possible.

While many successful performance tools are distributed with some type
of open-source license, very few application developers will have the desire to
make modifications to low-level analysis code in a performance tool with which
they have little experience. This an unreasonable expectation, and there exists
a need to control the analysis, while providing proven analysis heuristics. For
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this reason, we see the need for process control to provide explicit control of
the analysis process, and an inference mechanism to provide reasoning about
performance results and the potential causes.

The remainder of the paper is as follows. We discuss our analysis approach
for the knowledge-supported framework in §2. We discuss our prototype design
in §2. We will present our initial findings with this prototype in §3 and present
related work in §4. Conclusions and future work are discussed in §5.

2 Design Approach

As mentioned in §1, PerfExplorer[2] is a graphical user interface based Java
application for performing data mining analyses on multi-experiment parallel
performance profiles. It’s capabilities include general statistical analysis of per-
formance data, dimension reduction, clustering, and correlation of performance
data, and multi-experiment data query and management.

While PerfExplorer is a step forward in the ability to automatically process
complex statistical functions on large multi-dimensional data, its functionality
was limited to providing new descriptions of the data − it does not explain the
performance characteristics or the behavior observed in the data. For example,
an analyst can determine that on average, application X spent 30% of its total
execution time in function foo(), and that when the number of processors is
increased, the percentage of time may go up or down, and so on. However,
PerfExplorer did not have the capability to explain why the change happened.
The explanation may be as simple as the fact that the input problem doubled in
size, but without that contextual knowledge, no analysis tool could be expected
to come to any conclusions about the cause of the performance change without
resulting to speculation.

In general, we will consider the analysis case where we have collected parallel
performance data from multiple experiments, and we wish to compare their
performance. Like other tools, PerfExplorer can provide the means for an analyst
to determine which execution is the “best” and which is the “worst”, and can
even help the analyst investigate further into which regions of code are most
affected, and due to which metrics. However, there is no explicit process control,
nor is there higher-level reasoning or analysis of the performance result to explain
what caused the performance differences. In order to perform this type of meta-
analysis, several components are necessary to meet the desired goals.

Figure 1 shows the interaction between components in the proposed new
PerfExplorer design. The performance data and accompanying metadata are
stored in the PerfDMF database. Performance data is used as input for statisti-
cal analysis and data mining operations, as was the case in the original version of
PerfExplorer. The new design adds the ability to make all intermediate analysis
data persistent, not just the final summarization. Expert knowledge is incorpo-
rated into the analysis, and these new inputs allow for higher-level analysis. An
inference engine is also added to combine the performance data, analysis results,
expert knowledge and execution metadata into a performance characterization.
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Fig. 1. PerfExplorer analysis framework.

The provenance of the analysis result is stored with the result, along with all in-
termediary data, using object persistence. The whole process is contained within
a process control framework, which provides user control over the performance
characterization process.

2.1 New Analysis Input

Expert Knowledge There are several types of parametric study commonly
seen in the parallel performance literature: application benchmarking, machine
benchmarking, application performance testing and workload characterization.
For each of these studies, application performance data is collected while varying
one or more configuration parameters. In the example of a scalability study, the
number of processors used and the input problem size is varied, and empirical
performance results are compared with expected results, based on baseline com-
parisons. In each of these parametric studies, we have identified eight common
categories of parameters, listed in Table 1, along with example parameters for
each category and an example of a known assumption, or expert knowledge, about
a parameter in that category that could be helpful in analyzing the performance
of an experiment.
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Category Parameter Examples Possible Assumptions

Machines processor speed/type, memory
size, number of cores

CPU A faster than CPU B

Components MPI implementation, linear alge-
bra library, runtime component

component A faster than B

Input problem size, input data, problem
decomposition

smaller problem means faster exe-
cution

Algorithms FFT vs. DFT algorithm A faster than B for prob-
lem > X

Configurations number of processors, runtime pa-
rameters, number of iterations

more processors means faster exe-
cution

Compiler compiler choice, compiler options,
pre-compiler usage, code transfor-
mations

execution time: -O0 ≥ -O1 ≥ -O2
≥ -O3 ≥ -fast

Code Relation-
ships

call order, send-receive partners,
concurrency, functionality

code region has expected concur-
rency of X

Code Changes code change between revisions newer code expected to be faster

Table 1. Parametric categories and corresponding example assumptions in those cat-
egories.

As an example, the first category includes differences between architectures,
such as when porting an application, or performing an application benchmarking
study on more than one architecture. Parameters such as CPU type and speed,
the amount of cores per CPU, the number of CPUs per node, etc. all represent
useful information when comparing two or more architectures. In order to utilize
this information, performance assumptions can be made in the analysis process
which will help guide the analysis. For example, take an application executed
with the same configuration on two different machines. If the metadata shows
that the only difference between the two machines is the speed of the CPU,
then the analysis should correlate the performance differences between the two
executions to the differences in speed. As another example, suppose that we can
identify a region of code as inherently sequential. Therefore, any scalability anal-
ysis of this region could then assume that there will be no expected improvement
by increasing the number of processors, and will not flag this section as a per-
formance bottleneck. While these are overly simplified examples, they illustrate
the potential utility that expert knowledge about an execution can provide to
the performance analysis.

Collecting and Integrating Metadata Many performance instrumentation
and collection utilities collect context metadata along with the application per-
formance data. This metadata potentially contains information relating to useful
analysis input such as the build environment, runtime environment, configura-
tion settings, input and output data, and hardware configuration. Table 2 shows
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Field Example

CPU Cores 4
CPU MHz 2660.006
CPU Type Intel(R) Xeon(R) CPU X5355 @ 2.66GHz
CPU Vendor GenuineIntel
CWD /home/joeuser/tau2/examples/NPB2.3/bin
Cache Size 4096 KB
Executable /home/joeuser/tau2/examples/NPB2.3/bin/lu.C.16
Hostname garuda.cs.uoregon.edu
Local Time 2007-03-29T16:06:08-07:00
Memory Size 8155912 kB
Node Name garuda.cs.uoregon.edu
OS Machine x86 64
OS Name Linux
OS Release 2.6.18.1 ktau 1.7.9 pctr
OS Version #2 SMP Mon Mar 26 17:36:14 PDT 2007
TAU Architecture x86 64
TAU Config -fortran=intel -cc=icc -c++=icpc -mpi . . .
UTC Time 2007-03-29T23:06:08Z
username joeuser

Table 2. Default TAU metadata fields.

examples of metadata fields which are automatically collected by the profiling
provided by TAU[5]. It should be easy to see how fields such as CPU MHz, Cache
Size or Memory Size would be useful in explaining the differences between execu-
tions. By integrating these fields into the analysis process, the analysis framework
can reason about potential causes for performance failures.

2.2 Meta-Analysis Components

Process Control One of the key aspects of the new PerfExplorer design is the
requirement for process control. While user interfaces and data visualzation are
useful for interactive data exploration, the user will need the ability to control
the analysis process as a discrete set of operations. In order to synthesize analysis
results, expert knowledge and metadata into higher-level meta-analysis process,
PerfExplorer needs an extention mechanism for creating higher-order analysis
procedures. One way of doing this is through a scripting interface1. With such
an interface, the analysis process is under the control of the anayst, who is able
to reliably produce the characterization with minimal effort.

Inference Engine Because the needs of the meta-analysis is dynamic, why
should a performance analysis tool hard-code the complex rules that guide the

1 Jython: http://www.jython.org/
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Optimizations Effects Time

-O0 Very few optimizations. 0m06.124s

-O2 Optimizations without an unreasonable increase in
compilation time or storage

0m28.827s

-O3 -O2 plus -qhot=level=0 -qnostrict -qmaxmem=-1 0m55.131s

-O4 -O3 plus -qarch=auto -qcache=auto -qhot -qipa -
qtune=auto

3m42.912s

-O5 -O4 plus -qipa=level=2 4m29.263s

Table 3. Affect of compiler option on compiler time. The time reflects the total time
to compile 27 Fortran files, 1 C file, and link the executable.

decision making process of a performance analyst? Is it possible to translate the
subtleties of analysis reasoning to source code? In order to provide the type of
higher-level reasoning and meta-analysis we require in our design, we will inte-
grate a JSR-942 compliant rule engine3. The strategic selection of an inference
engine and processing rules allows another method of flexible control of the pro-
cess, and also provides the possibility of developing a domain specific language
to express the analysis rules.

Provenance and Data Persistence In order to rationalize analysis deci-
sions, any explanation needs to include the data provenance, or the full chain
of evidence and handling from raw data to synthesized analysis result. The new
design will include the ability to make all intermediate analysis data persistent,
not just the final summarization. The provenance of the analysis result is stored
with the results and all intermediary data, using object persistence4. Any sci-
entific endeavor is considered to be of “good provenance” when it is adequately
documented in order to allow reproducibility. For parallel performance analy-
sis, this includes all raw data, analysis methods and parameters, intermediate
results, and inferred conclusions.

3 Preliminary Results

3.1 Compiler options

Need to point out some key points: - process control necessary for automated
tuning - one size fits all doesn’t work with optimization flags - for best possible
performance, need combine optimization for different files

2 Java Rule Engine API: http://jcp.org/en/jsr/detail?id=94
3 JBoss Rules: http://www.jboss.com/products/rules
4 Relational Persistence for Java and .NET: http://www.hibernate.org/
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Fig. 2. Affect of compiler options on major events in GTC.

3.2 input parameters

3.3 scalability

4 Related Work

Hercule[6–8] is a parallel performance diagnosis tool which uses the expert sys-
tem CLIPS to process computational model-centric rules which can diagnose
common performance problems. Hercule’s rules define symptoms of known par-
allel application problems, such as load imbalance, insufficient parallelization,
etc., and encodes possible solutions for correcting these known problems. Hercule
takes as input the application’s parallel model, and diagnoses known problems
from the input data and the application model assumptions. Hercule analyzes
event trace files, not profiles.

EXPERT[9], from the KOJAK[10] project, is an automatic event-trace anal-
ysis tool for MPI and OpenMP applications. It searches the traces for execu-
tion patterns indicating low performance and quantifies them according to their
severity. The patterns target both problems resulting from inefficient communi-
cation and synchronization as well as from low CPU and memory performance.
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(a) first caption (b) second caption

(c) third caption

method n = 16 n = 32 Diff %

RUNTIME 1777 1350 -427 31.6
Coll 106.8 54.8 -52.1 95.1
Coll tr 86.9 85.9 -1.0 1.1
extras 97.2 65.1 -32.1 49.2
field 499.6 377.5 -122.1 32.4
lin RHS 111.5 60.6 -50.9 83.9
NL 496.7 475.4 -21.3 4.5
NL tr 371.3 224.3 -147.0 65.5

(d) fourth caption

Fig. 3. Total Caption
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Unlike our proposed approach, EXPERT searches for known problems, rather
than focusing on characterization and new problem discovery. Also, the perfor-
mance data analyzed is trace data. CUBE[11] is a graphical browser suitable
for displaying a wide variety of performance measurements for parallel programs
including MPI and OpenMP applications, and is the primary analysis viewer
for EXPERT. CUBE implements Performance Algebra[12], a technique for per-
forming difference, merge and aggregation operations on parallel performance
profile data. While CUBE provides a powerful interface for visualization and ex-
ploratory analysis of the differences between two performance data sets, there is
no mechanism for linking the performance behavior to the performance context,
and providing the user with a meaningful explanation of why the performance
differs between the two profiles.

Paradyn[13] utilizes the Performance Consultant[12] and Distributed Perfor-
mance Consultant[14] for run-time and offline discovery of known performance
problems. The latest version of the Performance Consultant uses historical per-
formance data to help guide bottleneck detection. The performance data is
mapped into the Program Space, which is split into two pieces: the Space Map
and the Event Map. The Space Map consists of the metadata describing the
specific execution, in the form of a resource hierarchy. Filtering of experiments
comes by selecting a focus from each of the trees in the resource hierarchy. The
event map consists of the structural information about the application gathered
during compile time and execution time. The performance data is a mapping
of the unique program event identifier, metric, focus, time interval and the ac-
tual performance result. Structural merge and difference operators are used to
perform comparisons between two experiments. Mappings are used to compare
dissimilar resource hierarchies. With this interface, it is possible to automati-
cally describe differences between two runs of a program, both the structural
differences (differences in program source code and the resources used at run-
time), and the performance variation (how were the resources used and how did
this change from one run to the next). While the Performance Consultant does
include contextual information about the runtime environment to help explain
performance differences, there doesn’t appear to be a mechanism for including
additional expert knowledge about the application, such as data or event re-
lationships. And like the aforementioned tools, the Performance Consultant’s
strength is in diagnosing known performance problems, rather than general per-
formance characterization.

KappaPi[15, 16] (Knowledge-based Automatic Parallel Program Analyzer for
Performance Improvement) and KappaPI2[17] are tools which use trace files
from PVM and MPI applications, detect known performance bottlenecks, and
determine causes by applying inference rules. The causes are then related back
to the source code and suggest recommendations to the user.

Performance Assertions[18] have been developed to confirm that the empir-
ical performance data of an application or code region meets or exceeds that
of the expected performance. By using the Assertions, the programmer can re-
late expected performance results to variables in the application, the execution
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configuration (i.e. number of processors), and pre-evaluated variables (i.e. peak
FLOPS for this machine). This technique allows users to encode their perfor-
mance expectations for regions of code, confirm these expectations with empiri-
cal data, and even make runtime decisions about component selection based on
this data. The use of performance assertions requires extensive annotation of
source code, and requires the application developer’s experience and intuition in
knowing where to insert the assertions, and what kind of performance result to
expect.

JavaPSL[19] is a Java Performance Specification Language, designed to be
used to specify techniques for searching for known performace problems such
as poor scaling, load imbalance, and communication overhead. The specification
language could be useful in the application of search heuristics in a particular
diagnosis process, and represents a good example of the type of low-level analysis
whose results could be used in conjunction with expert knowledge and context
metadata to suggest the causes of performance phenomena.

5 Conclusion
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